用户名: 密码: 验证码:
微波场中氢氧化铝煅烧工艺及氧化铝晶型转变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-氧化铝是电解铝工业的主要原料,并可广泛应用于电子、石油、化工、陶瓷、磨料以及制药等领域。α-氧化铝主要(90%以上)由氢氧化铝煅烧制得。目前比较先进的工艺为流态化煅烧氢氧化铝,该工艺较传统的回转窑煅烧工艺温度低、效率高、污染小,但在处理含附着水高的氢氧化铝.物料时,存在能耗高的缺点。为解决这一问题,本论文研究了一种氢氧化铝煅烧新工艺——微波煅烧氢氧化铝。
     将微波技术应用到氧化铝制备中,已有相关报道,但均是几种氧化铝晶型之间的相互转化,并未对微波场中氢氧化铝煅烧制备α-氧化铝整个工艺过程进行详细探讨。本论文就这一问题展开详细研究,利用微波加热快、时间短的特点,跨越氧化铝过渡晶型,在低温短时的情况下制备出合格的α-氧化铝产品。并通过相应的分析检测得到微波场中煅烧氢氧化铝的反应历程。同时,借助量子化学、结构化学和分子力学等手段从微观角度探讨了氢氧化铝煅烧反应过程,对反应出现的各种化合物进行几何优化,在此基础上,通过能量与布居计算等第一性原理分析,从理论上解释了微波场中煅烧氢氧化铝低温短时的原因所在。为更好的体现微波煅烧的优越性,对常规煅烧也进行了研究,并与之相对比。研究的主要内容及结论如下:
     1)论文研究了微波和常规场中,煅烧氢氧化铝制备α-氧化铝过程中反应条件对α-氧化铝产率和平均晶粒尺寸的影响。结果表明:微波场中,煅烧温度、保温时间和物料量为主要影响因素,较佳的煅烧温度为1000℃,保温时间为20min,物料量为50g;常规条件下,煅烧温度和保温时间为主要影响因素,较佳的煅烧温度为1200℃,保温时间为2h。通过两种煅烧方式的比较可知,在获得相同α-氧化铝产率的前提下,微波煅烧可降低煅烧温度200℃,且保温时间仅为常规煅烧的1/6,获得的α-氧化铝的平均晶粒尺寸较小。
     2)在条件实验的基础上,采用响应曲面法(RSM)对实验参数进行优化,得到最优工艺参数。微波场中:煅烧温度1006.71℃,保温时间18.04min,物料量50.52g。在此优化工艺条件下,RSM预测α-氧化铝的产率为95.8578%,平均晶粒尺寸为61.3243nm。常规条件下:煅烧温度1206.81℃,保温时间2.06h。在此优化工艺条件下,RSM预测α-氧化铝的产率为95.9251%,平均晶粒尺寸为72.2455nm。论文还通过实验验证了RSM预测的准确性和模型的可靠性。
     3)实验对不同温度,微波和常规两种方式下的煅烧产品进行了XRD和FTIR的检测与分析。得到了两种煅烧方式下的反应历程。微波场中为:氢氧化铝→一水软铝石→χ-氧化铝→γ+κ-氧化铝→α-氧化铝;常规条件下为:氢氧化铝→一水软铝石→χ-氧化铝→γ+κ-氧化铝→θ+κ-氧化铝→α-氧化铝。对比两个反应历程可以发现,微波煅烧方式下,一水铝石较常规煅烧方式出现的晚,并且微波场中无θ-氧化铝出现。
     4)基于密度泛函理论的广义梯度近似方法,使用Materials Studio软件包中的CASTEP模块,对反应中的各种化合物进行几何优化,并计算各体系的能量,进行第一性原理研究。通过对各物质的能带结构、态密度和布居等性质的分析可知,各种氧化铝晶型的活泼顺序为:Y-氧化铝>θ-氧化铝>K-氧化铝>a-氧化铝。这与常规煅烧过程中氧化铝晶型转化顺序相吻合。由0-氧化铝和α-氧化铝的A1-O键的键长可知,在θ-氧化铝中有三种Al-O键的键长(1.70065A、1072238A和1.76283A)均小于α-氧化铝中最短A1-O键的键长(1.76384A)。因此在微波场中,当反应过程中(主要是900℃以后)温度急剧升高时,γ-氧化铝还没来得及转化为0-氧化铝,体系中的能量已足够促使α-氧化,铝生成,从而使得微波煅烧氢氧化铝过程中跨越了0-氧化铝。
Alpha alumina (α-Al2O3) is the main raw material in aluminum industry. In addition, it also can be used in many other fields such as electronics, petroleum, chemicals, ceramics, abrasives, and pharmaceutical fields. Alpha alumina is obtained mainiy by calcinating aluminum hydroxide. However, too much energy is consumed in this process. The most effective solution is to reduce the baking temperature and shorten the baking time of the process. This paper researched a new microwave calcination process.
