用户名: 密码: 验证码:
水源型水库富营养化预测与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产芝水库位于大沽河干流中上游,是典型的水源型水库,也是青岛市最大的水库,但由于长期受农业、养殖和生活废水的影响,水库氮磷严重超标,富营养化程度日益加深,大大影响了水体的使用功能。随着工农业的迅速发展及城市扩张,青岛市水资源供需失衡逐渐凸显,开展产芝水库富营养化预测及控制技术研究迫在眉睫。
     本文在区域自然环境概况调查的基础上,分析了水库水质的时空分布特征,根据现有水质监测资料,建立了改良的模糊综合评判模型,对水库的富营养化现状进行了综合评价。针对产芝水库独特的环境背景,对底泥的污染特征进行了深入地研究,并通过室内柱状试验,建立了不同温度和不同扰动条件下底泥氮磷释放通量与释放时间之间的方程式。另外,通过建立含底泥释放的平面二维水流-水质模型,对多污染源共同影响下不同水文年水库的水质分布进行预测。最后,通过室内试验,研究了两级垂直流土地系统处理入库河水的最佳工况和去除效果;优化了聚硅硫酸铝铁抑制底泥磷释放的内部配比和投加量,且研究了优化条件下的抑磷效果;深入分析了各因素对生态调度治理底泥氮磷污染的影响。本文获得的主要结论如下:
     (1)改良了模糊综合评判模型,并利用模型对水库富营养化现状进行了评价。
     应用改良的模糊综合评判模型,对产芝水库富营养化现状进行了综合评价,评价结果显示产芝水库库区为富营养化水平,入库支流为重富营养化水平。
     (2)建立了沉积物氮磷释放通量与释放时间的定量表达式。
     通过室内柱状模拟试验,研究了沉积物中氮磷的释放规律,建立了不同温度和不同扰动条件下氮磷释放通量与释放时间的定量表达式,其中,静态释放可用对数方程y = a+bln( x)表示,动态释放可以用幂指数方程y = axb来表示。
     (3)构建了含平面二维内源释放耦合水流-水质模型。
     将内源释放因子耦合于平面二维水流-水质模型中,通过对初始条件、边界条件和参数的确定及模型的验证,建立了含内源释放项的二维水流-水质模型,对多污染源共同影响下不同水文年水库的水质分布进行了预测,预测结果表明,中营养占7.4%,中富营养化占16.7%,富营养化占75.9%。
     (4)研发了适宜于入库河水污染治理的两级垂直流土地系统。
     通过室内试验,对生物填料、水力停留时间(hydraulic retention time,HRT)和水力负荷进行了优选,得到的优化工况为:填料为生物陶粒,HRT为144h,水力负荷为0.139m/d。优化工况下对TN、TP、CODMn和叶绿素-a平均去除率分别为60.2%、69.3%、56.8%和70.6%。
     (5)首次把聚硅硫酸铝铁(PSAFS)应用于抑制底泥磷释放。
     试验结果表明,优化条件下空白实验上覆水中TP的累积浓度是投加PSAFS的2倍多,且空白试验TP累积释放浓度的波动性远大于投加PSAFS的样品,抑制效果显著。
     (6)提出了生态调度治理底泥氮磷污染的新技术。
     通过室内模拟试验,研究了不同温度、不同调水周期和不同调水比例对生态调度技术治理底泥氮磷污染的影响。研究证明,当水体温度为25℃、换水周期越短和调水比例越大时,对底泥中氮磷污染的治理效果越好。
The Chanzhi Reservoir is located in the upper reach of the Dagu River , which is a typical water-type reservoir and the biggest reservoir of Qingdao. But the nitrogen and phosphorus in the reservoir have exceeded the environmental quality standards for surface water under the influences of agriculture cultivation and domestic sewage. With the rapid development of agriculture and industry and urban growth, the contradiction between water demand and supply is aggravating. Therefore, it is urgent to study the eutrophication prediction and control technologies of the Chanzhi Reservoir of Qingdao.
