用户名: 密码: 验证码:
人工快速渗滤系统污染物去除机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对小城镇或居民聚居点的污水处理技术-人工快速渗滤系统(Constructed Rapid Infiltration system,简称CRI系统)是一种全新的污水生物处理方法,正成为国内研究和应用的热点。相关研究表明,CRI系统对氨氮、有机物去除效果较好,但对TP和TN的去除效率较差,污染物去除机理以及基础理论研究还相当欠缺,污染物去除动力学鲜有报道,实际工程应用中的水力负荷、运行方式以及工程设计缺少理论支撑。为此,本课题采用现场调查、试验分析及理论研究等手段,研究CRI系统中污染物的运移规律和特征,阐明CRI系统对有机物和氮磷污染物去除机理,探讨CRI系统对污染物去除动力学过程,构建CRI去除污染物的动力学模型、CRI系统滤池有效高度计算模型以及CRI系统进水浓度、出水浓度和水力负荷之间的关系曲线,优化CRI池体结构、滤料组成和运行方式进行,提高CRI系统对污染物的去除效率
     通过对成都市凤凰河二沟CRI系统实际工程的分析得出CRI工艺对COD,氨氮的去除效率高,且CRI系统出水水质相对稳定,具有较强的抗负荷冲击能力,出水已经满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)中一级A标要求,但是对TN和TP处理效率不理想,未能达到《城镇污水处理厂污染物排放标准》(GB I 8918-2002)中一级A标要求。CRI系统工艺进一步改进时,要着重考虑通过改变快渗池滤层结构、滤料组成和运行方式等提高系统对TN和TP的去除效果。
     通过在实验室中构建CRI系统模拟柱1对生活污水的处理试验,进一步研究了CRI系统中污染物质迁移、转化、降解的规律,掌握了污染物特别是氮磷污染物在CRI系统内的降解机理,分析了CRI系统中TN和TP去除率较低的原因,为CRI池体结构、滤料组成和运行模式的优化、有效提高CRI系统对污染物尤其是氮磷污染物的去除效率、指导CRI系统的工程设计以及进一步推动和应用CRI技术打下基础。
     为提高CRI系统脱氮效率,通过改变滤料组成、滤池结构和运行方式对CRI系统进行改进优化,构建加强脱氮型CRI系统模型柱,提高TN的去除率试验结果显示:CRI系统滤料中添加了25%的木炭(CRI模型柱2),TN的去除率比未添加木炭的CRI系统(模型柱1)提高5.5%;模型柱2下段增加厌氧段(模型柱3)时,TN的去除率比模型柱2提高了3.8%,但TN去除率依然较低,因为模型柱3进行污水处理试验时,虽然在滤池100-150cm段设置了饱水带作为反硝化段,但有机物在模型柱3滤层0-100cm段就得到了有效的去除,进入饱水带的有机污染物浓度较低,不能为反硝化反应提供足够的碳源,抑制了反硝化反应,使得反硝化菌不能彻底地将硝态氮还原为气态氮;在模型柱3厌氧段添加适量碳源(模型柱4)时,TN去除率达到了59.1%,比模型柱3提高了15%左右。由此得出现有CRI系统对TN去除率低的原因主要是缺少反硝化反应厌氧环境以及缺少反硝化反应所需的有机碳源。
     通过对CRI系统除磷机理的分析得出,要提高CRI系统对磷的去除率应从开发新型填料,提高渗滤介质对磷的吸附和化学沉淀作用着手。以铁粉和传统CRI系统常用基质一河沙为研究对象,研究并对比铁粉和河沙对污水中磷素的等温吸附特征,并运用用一级和准二级动力学模型分析了两者吸附磷素的动力学过程,考察铁粉与河沙吸附磷素的规律和性能,研究铁粉作为CRI系统除磷滤料的可行性。试验结果表明铁粉选作为CRI系统加强除磷型滤料具有较大的优势:铁粉吸附磷素反应自发程度、对磷素的吸附能力以及生成物的稳定性都远超过河沙。等温吸附试验得出铁粉对磷素的理论最大吸附量为1.2386mg/g,为河沙对磷素的理论最大吸附量的7.56倍。准二级动力学模型计算出铁粉对溶液中磷素的平衡吸附量为1.6449 mg/g,而河沙对溶液中磷素的平衡吸附量为0.1627 mg/g。在CRI系统滤料中添加适量铁粉构建加强除磷型CRI系统(模型柱5),通过试验室试验运行发现模型柱5对TP的去除率有了较大的提高,平均去除率为84.2%,比模型柱1高出40%左右。
     为了从理论上进一步了解CRI系统,利用反应-扩散理论从微生物对基质的降解速度、基质从液相到生物膜的扩散过程、生物膜的生长及自身氧化过程等方面构建CRI系统污染物降解动力学模型,并借助于相关数据分析软件,通过对试验数据进行分析和回归拟合,对动力学模型参数进行率定,并结合数学理论和试验结果对模型参数的意义进行探讨。
     基于不同进水浓度和水力负荷条件下CRI系统对COD去除规律,在Monod方程及Mann A.T等研究的基础上,推导了计算CRI系统滤层有效高度的数学模型,并通过试验数据对模型参数进行率定。通过试验验证发现,该模型可根据CRI系统进水COD浓度、水力负荷以及出水水质要求,较准确地计算出所需滤层高度。基于计算CRI系统滤池有效高度的数学模型基础上,构建出不同出水水质要求下CRI系统进水浓度和进水水力负荷的相应规律曲线,根据此曲线可由系统进水浓度和出水水质要求确定系统进水水力负荷,为CRI系统最大水力负荷值的确定提供了一种科学定量的计算方法。所构建的模型是通过对实际生活污水进行试验得到的,具有一定的代表性,可作为工程设计的参考。
Constructed Rapid Infiltration system(CRI system), a wastewater treatment technology aiming mainly at the wastewater from small towns or residents, is a kind of brand-new biological wastewater treatment method, which is becoming the hot spots of research and application. Related research shows that CRI system is good at removing the ammonia nitrogen, organic, SS and so on, but the removal efficiency is bad for TP and TN. On account of many reasons, the research of pollutant removal mechanism and basic theory is quite deficient, there are few reports on pollutant removal dynamics, hydraulic load, operation mode and engineering design are depended on experience in practical engineering application. Therefore, adopted site investigation, testing analysis and theoretical research methods, this subject study the migration rule and characteristics of pollutants in the CRI system, clarify removal mechanism of organic, nitrogen and phosphorus in the CRI system, explore pollutant removal kinetic process, constructing the dynamic model of removing pollutants in CRI system, filter layer height calculation model in constructed rapid infiltration system and relation curves between fill concentration, water concentration and hydraulic load in CRI system, optimization CRI pool body structure, filter material composition and operation mode, improve the removal efficiency of pollutants in CRI system.