     The main task of the process is to remove the absorption water and constitutional water. It is more effective for microwave to remove water from material. Therefore, in this paper, we will use microwave method to prepare alpha alumina from aluminum hydroxide. And the process of aluminum oxide crystal transformation was studied systematicly using the first principle studies. The thermal-dynamics by microwave calcination was performed through theoretical analysis. Accordingly, for comparison, the process was also researched in conventional method. The main contents and conclusions were as follows:
     1) The paper rstudied the effect of the reaction conditions on the yield and average crystal size of alpha alumina under the conventional and the microwave field. The results showed that the main factors are calcination temperature and holding time under conventional field. And the optitimal reaction conditions are the calcination temperature at1200℃and the holding time of2h. Under the microwave field, the main factors are calcination temperature, holding time and the mass of material. And the optimal reaction conditions are the calcination temperature at1000℃, the holding time of20min and the mass of material50g. So, it can be conclude that we will obtain alpha alumina with smaller average crystal size at lower temperature and shorter time under microwave field.
     2) The response surface methodology (RSM) is carried out to optimize the parameters of the experiment. The optimization results indicate that the optimum conventional calcination parameters are the calcination temperature at1206.81℃and the holding time of2.06h. In the optimum parameters, RSM forecast that the yield of alpha alumina is95.9251%and the average crystal size of alpha alumina is72.2455nm. The optimum microwave calcination parameters are the calcination temperature at1006.71℃, the holding time of18.04min, and the mass of material50.52g. In the optimum parameters, RSM forecast that the yield of alpha alumina is95.8578%and the average crystal size of alpha alumina is61.3243nm. The paper also verifies the reliability of the model used in the experiment.
     3) The XRD and FTIR analysis indicated that the reaction mechanism of the conventional field is A1(OH)3→AlO(OH)→χ-Al2O3,→γ+κ-Al2O31→θ+κ-Al2O3→α-Al2O3. However, the reaction mechanism of the microwave field is A1(OH)3→AlO(OH)→χ-Al2O3→γ+κ-Al2O3→α-Al2O3. Contrasting these two reaction courses, one finds that the AlO(OH) produces later in microwave field than in the conventional field and there is no θ-Al2O3in microwave field
     4) Crystal structure models of six crystals, which are A1(OH)3, AlO(OH), γ-Al2O3, κ-Al2O3,θ-Al2O3and α-Al2O3, were built respectively. Geometry optimizations were implemented by CASTEP program module using general gradient approximation (GGA) method, based on density functional theory (DFT). The total energy, bond structure, DOS, atomic and bond populations were also calculated. The calculation results indicate that the order of reactivity is γ-Al2O3>θ-Al2O3>κ-Al2O3>κ-Al2O3. It is consistent with the result and the conventional experiment. These three kinds of Al-O bond lengths of O-Al2O3are shorter than that of α-Al2O3. Thus, when the temperature rises sharply, there is too much energy in the system. It transforms γ-Al2O3into α-Al2O3directly. We speculate that it should be the main reason why the θ-Al2O3does not exist from the microwave processing.