     Based on the natural environment investigation in the area of the Chanzhi Reservoir, spatial and temporal distribution of water quality in the Chanzhi Reservoir is analyzed. According to the existing water quality monitoring datas, a modified fuzzy comprehensive evaluation model is established to evaluate the eutrophication status of the Chanzhi Reservoir. According to unique environmental background of the Chanzhi Reservoir, the features of sediment pollution are studied. The equations of nitrogen and phosphorus flux and release time are established under circumstances of different temperatures and disturbances by indoor column test. In addition, a plane 2D water flow-water quality model with sediment release is developed to simulate the water quality distribution of the Chanzhi Reservoir in different hydrological years with the joint effects of different pollution sources. At last, the optimized condition and removal effect of the two-stage vertical-flow land system for input rivers water treatment, the effectiveness of using PSAFS to control phosphorus release from sediment and the feasibility of ecological operation to control nitrogen and phosphorus pollution in sediment are deeply studied by the lab test. The main conclusions of this paper are as follows:
     (1) The fuzzy comprehensive evaluation model is modified and employed to evaluate the eutrophication status of the Chanzhi Reservoir.
     Modified fuzzy comprehensive evaluation model is employed to evaluate the eutrophication status of the Chanzhi Reservoir. The evaluation results show that the reservoir is in eutrophication level and the input rivers are in heavy eutrophication level.
     (2) The equations of nitrogen and phosphorus flux and release time are established.
     The release regularity of nitrogen and phosphorus is studied and the equations of nitrogen and phosphorus flux and release time were established under circumstances of different temperatures and disturbances by indoor column test.. static release can be expressed by logarithmic equation: y = a+bln( x), the dynamic release can be expressed by power exponential equation: y = axb.
     (3) A plane 2D water flow-quality model with internal release is established.
     The internal release factors are coupled in the plane 2D water flow-quality model, and the plane 2D water flow-water quality model with internal release is established through determining of initial conditions, boundary conditions and parameters and the validation of model. The water quality distribution of the Chanzhi Reservoir is predicted in different hydrological years with the joint effects of different pollution sources. And the predicting results show that, the moderate nutrition accounts for 7.4%, moderate eutrophication accounts for 16.7%, and eutrophication accounts for 75.9%.
     (4) The two-stage vertical-flow land system which is suitable for input rivers treatment is proposed.
     The biological filter media, hydraulic retention time and hydraulic loading are optimized by indoor test. The optimized conditions of the system are as follows: the filler is bio-ceramic, HRT is144h, hydraulic loading is 0.139m/d. The removal rates of TN, TP, CODMn andChl a under the optimized condition are 60.2%, 69.3%, 56.8% and 70.6% respectively.
     (5) PSAFS is used to restrain phosphorus release of the sediment at the first time.
     The results show that the restraining result is significant as the cumulative release concentration of TP in blank test is more than twice compared to the test which is added PSAFS, and the volatility of the cumulative release concentration of TP in blank test exceeds the sample which is added PSAFS.
     (6) The new technology of ecological operation to control nitrogen and phosphorus pollution in sediment is proposed.
     The results show that when the water temperature is 25℃, the treatment effect of nitrogen and phosphorus pollution in sediment is better with shorter water- changing period and larger water-transferring proportion.
引文
[1]刘春光,金相灿,王雯等.城市景观河流夏季污染状况及营养水平动态分析-以天津市津河为例[J].环境污染与防治, 2004, 26(4): 312~316.
    [2] Nixon, S.W. Coastal marine eutrophication: a definition, sicial causes, and future concerns[J]. Ophelia, 1995, 41: 199-219.
    [3]黄清辉.浅水湖泊内源磷释放及其生物有效性--以太湖、巢湖和龙感湖为例[D].北京:中国科学院生态环境研究中心, 2005.
    [4]孟红明,张振克.我国主要湖泊水库富营养化现状[D].成都:四川大学, 2004.
    [5]马蕊,林英,牛翠娟.淡水水域富营养化及其治理[J].生物学通报, 2003, 38(11): 5~8.