     Through prospecting phoenix river CRI system engineering in Chengdu, it shows that CRI system is good at removing the ammonia nitrogen, organic, SS and so on, effluent water is stable in CRI system, and the CRI system has strong resistance to load impact ability, the ammonia nitrogen, organic, SS of ultimate effluent is qualified to Standard A of "Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant" (GB18918-2002). But the removal efficiency is bad for TP and TN and the ultimate effluent is not qualified to Standard A of "Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant" (GB18918-2002). When improving the CRI process, it must consider changing pool filter layer structure, filter material composition and operation mode to improve the removal efficiency of TN and TP in CRI system.
     Through constructing simulation column 1 of CRI system for treating sewage in lab, this paper further investigates the pollutant migration, transformation, degradation rule in CRI system, masters the degradation mechanism of pollutants especially N and P, analyses the reasons of lower removal for TN and TP. The result in this paper will make a good foundation for optimizing pool body structure, filter material composition and operation mode, improving the removal efficiency of pollutants especially nitrogen and phosphorus in CRI system, guiding designation of CRI systems engineering and further applying CRI technology.
     In order to improve the denitrification efficiency of CRI system, this paper optimizes CRI system by changing the filter material composition, filter structure and operation mode to construct CRI system model column which can remove nitrogen better. Test results show that when added 25% of charcoal into the filter material of CRI system (simulation column 2 of CRI system), the removal rate of TN increases 5.5%.When added anaerobic section at the lower part of simulation column 2 of CRI system (simulation column 3 of CRI system, the removal rate of TN increases 3.8%% than simulation column 2 of CRI system, but the removal rate of TN is still low. Because when simulation column 3 treats wastewater, although saturated zone is set as denitrification section at 100-150cm of the pond, organic matter at 0-100cm of the pond is removed effectively and organic concentration entering into the saturated zone is low that cannot provide enough carbon sources for the denitrifying reaction. It restrains the denitrifying reaction and makes the denitrifying bacteria can't change nitrate into gaseous nitrogen completely. When added moderate carbon into the filter simulation column 3 of CRI system (filter simulation column 4), TN removal rate reaches 59.1% in filter simulation column 4 which increased 15% or so than the filter simulation column 3. It shows that the existing CRI system has the low removal rate for TN because of lack of anaerobic environment and organic carbon sources.