引文
[1]陈念贻.氧化铝生产的物理化学[M].上海.上海科学技术出版社,1962
    [2]费子文,徐大铨.中国冶金百科全书——耐火材料[M].北京.冶金工业出版社,1997
    [3]姜跃华.我国氧化铝技术装备在世界铝工业的地位[J].轻金属,2007,8:16-19
    [4]葛建敏.中国与世界氧化铝市场[J].轻金属,2004,7:64
    [5]吴安福.氧化铝世界市场分析研究[J].矿业研究与开发,2006,26(1):7-8,13
    [6]商连弟.八种晶型氧化铝的研制与鉴别[J].化学世界,1994,7:364-350
    [7]Aldebert, P. Traverse, J.P. Neutron diffraction study of structural characteristics and ionic mobiliy of alpha-Al2O3 at high temperatures [J]. Journal of the American Ceramic Society,1982,65:460-464
    [8]Gutierrez, G.;Taga, A.;Johansson, B. Theoretical structure determination of gamma-(Al2O3) [J]. Physical Review, Serie 3. B-Condensed Matter 2002,65(1):1-4
    [9]Husson, E.;Repelin, Y. Structural studies of transition aluminas. Theta alumina [J]. European Journal of Solid State Inorganic Chemistry,1996,33:1223-1231
    [10]S. D. Vaidya, N. V. Thakkar. Study of phase transformations during hydration of rho alumina by combined loss on ignition and X-ray diffraction technique [J]. Journal of Physics and Chemistry of Solids, 2001,62(5):977-986
    [11]Repelin, Y.;Husson, E. Etudes structurales d'alumines de transition. I-Alumines gamma et delta [J]. Materials Research Bulletin,1990, 25:611-621
    [12]Brindley, Choe. Am. Mineral.,1961,46:771
    [13]Ollivier, B.;Retoux, R.;Lacorre, et al. Crystal structure of kappa-alumina:an X-ray powder diffraction, TEM and NMR study [J]. Journal of Materials Chemistry,1997,7(6):1049-1056
    [14]Zhou, R.-S.;Snyder, R.L. Structures and transformation mechanisms of the eta, gamma and theta transition aluminas [J]. Acta Crystallographica B,1991,47:617-630
    [15]V. Jayaraman, G. Periaswami, T.R.N. Kutty. Gel-to-crystallite conversion technique for the syntheses of M-β/β"-alumina (M=Li, Na, K, Rb, Ca or Eu) [J]. Materials Research Bulletin,2008,43(10): 2527-2537
    [16]杨重愚.氧化铝生产工艺学[M].北京.冶金工业出版社,1 982
    [17]毕诗文.氧化铝生产工艺[M].北京.化学工业出版社,2006
    [18]毕诗文,于海燕,杨毅宏等.拜耳法生产氧化铝[M].北京.冶金工业出版社,2007
    [19]秋山.工业化学杂志.1939,42:830
    [20]Stumpf, H. C. Industrial and Engineering Chemistry,1950,42:1398
    [21]#12
    [22] Zhi-Peng Xie, Ji-Wei Lu, Yong Huang, et al. Influence of α-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide [J]. Materials Letters,2003, 57(16-17):2501-2508 [23] N. Louet, M. Gonon, G. Fantozzi. Influence of the amount of Na2O and SiO2 on the sintering behavior and on the microstructural evolution of a Bayer alumina powder [J]. Ceramics International,2005, 31(7):981-987 [24] Z. Razavi Hesabi, M. Haghighatzadeh, Mehdi Mazaheri, et al. Suppression of grain growth in sub-micrometer alumina via two-step sintering method [J]. Journal of the European Ceramic Society,2009, 29(8):1371-1377
    [25]艾孟井,程宗浩,张晓风.联合法生产氧化铝的新工艺探讨[J].铝镁通讯,2007,(1):7-9
    [26]刘永轶.混联法生产氧化铝工艺优化探讨[J].有色冶金节能,2007, 24(6):23-27
    [27]王剑锋,周爱萍.初论氢氧化铝流态化焙烧技术与国内应用[J].轻金属,1997,11:13-16
    [28]Raghavan Subasri. Investigations on the factors assisting a one-step synthesis cum sintering of sodium beta alumina using microwaves [J]. Materials Science & Engineering B.2004,112:73-78