    [6] Monuzr Alam Imteaz, Takashi Asaeda, David A. Lockington modelling the effects of inflow pararneters on lake water quality, Environmenat[J] Modeling and Assessment, Kluwer Academic Publishers, Netherlands, 2003, 8: 63~70.
    [7]王晟,徐祖信.从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学, 2003, 22(5): 332~34 .
    [8]连民,俞顺章.蓝绿藻的生态学研究进展[J].上海环境科学, 2001, 20(3): 127~130.
    [9] Skulber Mo, Codd GA, Carmichael W W. Toxic blue-gree algae blooms in europs: a growing problem[J]. Ambio, 1984, 13: 244~247.
    [10]王红兵,朱惠刚.淡水浮游藻类污染及其毒性[J].上海环境科学, 1995, 14(8) :38~41.
    [11] Carnichael W W. The toxins of cyanobacteria[J]. Sci Am, 1994, 270(l): 78~86.
    [12] Carmichael WW. Algae toxins and waterbased disease[J]. CRC Critical Rev Environ Control, 1985, 15:175~313.
    [13] Jochimsen EM, Carmichael WW, An JS, et al. Failuer and Death after Exposure to Microcystins at a Hemodialysis Center in Brazil [J]. N Engl Jmed, 1998, 338(13): 873~878.
    [14]艾有年,阎立荣.环境检测新方法[M].北京:中国环境科学出版社, 1992.
    [15]叶常明.水污染理论与控制[M].北京:学术书刊出版社, 1989.
    [16] O’Sullivan P. E. EutroPhieation [J]. Journal of Environmental Studies, 1995, 47(l): 29~32.
    [17]舒金华.我国主要湖泊富营养化程度的初步评价与防治对策[J].环境科学, 1990, 7(2): 1~9.
    [18]周勇.湖泊水环境质量评价的研究进展[J].环境科学进展, 1998, 2: 50~55
    [19]蔡庆华.武汉东湖富营养化的综合评价[J].海洋与湖沼, 1999, 24(4): 335~339.
    [20]吴琪.以浮游植物评价太湖春季水质污染及富营养化.环境导报, 2000,(2): 32~35.
    [21]刘鸿亮,赵宗升.稳定塘的扩散系数D与BOD动力学[J].环境科学研究, 1987, 4(1): 4~8.
    [22]俞立中. GIS技术在洪湖环境演变研究中的应用.湖泊科学, 1993, 5(4): 350~357.
    [23]孔庆瑜.武昌东湖水体污染的航空遥感分析.湖北大学学报, 1990, 11: 83~88.
    [24] Fu Liuxu, Shu Tao. A GIS- based method of lake eutrophication assessment. Ecological Modelling, 2001, 144: 231~244.
    [25]劳期团.模糊数学方法在水库水质综合判别中的应用[J].中国环境科学, 1989, 9(3): 225~228.
    [26]李振亮.水质污染评价中的Hamming贴近度评价法[J].环境工程, 1989, 7(6): 41~45.
    [27]马建华等.水质评价的模糊概率综合评价法[J].水文, 1994,(3): 26~29.
    [28]陈飞星.一种新的水质评价模式[J].中国环境科学, 1986, 6(6): 54~58.
    [29]慕金波等.灰色聚类法在水环境质量评价中的应用[J].环境科学, 1991, 12(2): 86~90.
    [30]史晓新,夏军.水环境质量评价灰色模式识别模型及应用[J].中国环境科学, 1997, 17(2): 127~130.
    [31] Lee H. K., Oh K. D., Paik D. H.,et al. Fuzzy Expert System to Determine Stream Water Quality Classification from Ecological Information[J]. Water Science&Technology, 1997, 36(12): 199~206.
    [32]朱静平.几种水环境质量综合评价方法的探讨[J].西南科技大学学报, 2002, 17(4): 62~67.
    [33]谢宏斌.南湖富营养化的人工神经网络评价[J].广西科学院学报, 1999, 15(1): 29~32.