     The mechanism of phosphorus removal in CRI system shows that it should begin from developing new type filler and improve phosphorus adsorption and chemical deposition of infiltration mediums to improve phosphorus removal rate of CRI system. Iron and sands(normal substrate of CRI system) are closed as research objects, the isothermal adsorption characteristics of iron and sands adsorbing phosphorus in the wastewater are researched, dynamic process iron and sands adsorbing phosphorus in the are analyzed by first order reaction kinetic model and pseudo-second-order kinetics model, rule and performance of adsorbing phosphorus are investigated. Researches show that isothermal adsorption characteristics of both iron and sand adsorbing phosphorus conform to Langmuir equation, absorption reaction can be spontaneous, spontaneous degree, adsorption ability and stability of iron adsorbing phosphorus are better than sand, the maximum amounts of iron adsorbing phosphorus is 7.56 times than sand, therefore, adding some amount of iron into the substrate of CRI, CRI can remove more phosphorus. Adsorption kinetic of iron adsorbing phosphorus in the wastewater is closer to the first order reaction kinetic model, while sand is closer to the pseudo-second-order kinetics model by analyzing standard errors of first order reaction kinetic model and pseudo-second-order kinetics model, relative errors between parameter (Qo) of Langmuir equations and parameter (w) of first order reaction kinetic model and parameter (qe) of pseudo-second-order kinetics model synthetically. Research results enrich and develop water pollution control and remediation theory of CRI system and provide new ideas for constructing dynamic model of matrix adsorbing solute. When adding moderate iron into the filter simulation column of CRI system (filter simulation column 5), TP removal rate reaches 84.2% in filter simulation column5 which increased 40% or so than the filter simulation columnl.
     In order to further understand CRI system theoretically, this paper constructs the pollution degradation dynamics model of CRI system using reaction-diffusion theory from the standpoint of degradation speed of aerobic microbes to matrix, diffusion process of Matrix from liquid to biological membrane and biological membrane growth and oxidation process. A data analysis software, is applies to analyze the test data to calibrate dynamic model parameters. The significance of model parameters is researched by combining mathematical theory and test results.
     Simulation column of CRI system is applied to treat domestic wastewater and organic matter degradation kinetics characteristics are studied on the basis of Monod equation, research of Mann A.T. and the Chemical Oxygen Demand (COD) degradation law. Then the mathematics calculation model of filter layer height is built based on COD degradation kinetic equation in CRI system. Through experimental verification, it shows that within a certain range, this model could precisely calculate the economic and appropriate height of filter layer in line with the requirement of influent COD concentration, hydraulic load and effluent quality in CRI system. Rule curve between water concentration and hydraulic loading is constructed based on the mathematics calculation model of filter layer height. Hydraulic loading can be calculated by rule curve due to water concentration and effluent water requirements. It provides a scientific quantitative calculation method for calculating hydraulic loading of CRI system. However, since these models are derived within a certain range, when hydraulic load or influent concentration is beyond the applicable scope, there will be a certain deviation between models calculated values and actual results. Therefore, in actual project, the parameters of models must be ascertained or revised according to the characteristics of specific filter and reactor itself.