    [29]Hee Chan Park, Sung Wan Kim, Sang Geun Lee, et al. Synthesis of α-alumina platelets using flux method in 2.45 GHz microwave field [J]. Materials Science and Engineering A.2003,363:330-334
    [30]宋然然,隋万美.溶胶-微波干燥法制备纳米Al2O3粉[J].青岛大学学报(工程技术版),2006,21(3):90-92
    [31]周曦亚,毕舒,凡波.微波加热及掺杂ZrO2对γ-Al2O3→α-Al2O3相变的影响[J].华南理工大学学报(自然科学版),2006,34(5):90-93
    [32]张登高,宋锦瑞.特种氧化铝的应用领域及市场现状[J].无机盐工业,2004,36(4):12-15
    [33]马红,章非敏,王娟等.纳米硅涂层改性牙科氧化铝基陶瓷生物相容性研究[J].南京医科大学学报:自然科学版,2007,27(5):432-435
    [34]赵皴,徐武清,赵喆等.氧化铝羟基磷灰石人工骨与兔骨的生物相容性观察[J].中国临床康复.2006.10(37):57-60
    [35]温波,黄颖,徐勇忠.氧化铝生物陶瓷骨细胞相容性研究[J].吉林大学学报:医学版,2003,29(2):158-160
    [36]E. Verne, M. Bosetti, C. Vitale Brovarone, et al. Fluoroapatite glass-ceramic coatings on alumina:structural, mechanical and biological characterisation [J]. Biomaterials,2002,23(16):3395-3403
    [37]J.L. Gonzalez-Carrasco, G. Ciapetti, M.A. Montealegre, et al. Evaluation of mechanical properties and biological response of an alumina-forming Ni-free ferritic alloy [J]. Biomaterials,2005, 26(18):3861-3871
    [38]罗玉长.氧化铝精细陶瓷的发展概况[J].轻金属,1995,(8):5-11
    [39]Chih-Jen Wang, Chi-Yuen Huang, Yu-Chun Wu. Two-step sintering of fine alumina-zirconia ceramics [J]. Ceramics International,2009, 35(4):1467-1472
    [40]E. Otterstein, G. Karapetyan, R. Nicula, et al. Sol-gel synthesis and characterization of fine-grained ceramics in the alumina-titania system [J]. Thermochimica Acta,2008,468(1-2,5):10-14
    [41]Tiandan Chen, Martha L. Mecartney. Superplastic compression, microstructural analysis and mechanical properties of a fine grain three-phase alumina-zirconia-mullite ceramic [J]. Materials Science and Engineering:A,2005,410-411 (25):134-139
    [42]C. G. Aneziris, E. M. Pfaff, H. R. Maier. Fine grained Mg-PSZ ceramics with titania and alumina or spinel additions for near net shape steel processing [J]. Journal of the European Ceramic Society,2000, 20(11):1729-1737
    [43]杨琪.氧化铝短纤维强化AC 8A铝合金复合材料的强度特性[J].失效分析与预防,2004,(1):45-52
    [44]朱振峰,孙洪军,刘辉等.表面活性剂辅助水热热分解法制备介孔氧化铝纤维[J].无机材料学报,2009,(5):1003-1007
    [45]Ejiro Gbenedio, Zhentao Wu, Irfan Hatim, Benjamin F.K. Kingsbury, K. A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation [J]. Catalysis Today,2010,156(3-4):93-99
    [46]In-Hwan Choi, In-Chul Kim, Byoung-Ryol Min, et al. Preparation and characterization of ultrathin alumina hollow fiber microfiltration membrane[J]. Desalination,2006,193(1-3):256-259
    [47]M. Shojaie-Bahaabad, E. Taheri-Nassaj, R. Naghizadeh. Effect of yttria on crystallization and microstructure of an alumina-YAG fiber prepared by aqueous sol-gel process[J]. Ceramics International,2009, 35(1):391-396
    [48]沈毅,杨正方.SiC掺杂氧化铝耐磨陶瓷摩擦盘材质的研制[J].现代技术陶瓷现代技术陶瓷,2001,22(4):7-9
    [49]Mitjan Kalin, Sa(?)a Novak, Joze Vizintin. Wear and friction behavior of alumina ceramics in aqueous solutions with different pH [J]. Wear, 2003,254(11):1141-1146
    [50]You Wang, Yong Yang, Yue Zhao, et al. Sliding wear behaviors of in situ alumina/aluminum titanate ceramic composites[J]. Wear,2009, 266(11-12):1051-1057