    [34]任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用[J].河海大学学报, 2004, 32(2): 147~150.
    [35]卢文喜,祝廷成.应用人工神经网络评价湖泊的富营养化[J].应用生态学报, 1998, 9(6): 645~650.
    [36]全为民,严力蛟,虞左明等.湖泊富营养化模型研究进展[J].生物多样性, 2001, 9(2): 168~175.
    [37] Vollenweider R.A. Input-output models with special reference to the phosphorus loading concept in limnology[J]. Hydrol, 1975, 37(1).
    [38] Di Toro D M. Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics[J]. Ecological Modeling, 1980, 8(1): 201~218.
    [39] Gerald,T. Orlob.Mathematical Modeling of Water Quality:streams[J]. lakes and reservoirs, 1983, 6(5): 321~325.
    [40] Carpenter S. R.,Christenssen.D.L. Biological control of eutrophication[J]. Environment Science and Technology,1995, 29(3): 123~126.
    [41] R.V Thomann, J.A. Mueller Principles of surface water Quality Modeling and control[J]. Ophelia, 1995, 41: 229~234.
    [42] Mendelsohn,H. Rines. Hydrodynamic and water quality modeling of Lake Champlain Management Conference,Boston: Applied Science Assocciates, 1994.
    [43] Vermont Department of Environmental Conservation and New York state Department of Environmental Conservation. Lake Champlain feasibility study, US EPA , 1992.
    [44] Myer, G.k.Gruenending. Limonology of Lake Chamoplain: Lake ChamplianBasin Study,Suny at Plattsburg,1979.
    [45] Von.Straten.Modeling and managing shallow lake eutrophication with application to Lake Balaton.1983.
    [46]日本机械工业联合会.水域的富营养化及其防治对策[M].北京:中国环境科学出版社, 1987.
    [47]陈毓龄,宋福等.北京密云水库预测模型的研究[J].环境科学研究,1991, 4(2): 34~38.
    [48]宁修仁等.西湖水域初级生产力和富营养化的调查研究.海洋与湖沼, 1989, 20(4) : 78~81.
    [49]顾丁锡,舒金华.湖水总磷浓度的数学模拟[J].海洋与湖沼, 1988, 19(15): 447~453.
    [50] CAassell E A, Dorioz J M. Modeling phosphorus dynamics approaches.Journal of Environmental Quality, 1998, 27(2): 293~298.
    [51]彭进新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社, 1998.
    [52] Jorgensen S E,. Application of Ecological Modeling in Environmental Management, part A[M]. 1983, New York: Elsevier Scientific Publishing Company, 227~279.
    [53]刘元波,陈伟良.湖泊藻类动态模拟[J].湖泊科学, 2000, 12(2): 171~176.
    [54] Bault J M,. A model of phytoplankton development in the Lot river[France]: simulation of scenaries[J]. Water Research, 1998, 33(4): 1065~1079.
    [55] Di Toro D M. Applicability of cellular equilibrium and Monod theory to hytoplankton growth Kinetics[J]. Ecological Modeling, 1980, 8(1): 201~218.
    [56]屠清瑛,顾丁锡,尹澄清等.巢湖富营养化研究[M].北京:中国科学技术出版社, 1990, 101~125.
    [57] Chen C W, Orlob C T. Ecological simulation for aquatic environments.In Pattern B C(ed.), System Analysis and Simulation in Ecology[M]. New York:cademic press, 1975.
    [58] Robert PKees K, Lambertus L. Rimary production estimation from continuous oxygen measurements in relation to external nutrient input[J]. Water Researrh, 1996, 30(3): 625~643.
    [59]叶守泽,夏军,郭生练.水库水环境模拟预测与评价[M].北京:水利电力出版社, 1998.
    [48] Jorgensen S.E. An eutrophication model for a lake model[J]. Ecological model, 1976, 2(1): 126~130.