引文
[1]何江涛,钟佐燊,汤鸣皋,等.污水土地处理技术与污水资源化.地学前缘(中国地质大学,北京),2001,8(1):155-162
    [2]建设部,国家环境保护总局,科技部.城市污水处理及污染防治技术政策.环境保护,2000,(9):8-9
    [3]刘家宝.人工快速渗滤系统污染物去除机理及其处理效果研究[博士学位论文].北京:中国地质大学,2006
    [4]张凯松,周启星,孙铁珩,等.城镇生活污水处理技术研究进展.世界科技研究与发展,2003,25(5):5-10
    [5]Lekang OI, Bergheim A, Dalen H. An integrated wastewater treatment system for land-based fish-farming.Aquacultural Engineering,2000,22 (3):199-211
    [6]Zhang DQ, Tan SK, Gersberg RM, et al. Removal of pharmaceutical compounds in tropical constructed wetlands. Ecological Engineering,2011,37 (3):460-464
    [7]Khan S, Ahmad A, Zhaoqing L, et al. Quantifying aquifer water balance and salinity dynamics to minimise environmental impacts of a land-based effluent treatment system in China. Irrigation and Drainage,2010,59 (5):586-605
    [8]Kadlec RH, Bays JS, Mokry LE, et al. Performance analysis of the Richland-Chambers treatment wetlands. Ecological Engineering,2011,37 (2): 176-190
    [9]Yang PY, Wang ZY. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions. Bioresource Technology,1999,69 (3):191-198
    [10]Kostarelos K, Khan E, Callipo N, et al. Field Study of Catch Basin Inserts for the Removal of Pollutants from Urban Runoff. Water Resources Management, 2011,25 (4):Sp. Iss. SI 1205-1217
    [11]R.pujol, M.hamon, X.kandel and Lemmel. Bilfiters:flexible, reliable biological reactors.Wat.Sci.Tech.,1994,29(10-11):33-38
    [12]Umlauf G, Christoph EH, Lanzini L, et al. PCDD/F and dioxin-like PCB profiles in soils amended with sewage sludge, compost, farmyard manure, and mineral fertilizer since 1962. Environmental Science and Pollution research. 2011,18 (3):461-470
    [13]Mungray AK, Murthy ZVP, Tirpude AJ. Post treatment of up-flow anaerobic sludge blanket based sewage treatment plant effluents:A review. Desalination and Water Treatment,2010,22 (1-3):220-237
    [14]Lin CE, Kao CM, Jou CJ, et al. Preliminary identification of watershed management strategies for the Houjing river in Taiwan. Water Science and Technology,2010,62 (7):1667-1675
    [15]Oakley SM, Gold AJ, Oczkowski AJ. Nitrogen control through decentralized wastewater treatment:Process performance and alternative management strategies. Ecological Engineering,2010,36(11):Sp. Iss. SI 1520-1531.
    [16]Hanke I, Wittmer I, Bischofberger S, et al. Relevance of urban glyphosate use for surface water quality. Chemosphere,2010,81 (3):422-429
    [17]Wang X, Sun TH, Li HB, et al. Nitrogen removal enhanced by shunt distributing wastewater in a subsurface wastewater infiltration system. Ecological Engineering,2010,36 (10):1433-1438
    [18]Polyakov YS, Musaev I, Polyakov SV. Closed bioregenerative life support systems:Applicability to hot deserts. Advances in Space Research,2010,46(6): 775-786
    [19]党酉胜,黄钟,张伯鸣,等.污水土地处理的研究现状及发展趋势.陕西环境,2002,9(5):17-19
    [20]曾扬,安贞煌.土地处理技术在污水资源化中的应用.环境污染治理技术与设备,2003,4(9):77-80
    [21]Hu C, Zhang TC, Huang YH, et al. Effects of long-term wastewater application on chemical properties and phosphorus adsorption capacity in soils of a wastewater land treatment system. Environmental Science & Technology,2005, 39 (18):7240-7245.
    [22]Mouri G, Shinoda S, Oki T. Estimation of total nitrogen transport and retention during flow in a catchment using a mass balance model incorporating the effects of land cover distribution and human activity information. Water Science and Technology,2010,62(8):1837-1847
    [23]Rezende AAP, de Matos AT, Silva CM, et al. Irrigation of eucalyptus plantation using treated bleached kraft pulp mill effluent. Water Science and Technology,2010,62 (9):2150-2156
    [24]Duan RB, Sheppard CD, Fedler CB. Short-Term Effects of Wastewater Land Application on Soil Chemical Properties. Water Air and Soil Pollution,2010,211 (1-4):165-176
    [25]Chen X, Chen XX, Wan XW, et al. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresource Technology,2010,101 (23):9025-9030
    [26]高拯民,李宪法.城市污水土地处理利用设计手册.北京:中国标准出版社,1991
    [27]汪民,吴永锋,钟佐燊,等.污水快渗渗滤土地处理.北京:中国地质出版社,1993
    [28]国家环境保护局科技标准司.城市污水土地处理技术指南.北京:中国环境科学出版社,1997
    [29]Hu C, Zhang TC, Kendrick D, et al. Muskegon wastewater land treatment system:Fate and transport of phosphorus in soils and life expectancy of the system.Engineering in Life Sciences,2006,6(1):17-25
    [30]Jaiswal D, Elliott HA. long-term phosphorus fertility in wastewater-irrigated cropland. Journal of Environmental Quality,2011,40(1):214-223
    [31]Merlin G, Gaillot A. Treatment of dairy farm effluents using a settling tank and reed beds:performance analysis of a farm-scale system. Transactions of the Asabe,2010,53 (5):1681-1688
    [32]何江涛,钟佐燊,汤鸣皋.解决污水快速渗滤土地处理系统占地突出的新方法.现代地质,2001,15(3):339-345
    [33]王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001.1-59
    [34]张金炳.污水处理人工快速渗滤系统研究[博士学位论文].北京:中国地质大学,2002
    [35]何江涛.人工构建快速渗滤系统的试验研究[博士学位论文].北京:中国地质大学(北京),2001.