    [51]Deng Jianxin, Ai Xing. Unlubricated friction and wear behaviors of various alumina-based ceramic composites against cemented carbide [J]. Ceramics International,2006,32(5):499-507
    [52]李柳生,廖桂华,徐国辉等.氧化铝原料对红柱石基耐火材料莫来石化行为的影响[J J.硅酸盐通报,2007,26(5):867-871,934
    [53]肖建华,王晓阳.氧化铝质耐火材料的机械性能与抗热震性之间的关系[J].国外耐火材料,2004,29(2):48-50
    [54]L.A. Diaz, R. Torrecillas. Hot bending strength and creep behaviour at 1000-1400 ℃ of high alumina refractory castables with spinel, periclase and dolomite additions [J]. Journal of the European Ceramic Society,2009,29(1):53-58
    [55]Aaron J. Kessman, Karpagavalli Ramji, Nicholas J. Morris, et al. Zirconia sol-gel coatings on alumina-silica refractory material for improved corrosion resistance [J]. Surface and Coatings Technology, 2009,204(4):477-483
    [56]C. Zanelli, M. Dondi, M. Raimondo, et al. Phase composition of alumina-mullite-zirconia refractory materials [J]. Journal of the European Ceramic Society,2010,30(1):29-35
    [57]E.Y. Sako, M.A.L. Braulio, P.O. Brant, et al. The impact of pre-formed and in situ spinel formation on the physical properties of cement-bonded high alumina refractory castables [J]. Ceramics International,2010,36(7):2079-2085
    [58]曾智江,杨秋红,徐军.氧化铝透明陶瓷中Cr3+的发光性能[J].激光与光电子学进展,2005,42(7):42-44
    [59]高陇桥.高压钠灯用氧化铝透明陶瓷的进展[J].中国照明电器,2001,(7):10-11
    [60]Qiuhong Yang, Zhijiang Zeng, Jun Xu, et al. Effect of La2O3 on Microstructure and Transmittance of Transparent Alumina Ceramics [J]. Journal of Rare Earths,2006,24(1):72-75
    [61]Johan Petit, Philippe Dethare, Alessandra Sergent, et al. Sintering of α-alumina for highly transparent ceramic applications [J]. Journal of the European Ceramic Society,2011,31(11):1957-1963
    [62]彭金辉,杨显万.微波能技术新应用[M].昆明.云南科技出版社,1997
    [63]华一新,彭金辉,刘纯鹏.微波化学(金钦汉主编,第十四章微波化学在冶金中的应用)[M].北京.科学技术出版社,1999
    [64]James M. Hill, Timothy R. Marchant. Modelling microwave heating [J]. Applied Mathematical Modelling,1996,20(1):3-15
    [65]B. Liu, T. R. Marchant. The occurrence of limit-cycles during feedback control of microwave heating [J]. Mathematical and Computer Modelling,2002,35(9-10):1095-1118
    [66]Tanmay Basak, A. Shanthi Priya. Role of metallic and ceramic supports on enhanced microwave heating processes [J]. Chemical Engineering Science,2005,60(10):2661-2677
    [67]D. D. Dincov, K. A. Parrott, K. A. Pericleous. Heat and mass transfer in two-phase porous materials under intensive microwave heating [J]. Journal of Food Engineering,2004,65(3):403-412
    [68]A. Idris, K. Khalid, W. Omar. Drying of silica sludge using microwave heating [J]. Applied Thermal Engineering,2004,24(5-6):905-918
    [69]蔡卫权,李会泉,张懿.微波技术在冶金中的应用[J].过程工程学报,2005,5(2):228-232
    [70]R.K. Amankwah, G. Ofori-Sarpong. Microwave heating of gold ores for enhanced grindability and cyanide amenability [J]. Minerals Engineering,2011,24(6):541-544