    [60] Cerco C FCole F. Three dimensional eutrophication model of Chesapeake bayJournal of Environmental Enizineering[J]. Environmental, 1993,19(6):1006~1025
    [61]阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报, 1988, 12(4): 289~307.
    [62]刘玉生,唐宗武,韩梅等.滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991, 4(6): 1~8.
    [63]宋永昌,王云,戚仁海.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社, 1991.
    [64]梁婕,曾光明,郭生练.湖泊富营养化模型的研究进展[J].环境污染治理技术与设备, 2006, 7(6): 24~29.
    [65]国家环境保护总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社, 2001.
    [66]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社, 2001.
    [67] DAVID H. Eutrophication of fresh water-principles, problems and restoration[M]. London: Chaman & Hall, 1992.
    [68]杨文龙.湖水藻类生长控制技术[J].云南环境科学, 1996, 18(2): 34~36.
    [69] Vnn dcr Molcn DT. A Brcoowama P C M Bocrs. Agricultural nutricnl lossgs to surface water in the Ncthecrhmds: impacl, stnutegics, and perspcctives[M]. J Environ Qual, 1998.
    [70] Carpcntcr S R. N F Carcao D L Corrcll. et al. Nonpojnt of surf acc waters with phosphorus and nitrogcn[J]. Ecologicnl Applications, 1998, 8(4): 54~58.
    [71] Sharplcy A N. P J A Withers. The cnvironmcntally-sound mannagcment of agricultural phosphorus[J]. Fertiltzer Rcscarch, 1994, 39: 103~106.
    [72]王古生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社, 1999.
    [73]徐景翼,贾霞珍.含藻微污染水的高锰酸钾处理研究[J].中国给水排水, 1999, 15(1): 56~58.
    [74] Hacker P A. Removal of organic substance from water by ozone treamment followed by biological activated carbon treatment[J]. Ozone Science and Engneering, 1994, 16(3): 197~212.
    [75] Harrison C C.The UV-enhanced decomposition of aqueous ammonium nitrite[J]. J.Photochem. Photobiol, 1995, 89(3):212~215.
    [76] Belloufella F. The use of ozone to control trhalom ethanes in drinking water treatment[J]. Wat Sci.Tech., 1994, 30(8): 245~257.
    [77] Ing D. Extent of ozone’s reaction with isolated aquatic fulvic acid[J]. Sci.and Eng, 1994, 16(1): 55~65.
    [78]周克钊.过氧化氢预氧化技术试验研究[J].中国给水排水, 1999, 15(11): 15~19.
    [79]杨小弟.过碳酸钙净水效果的实验观察[J].水处理技术, 2000, 26(1): 30~33.
    [80]肖锦,潘碌亭.给水排水处理新一代水处理药剂的研究进展[J].工业水处理, 2000, 20(增刊): 23~25.
    [81]梅翔,高廷耀.水源水生物处理工艺中亚硝酸盐氮的去除[J].环境科学与技术, 2000(3): 3~7.
    [82]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究[J].环境科学研究, 1999, 12(1): 10~14.
    [83]于鑫,杨俊仕,李旭东.生物流化床预处理对饮用水致突变活性的影响[J].应用与环境生物学报, 2000, 6(3): 247~253.
    [84]吕锡武,马春,陈俊.粗滤慢滤工艺去除氨氮的实践与机制[J].中国环境科学, 1998,18(4): 319~323.
    [85]陈楚玉.活性炭在污染水源净化中的应用[J].广西工学院学报, 1997, 8(1): 82~85.
    [86]田钟荃.沸石去除饮用水源中有机污染物的展望[J].中国给水排水, 1999, 15(4): 31-32.
    [87]杨宇翔.硅藻土脱色机理及其在印染废水中应用的研究[J].工业水处理, 1999, 19(1): 15~17.
    [88]吴红为,刘文君,张淑琪,等.提供生物稳定饮用水的最佳工艺[J].环境科学, 2000, 21(3): 64~67.
    [89] Karen R. Easing the pain of meeting the D/D BP rule with enhanced congulation[J]. Water Engineering & Management, 1999, 46(1): 22~25.