    [36]崔理华,汤连茂,朱夕珍等.城市污水人工快滤床运行方式的试验研究.2002,21(1):37-40.
    [37]崔理华,朱夕珍,李国学等.北京西郊城市污水人工快滤处理与利用系统.中国环境科学,2000,20(1):45-48.
    [38]殷亮.人工土床快渗系统处理生活污水性能试验研究[硕士学位论文].重庆:重庆大学,2006.
    [39]王飞.氨氮在人工土层快渗中运移的模拟研究[硕士学位论文].重庆:重庆大学,2008.
    [40]何江涛,张达政,陈鸿汉,等.污水渗滤土地处理系统中的复氧方式及效果.水文地质工程地质,2003,1:103-106
    [41]何江涛,段光杰,张金炳,等.污水渗滤土地处理系统中水力停留时间与出水效果的讨论.地球科学一中国地质大学学报,2002,27(2):203-208
    [42]陈俊敏.人工快速渗滤系统机理及其在农村生活污水处理中的应用研究[博士学位论文].成都:西南交通大学,2008.
    [43]康爱彬.人工快渗系统除磷方法和多段处理工艺研究[硕士学位论文].北京:中国地质大学,2006
    [44]李丽.新型混合填料人工快渗系统处理污染河水的试验研究.中国给水排水,2007,23(11):86-89
    [45]何江涛.污水渗滤土地处理系统中的堵塞问题.中国环境科学,2003,23(1):85-89.
    [46]郭劲松.人工快渗系统在三峡库区处理生活污水的适应性研究.环境科学,2006,27(11):2327-2332.
    [47]张金炳.污水处理人工快速渗滤系统研究[博士学位论文].北京:中国地质大学,2002.
    [48]张金炳,黄培鸿,杨小毛,等.东莞华兴电器厂生活污水人工快速渗滤处理系统.环境工程,2003,21(6):32-35.
    [49]康爱彬,祝明,陈鸿汉,等.人工快渗系统处理模拟养殖废水的研究.中国给水排水,2009,25(19):65-67
    [50]秦麟源.废水生物处理.上海:同济大学出版社,1989
    [51]张自杰等.排水工程(下册,第三版).北京:中国建筑工业出版社,1996.
    [52]姚若虚.三峡库区人工土床快渗系统的构建及适应性研究[硕士学位论文].重庆:重庆大学,2006
    [53]R pujol, M hamon, X kandei and Lemmel. Biofilters flexible, reliable biological reactor. Wat Sci Tech,1994,29(11):33-38.
    [54]Markus Boller, Daniel Kobler and Gerhard Koch. Particle separation, solids budgets and headloss development in different biifilms. Wat. Sci. Tech,1997,36 (4):239-247
    [55]Yadav SK, Thawale PR, Kulkarni AV, et al. Phytoremediation technology for wastewater treatment:high rate transpiration system. International Journal of Environment and Pollution,2010,43 (1-3):117-128
    [56]汪民,吴水峰等.污水快速渗滤土地处理.北京:地质出版社,1993
    [57]高拯民,李宪法.城市污水土地处理利用设计手册.北京:中国环境科学 出版社,1991
    [58]赵思平,颜京松.废水处理与利用生态工Ⅱ一类型及一些案例.城市环境与城市生态,2002,13(6):6-11
    [59]于秀玲,李万庆.乳山市造纸厂废水土地处理技术.城市环境与城市生态1998,11(2):13-16
    [60]纪峰,潘安君,李军.快速渗滤在小堡村污水治理中的应用.北京水利,1998,(5):26-27
    [61]宋汝华.邢台市城市污水土地处理工程设计.天津建设科技,1998,29(1):40-42
    [62]何江涛,陈鸿汉等.人工构建快速渗滤污水处理系统的试验.中国环境科学,2002,23(3):239-243
    [63]牟新民,黄培鸿,张金炳等.人工快速渗滤系统处理深圳市茅洲柯水的试验研究.应用基础与工程科学学报,2003,11(4):370-377
    [64]张金炳,黄培鸿,杨小毛.东莞华兴电器厂生活污水人工快渗处理系统.环境工程,2003,21(6):32-36
    [65]唐受印,汪大翠.废水处理工程.北京:化学工业出版社,1998
    [66]郑兴灿污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [67]杨琴.活性污泥外循环SBR系统外循环污泥释磷能力研究.重庆环境科学2002,6(24):57-62
    [68]吴燕.废水除磷方法的现状与展望.天津工业大学学报,2001
    [69]周雹.SBR工艺的分类和特点.给水排水,2001,27(2):31-33
    [70]王凯军,宋英豪.SBR工艺的发展类型及其应用特性.中国给水排水,2002,7
    [71]曹家顺,杨雪冬.BCFS一生物除磷新工艺.中国给水排水,2002,3:22-26
    [72]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002
    [73]汪大晕,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001
    [74]邵林广,游映玖,陶惠芳,等.控磷除磷在水体富营养化控制中的作用.环境与开发,1999,14(2),19-20.