    [71]Kunihiro Fukui, Keiji Kanayama, Manabu Katoh, et al. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating [J]. Advanced Powder Technology,2009,20(5):488-492
    [72]李长龙,彭金辉,张利波等.响应曲面法优化硫酸铵微波干燥工艺[J].化学工程,2011,39(3):8-12
    [73]Yu LI, Ying LEI, Li-bo ZHANG, et al. Microwave drying characteristics and kinetics of ilmenite [J]. Transactions of Nonferrous Metals Society of China,2011,21 (1):202-207
    [74]I. Alibas Ozkan, B. Akbudak, N. Akbudak. Microwave drying characteristics of spinach [J]. Journal of Food Engineering,2007, 78(2):577-583
    [75]Guo Chen, Kun Xiong, Jinhui Peng, et al. Optimization of combined mechanical activation-roasting parameters of titania slag using response surface methodology [J]. Advanced Powder Technology,2010, 21(3):331-335
    [76]Bingguo Liu, Jinhui Peng, Libo Zhang, et al. Optimization of preparation for Co3O4 by calcination from cobalt oxalate using response surface methodology [J]. Chemical Engineering Research and Design,2010,88(8):971-976
    [77]Pyeong-Seok Cho, Ki-Won Kim, Jong-Heun Lee. Improvement of dynamic gas sensing behavior of SnO2 acicular particles by microwave calcination [J]. Sensors and Actuators B:Chemical,2007, 123(2):1034-1039
    [78]David B. Menzies, Qing Dai, Yi-Bing Cheng, et al. One-step microwave calcination of ZrO2-coated TiO2 electrodes for use in dye-sensitized solar cells [J]. Comptes Rendus Chimie,2006, 9(5-6):713-716
    [79]Boualem Damardji, Hussein Khalaf, Laurent Duclaux, et al. Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye [J]. Applied Clay Science,2009,44(3-4):201-205
    [80]H. Zabova, J. Sobek, V. Cirkva, et al. Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique [J]. Journal of Solid State Chemistry,2009,182(12):3387-3392
    [81]F.V. Motta, R.C. Lima, A.P.A. Marques, et al. In2O3 microcrystals obtained from rapid calcination in domestic microwave oven [J]. Materials Research Bulletin,2010,45(11):1703-1706
    [82]王腊节,聂招秀,刘德政.A1N能带及态密度的密度泛函理论研究.四川理工学院学报:自然科学版,2011,23(4):411-413
    [83]赵成大.固体量子化学.北京,高等教育出版社,2003,128-130
    [84]Robert G P, Yang Weitao. Density Functional Theory of Atoms and Molecules. Oxford:Oxford Science Publications,1989,3-5
    [85]Foresman J B, Frisch A. Exploring Chemistry with Electronic Method Second Edition. Pittsburgh PA:Gaussian Inc.,1996,118-121
    [86]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev,1965,140(15):1133-1138
    [87]Lundqvist B I, Wilkins J W. Contribution to the Cohesive Energy of Simple Metals:Spin Dependent Effect Phys Rev B:Condens Matter Mater Phys,1974,10(4):1319-1327
    [88]孟川民,姬广富,畅向东.固态氩弹性性质的量子力学从头计算.原子与分子物理学报,2005,22(2):234-237
    [89]Perdew J P. Wang Yue. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys Rev B:Condens Matter Mater Phys,1992,45(23):13244-13249
    [90]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展,化学进展,2005,17(2):192-202
    [91]李武会,任风章,马战红等.电子理论在材料科学中的应用.中国有色金属学报,2008,18(3):494-504
    [92]贾秀华,鲁玉祥,齐国梁.密度泛函理论在催化领域的应用.石油化工,2009,38(9):1016-1021
    [93]煅烧α型氧化铝(YS/T 89—1995)
    [94]肖粤翔,何祯.大规模定制条件下的质量控制框架研究[J].工业工程,2003,12:25-27.