    [90]王国祥,成小英,濮培民.湖泊藻型富营养化控制-技术、理论及应用[J].湖泊科学, 2002, 14(3): 45~49.
    [91]戴金裕,蒋兴昌,汪耀斌.太湖入湖河道污染物控制生态工程模拟研究[J].应用生态学报, 1995, 6(2): 26~31.
    [92]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究, 1997, 10(4): 67~71.
    [93]顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境, 2002, 18(1): 42~45.
    [94]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护, 2002, 21(2): 179~182.
    [95]王小雨,冯江,胡明忠.湖泊富营养化治理的底泥疏浚工程[J].环境保护, 2003 (2): 22~23.
    [96]孙傅,增思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备, 2003, 4(8): 61~64.
    [97]金相灿,徐南妮,张雨国.沉积物污染化学[M].北京:中国环境科学出版社, 1992.
    [98]刘鸿亮,金相灿,荆一凤.重大工程[M].北京:中国环境科学出版社, 1999.
    [99]柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程, 2000(11): 21~27.
    [100]金相灿,荆一凤,刘文生.湖泊污染底泥疏浚工程技术—滇池草海底泥疏挖机处置[J].环境科学研究, 1999, 12(5): 9~12.
    [101]喻龙,龙江平,李建军.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展, 2002, 20(4): 99~108.
    [102]洪祖喜,何晶晶,邵立命.水体受污染底泥原地处理技术[J].环境保护, 2002, (10): 15~17.
    [103]夏立江,李楠,沈德中.原位生物修复治理汞害的机制作用[J].环境科学进展, 1998, 6(3): 48~52.
    [104]王一华,傅荣恕.中国生物修复的应用及进展[J].山东师范大学学报, 2003, 18(2): 79~83.
    [105]牛明芬,崔玉珍.蚯蚓对垃圾和底泥中镉的富集现象[J].农村生态环境, 1997, 13(3):53~54.
    [106]尹澄清,邵霞,王星.白洋淀水陆交错带土壤对磷氮截留容量的初步研究[J].生态学杂志, 1999, 18(5): 7~11.
    [107]张庆河,赵子丹.波浪作用下的底泥质量输移[J].天津大学学报, 1997, 30(3): 274~280.
    [108]赵会明,罗固源.聚硅硫酸铝铁(PSAFS)除磷研究[J].水处理技术, 2006, 32(11): 41~44.
    [109]董哲仁.水库多目标生态调度[J].水利水电技术, 2007, 38(1): 28~32.
    [110]蔡其芬.充分考虑河流生态系统保护因素完善水库调度方式[J].中国水利, 2006, 2: 14~17.
    [111]王远坤,夏自强,王桂华.水库调度的新阶段—生态调度[J].水文, 2009, 28(1): 7~9.
    [112] Brian D Richter. How much water does a river need[J]. Freshwater Biology, 1997, 37: 231~249.
    [113]王西琴,刘昌明,杨志峰.生态及环境需水量研究进展与前瞻[J].水科学进展, 2002, 4: 507~512.
    [114]于龙娟,夏自强,杜晓舜.最小生态径流的内涵及计算方法研究[J].河海大学学报, 2004, 32(1): 18~22.
    [115]吕新华.大型水利工程的生态调度[J].科技进步与对策, 2006, 7: 129~131.
    [116]容致旋译.伏尔加河下游有利于生态的春季放水可行性研究[J].水利水电快报, 1994, 17: 4~8.
    [117]钮新强,谭培伦.三峡工程生态调度的若干探讨[J].中国水利, 2006, 14: 9~12.
    [118]长江水利委员会.三峡工程综合利用与水库调度研究[M].武汉:湖北科学技术出版社, 1997.
    [119]三峡工程开始发挥生态调度作用[J].水利水电快报, 2007, 28(3): 8~9.
    [120]索丽生.闸坝与生态[J].中国水利, 2006, 16: 5~8.