    [75]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002
    [76]娄金生.水污染治理新工艺与设计.北京:海洋出版社,1999
    [77]邱伟等.城市污水化学除磷探讨.重庆环境科学,2002,24(2):81-84
    [78]江霜英,高廷耀.上海二期工程污水化学强化处理的实验研究.上海环境 科学,2002,21(1):40-42
    [79]范兴建.人工快速渗滤系统微生物特征及氮素去除机理研究[硕士学位论文].成都:西南交通大学,2009
    [80]胡保卫,程文,韩祯.曝气生物滤池降解规律试验研究.水利学报,2010,41(3):374-378
    [81]Ohashi A, Silva D G, Mobarry B.Influence of substrate C/N ratio on the structure of multi-species biofilmsconsisting of nitrifiers and hetero-trophs. Wat Sci Tech.1995,32 (8):75-84
    [82]王春燕.人工土层快渗系统除污性能及氮去除机理研究[博士学位论文].重庆:重庆大学,2009
    [83]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [84]周爱娇.木炭曝气生物滤池的特性及效能研究[博士学位论文].武汉:华中科技大学,2008
    [85]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展.青岛理工大学学报,2006,27(2):9-13.
    [86]伊军,崔玉波.人工湿地污水处理技术.北京:化工出版社,2006
    [87]赵桂瑜,周琪.页岩陶粒对水体中磷的吸附作用及动力学.环境污染与防治,2007,29(3):182-185.
    [88]杨键.钢渣煤渣混装快渗柱除磷性能研究[硕士学位论文].上海:同济大学,2008
    [89]郑俊.曝气生物滤池污水处理新技术及工厂实例.北京:化学工业出版社,2002
    [90]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社,2003
    [91]章胜红.曝气生物滤池深度净化有机废水的研究[博士学位论文].上海:东华大学,2006
    [92]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999
    [93]凌霄,胡勇有.曝气生物滤池反冲洗关键因子的确定及机理浅析.给水排水,2005,31(10):19-23.
    [94]Xu, W.L. and Zhang, J.Q. Dynamic rule of organic matter removal in constructed rapid infiltration. In:3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China,2009
    [95]Zhang, J.Q. and Xu, W.L. Treat river sewage by constructed rapid infiltration system. In:4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China,2010
    [96]Bouwer, H. Recharge of wastewater with rapid infiltration land treatment system. Boston:Butterworths,1985
    [97]US Environmental Protection Agency. North American Wetlands for Water Quality Treatment atabase, Vol.1.0, Washington, DC,1994
    [98]高廷耀.水污染控制工程.北京:高等教育出版社,2007
    [99]Dette H, Melas V B, Pepelyshev A et al. Robust and efficient design of experiments for the Monod Model. Journal of Theoretical Biology.2005,234 (4): 537-550
    [100]Mann A T, Stephenson T. Modeling biological aerated filters for wastewater treatment. Water Research.1997,31 (10):2443-2448
    [101]Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol,1949,3: 371-394.
    [102]Stanescu D, Chen-Charpentier B M. Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 2009,50 (5-6):885-895
    [103]Strigul N, Dette H, Melas V B. A practical guide for optimal designs of experiments in the Monod Model. Environmental Modeling & Software,2009,24 (9):1019-1026
    [104]王春荣,李军,王宝贞,等.2种不同填料曝气生物滤池处理生活污水的经验模型.环境污染治理技术与设备,2005,6(12):57-60
    [105]高廷耀,顾国维,周琪.水污染控制工程下册.北京:高等教育出版社2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700