    [95]张于轩.多响应问题的稳健性设计优化研究[D].天津.天津大学硕士论文,2004.
    [96]Bourquin J., Schmidli H., Hoogevest P., et al. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form [J]. European Journal of Pharmaceutical Sciences,1998(7):287-300.
    [97]Kandimalla K.K., Kanikkannan N., Singh M. Optimization of a vehicle mixture for the transdermal delivery of melatonin using artificial neural networks and response surface method [J]. Journal of Controlled Release,1999,61 (1-2):71-82.
    [98]杨静.玉米秸秆纤维素酶水解研究及响应曲面法优化[D].天津天津大学硕士论文,2007.
    [99]Gursharan S., Naveen A., Mona B., et al. Optimization of process parameters using response surface methodology [J]. Bioresource Technology,2008,99(16):7472-7479.
    [100]Kima M.S., Kima J.S., You Y.H., et al. Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology [J]. International Journal of Pharmaceutics,2007,341(1-2):97-104.
    [101]Muralidhar R.V., Chirumamila R.R., Marchant R., etal. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J].Biochemical Engineering Journal,2001,9(1):17-23.
    [102]Gangadharan D., Sivaramakrishnan S., Madhavan Nampoothiri K., et al. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens [J]. Bioresource Technology,2008,99(11):4597-4602.
    [103]Azargohar R., Dalai A. K. Production of activated carbon from Luscar char:Experimental and modeling studies [J]. Microporous and Mesoporous Materials,2005,85(3):219-225
    [104]Gangadharan D., Sivaramakrishnan S., Madhavan Nampoothiri K., et al. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens [J]. Bioresource Technology,2008,99(11):4597-4602
    [105]Zhang Z.Y. Peng J.H., Srinivasakannan C., et al. Leaching zinc from spent catalyst:Process optimization using response surface methodology [J]. Journal of Hazardous Materials,2010, 176(1-3):1113-1117
    [106]Muralidhar R.V., Chirumamila R.R., Marchant R., etal. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochemical Engineering Journal,2001,9(1):1723
    [107]V. Milman, K. Refson, S.J. Clark, et al. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation [J]. Journal of Molecular Structure: THEOCHEM,2010,954(1-3):22-35
    [108]L.B. Shi, C.Y. Xu, H.K. Yuan. A CASTEP study on magnetic properties of C-doped ZnO crystal [J]. Physica B:Condensed Matter, 2011,406(17):3187-3191
    [109]Vitor Silva, Fernando Perdigao. Generalising the simultaneous computation of the DFTs of two real sequences using a single N-point DFT [J]. Signal Processing,2002,82(3):503-505
    [110]Guoan Bi. Fast algorithms for DFT of composite sequence lengths [J]. Signal Processing,1998,70(2):139-145
    [111]Sunder S. Kidambi. Simultaneous computation of the DFT of an N-point real sequence and the IDFT of an N-point complex sequence with conjugate symmetry with a single N-point DFT [J]. Signal Processing,2001,81 (5):1109-1112
    [112]Shane Woody, Marcin Bauza, Stuart Smith, Michael. Thompson Single-and multi-sine DFT demodulation with an application to precision capacitive sensors [J]. Precision Engineering,2008, 32(2):79-87
    [113]K. Maharatna, A. S. Dhar, Swapna Banerjee. A VLSI array architecture for realization of DFT, DHT, DCT and DST [J]. Signal Processing,2001,81(9):1813-1822
    [114]Alexander C. Saladino, Sarah C. Larsen. DFT calculations of EPR parameters of transition metal complexes:Implications for catalysis [J]. Catalysis Today,2005,105(1):122-133