    [121] Marie-Jose Salenon a, Jean-Marc Thebault. Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): MELODIA, an ecosystem reservoir management model[J]. Ecological modeling, 1996,84: 163~187.
    [122]金相灿,刘树坤,章宗涉,等.中国湖泊环境(第一册) [M].北京:海洋出版社, 1995.
    [123]乐林生,吴今明,高乃云,等.太湖流域安全饮用水保障技术[M].北京:化学工业出版社, 2007.
    [124]叶守泽,夏军,郭生练,等.水库水环境模拟预测与评价[M].北京:中国水利水电出版社, 1997.
    [125]方子云,邹家祥,郑连生.《中国水利百科全书-环境水利分册》[M].北京:中国水利水电出版社, 2004.
    [126]高增文.山区水库氮污染行为与控制技术研究[D].青岛:中国海洋大学, 2007.
    [127] Stewart W D P, Preston F R S T, Peterson H G et al. Nitrogen cycling in eutrophic freshwaters[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1982, 296: 491~509.
    [128]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [129]北京林业大学.土壤理化分析实验指导书[M].北京:北京林业大学出版社, 2002, 38~49.
    [130]朱广伟,高光,秦伯强,等.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展, 2003, 14(6): 714~719.
    [131]徐骏.杭州西湖底泥磷分级分布[J].湖泊科学, 2001, 13(3): 247~254.
    [132]李剑超,王培英,谭远友,等.污染底泥及其间隙水分层特性的模拟实验研究[J].环境污染与防治, 2004, 26(5): 323~325.
    [133]柴蓓蓓.水体沉积物中污染物释放及其多相界面过程研究[M].西安:西安建筑科技大学,2008.
    [134]张新明,李华兴,刘远金.磷酸盐在土壤中吸附与解吸研究进展[J].土壤与环境, 2001, 10(1): 77~80.
    [135] Lee-hyung K, Euiso C, Michael K S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50: 53~61.
    [136]高增文.沐官岛水库蓄水初期水质演化过程研究[M].青岛:中国海洋大学, 2005.
    [137]胡仁山.生物膜法处理技术[M].北京:中国建筑工业出版社, 2000.
    [138]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社, 2004.
    [139]卢峰,杨殿海.反硝化除磷工艺的研究开发进展[J] .中国给水排水, 2003, 19(9): 32~34.
    [140]吴海林,杨开,王弘宇.废水除磷技术的研究与发展[J].环境污染治理技术与设备, 2003, 4(1): 54~57.
    [141] Murakami Jakao, Miyairi Atsushi,Tanaka Kazuhiro. Full scale study of biological phosphorus removal processes[J]. Water Science and Technology, 1984, 17(2): 97~298.
    [142]赵建刚.粉煤灰合成沸石固磷机制及固磷能力强化技术研究[D].上海:上海交通大学, 2007.
    [143]韩耀霞,张格红.浅析生态塘系统在污水处理中的应用[J].环境保护科学, 2008, 34(3): 54~59.
    [144]许春生,高艳玲,吕炳南. HRT对生物复合工艺处理效能的影响[J].环境科学与管理, 2007, 32(7): 83~86.
    [145]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报, 2003, 33(3): 359~362.
    [146]杨代贵,欧恒春,梁玉龙,等.聚硅硫酸铝铁(PSAFS)制备方法研究.重庆工商大学学报(自然科学版), 2005, 22(1): 12~16.
    [147]潘阳秋,陈武,梅平,等.聚硅硫酸铝铁(PSAFS)制备及应用[J].化学工程师, 2007, 147(12) : 62~64.
    [148]张跃,邹寿平.模糊数学方法及其应用[M].北京:煤炭工业出版社, 1992..
    [149] K. Sasikumar, P. P. Mujumdar. Fuzzy optimization model for water quality management of a river system[J]. Joumal of water resources planning and management, 1998, 124(2): 79~88.
    [150]陈永义.综合评判的数学模型[J].模糊数学, 1983, 9(1): 21~24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700