    [115]Julien Toulouse, Carlo Adamo. A new hybrid functional including a meta-GGA approach [J]. Chemical Physics Letters,2002, 362(1-2):72-78
    [116]Noura Hamdad. The ground states properties and the spin effect on the cubic and hexagonal perovskite manganese oxide BaMnO3: GGA+U calculation [J]. Physica B:Condensed Matter,2011, 406(6-7):1194-1203
    [117]Gurpreet Singh, S.L. Gupta, R. Prasad, et al. Suppression of Jahn-Teller distortion by chromium and magnesium doping in spinel LiMn2O4:A first-principles study using GGA and GGA+U [J]. Journal of Physics and Chemistry of Solids,2009,70(8):1200-1206
    [118]L. Maschio, M. Ferrabone, A. Meyer, et al. The infrared spectrum of spessartine Mn2Al1Si3O12:An ab initio all electron simulation with five different functionals (LDA, PBE, PBESOL, B3LYP and PBEO) [J]. Chemical Physics Letters,2011,501(4-6):612-618
    [119]F. Azizi, A.M. Al Taweel. Algorithm for the accurate numerical solution of PBE for drop breakup and coalescence under high shear rates [J]. Chemical Engineering Science,2010,65(23):6112-6127
    [120]Matteo Strumendo. Hamid Arastoopour. Solution of PBE by MOM in finite size domains [J]. Chemical Engineering Science,2008, 63(10):2624-2640
    [121]L.A. Palomino-Rojas, M. Lopez-Fuentes, Gregorio H. Cocoletzi, et al. Density functional study of the structural properties of silver halides: LDA vs GGA calculations [J]. Solid State Sciences,2008 10(9):1228-1235
    [122]Rodrigo Garcia Amorim, Marcos Verissimo-Alves, Jose Pedro Rino. Energetics of phase transitions in BaO through DFT calculations with norm-conserving pseudopotentials:LDA vs. GGA results [J]. Computational Materials Science,2006,37(3):349-354
    [123]Vincent Tognetti, Pietro Cortona, Carlo Adamo. Increasing physical constraints and improving performances in a parameter-free GGA functional [J]. Chemical Physics Letters,2008,460(4-6):536-539
    [124]雷鸣,冯文林.甲醇羰基化制乙酸反应的理论研究[J].中国科学:B辑,2001,31(5):462-467
    [125]Jijun Zhao, Qi Qiu, Baolin Wang, et al. Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential [J]. Solid State Communications,2001,118(3):157-161
    [126]David Vanderbilt. First-principles based modelling of ferroelectrics [J]. Current Opinion in Solid State and Materials Science,1997, 2(6):701-705
    [127]吴海英,程新路,张红等.利用两种不同赝势对铝热力学特性的研究[J].四川大学学报:自然科学版,2005,42(5):978-982
    [128]吴争平,陈启元,尹周澜等.不同晶型氢氧化铝的反应活性与微观键力分析[J].中国有色金属学报,2008,18(专辑1):25 1-258
    [129]M.H. Braga, J.J.A. Ferreira, J. Siewenie, et al. Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x(?)0.08), CuMg2, and Cu2Mg [J]. Journal of Solid State Chemistry, 2010,183(1):10-19
    [130]C. Ravi, C. Wolverton. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates [J]. Acta Materialia,2004, 52(14):4213-4227
    [131]吴争平,陈启元,尹周澜等.外压对氢氧化铝晶体电子结构及谱学性质的影响[J].中国有色金属学报,2008,18(专辑1):243-250
    [132]Miguel Zavala Ake, Gregorio H. Cocoletzi, Noboru Takeuchi. First-principles calculations of the atomic and electronic properties of group ⅢA disilicides in AIB2 type structures [J]. Solid State Sciences,2008,10(3):355-361
    [133]Alfredo Ramirez, Gregorio H. Cocoletzi, Noboru Takeuchi. First principles total energy calculations of the structural and electronic properties of YGe2 in AIB2 type structures [J]. Solid State Sciences, 2009, 11(1):265-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700