用户名: 密码: 验证码:
澄清池膜过滤用于饮用水处理的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济发展及人民生活水平的提高,大量工业污水及居民生活污水未处理达到排放标准就直接排入自然水体,给水环境造成了极大的破坏,致使饮用水源水质急剧下降,严重影响到人民的身体健康和社会的健康有序发展。新的饮用水标准的实施及人们对饮用水水质要求的不断提高,常规处理工艺已无法满足新形式下安全饮用水供给的需要。本论文以在北方地区具有典型性和代表性的滦河水作为源水,采用澄清池-膜过滤工艺进行饮用水处理研究,对其处理效能、操作条件、膜污染特点、清洗方法等进行综合评价,为该工艺应用于饮用水处理提供可靠的理论依据。
     首先,根据原水的水质特点筛选适合于膜过滤工艺的混凝剂,考察混凝剂对污染物的去除效果及对膜污染的影响。发现混凝剂在水中形成的矾花尺寸及其对有机污染物的去除效果直接影响膜污染,混凝矾花尺寸越大、有机污染物去除率越高,膜污染越小。综合评价认为膜过滤工艺中使用铁系混凝剂优于铝系混凝剂,从效费比来说三氯化铁作为膜过滤工艺混凝预处理使用是经济有效的。其次,论文创新性的将澄清池工艺与浸入式膜过滤工艺相结合处理饮用水。对比该工艺与在线混凝工艺,二者出水水质相当,前者的膜污染轻于后者;经过约九个月的运行实验,新工艺在滦河各个水质期的出水水质稳定、膜污染较轻,证明该工艺是可行的。本文首次运用响应曲面法对新工艺的运行操作条件进行了优化,得出了该工艺的最佳运行条件。
     再次,针对影响膜工艺有效运行的膜污染问题进行了认真分析。发现膜自身阻力和复合滤饼层阻力是对膜过滤影响最大的两种阻力,实验表明在有效的混凝预处理后,相比于其他阻力膜自身阻力是影响膜过滤的最主要因素。对不同水质期运行污染后的膜组件进行化学清洗研究,认为次氯酸钠与盐酸配合使用能够很好的恢复膜性能。
     最后,本文首次建立以传质机理为基础的膜反洗模型,确定了反洗过程中反洗压力、反洗流量和反洗有效长度的理论关系。并用澄清池-膜过滤工艺中的实验数据对反洗模型进行了验证,结果表明反洗模型能够较好的对反洗操作进行模拟、预测和评价。该模型的建立为确定反洗操作条件提供了较完备的理论依据,有效减少了反洗操作过程中清洗剂的消耗量,提高了膜工艺的产水效率。
Along with China's economic development and people's living standards’enhancement, a large number of industrial effluent and residents sewage has not achieved the emission standard directly to disperse into the natural water body, which has created the enormous destruction for the water environment, resulting in sharp decline in water quality of drinking water sources, and serious impact on the people's health and the orderly development of the society. The new drinking water standards implementation and requirements for drinking water quality continuous improvement, the conventional treatment processes have been unable to satisfy under the new form the security tap water supplies need. In present paper the water from Luanhe River, which is the typical and representative ground water in the northern region, was taken as the model sample, the Clarifier-Membrane filtration technology was used as the technology for drinking water treatment research. To deal with the process performance, operating conditions, the membrane fouling and cleaning methods, such as a comprehensive evaluation for it used in drinking water treatment to provide a reliable theoretical basis.
     First, according to raw water quality characteristics filtered the coagulants which is the suitable coagulant for membrane filtration process, and the pollutant removal efficiency and the impact on membrane fouling had been studied. Though the study, found that the floc size and its impact on the removal efficiency of organic pollutants directly affect the membrane fouling, the greater floc size and the removal efficiency of organic pollutants, the membrane fouling much lower. The view of comprehensive evaluation that the iron-based coagulant for the membrane filtration process is superior to Al-based coagulant, from the benefit-cost ratio for ferric chloride coagulation as pretreatment of membrane filtration technology is effective and economical use.
     Secondly, the paper has innovatively taken clarifier technology and immersion membrane filtration process combined treatment of drinking water. Comparison of new technology and Coagulation-Membrane filtration process, both of them has almost identical water quality, the former was the lower membrane fouling than the latter; After about nine months running test, in various water quality period of Luanhe the new process was stable, membrane fouling was under control, to prove that the technology is feasible. Response surface methodology firstly applied for the new process to run the operating conditions optimized process, has obtained the best operating conditions.
     Third, had carried on the earnest analysis in the membrane fouling which influence membrane process. It had been found that the membrane resistance and cake layer is composite to the most of the membrane filtration resistance. The experiments showed that after the effective coagulation pretreatment compared to other resistance membrane resistance become the main factor. After the study of chemical cleaning the different period water quality of different membrane fouling, consider sodium hypochlorite with hydrochloric acid cleaning can be good to restore membrane performance.
     Finally, this article firstly establish backwashing model based on the mass transfer mechanism, determined the theoretical relationship between backwashing pressure, backwashing flux and the backwashing effective length in the course of backwashing. And the test data of Clarifiers-Membrane filtration process was used to validate the backwashing model, the result show that the backwashing model can better simulation, prediction and evaluation the backwashing operation process. The model for determining the operating conditions of the backwashing provides a more complete theoretical basis, it is effective in reducing the cleaning agent consumption in the backwashing process, improves the production efficiency of membrane process.
引文
[1]王占生,刘文君编著.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [2]金兆丰,余志荣.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003.
    [3]何文杰等.北方饮用水安全保障技术专著[M].建筑工业出版社,北京,2006:10~15.
    [4] 2006年水资源公报,水利部网站.
    [5]丁亚兰主编.国内外给水工程设计实例[M].北京:化学工业出版社,1999.3:83~87.
    [6]董秉直,曹达文,陈艳.饮用水膜深度处理技术[M].北京:化学工业出版社,2006.
    [7]夏圣骥.超滤膜净化地表水研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2005.
    [8] William H.Glaze,Ph.D.. J.AWWA Water Qulity and Treatment-A Handbook of Community Water Supplies (Fourth Edition)[M]. MeGraw-Hill-Inc.774~779.
    [9]黄晓东,吴为中,李德生.S市富营养化水源化学预氧化实验研究及初步评价[J].给水排水,2001,Vol.27(7): 19~23.
    [10]赵云龙等.生物预处理工艺用于富营养化水源水净化研究[J].科技情报开发与经济2003,Vol. 13(10).
    [11]路明义,王业君,张方银等.受有机物污染水源的处理技术研究[C].2002年中国环境工程领域回顾与展望研讨会,2002.
    [12]金福荣.生物转盘工艺预处理微污染源水的实验研究[D].同济大学工学硕士学位论文,1993.
    [13]叶正中,张华.用生物硫化床工艺作污染水源预处理的研究[J].中国给水排水,1986,2(2):33~36.
    [14]岳舜琳,许建华.生物滤池预处理黄浦江原水的研究[J].上海环境科学,1985,4(3):5~8.
    [15]Bouwer E. J., P. b. Crowe. Biological Processes in Drinking Water Treament[J]. J. Am. Water Assoc., 1988, 80(9): 82~83.
    [16]范瑾初,饮用水处理中粉末活性炭应用研究[J].中国给水排水,1997,13(2):7~9.
    [17]Najm, I.N.et al. Powderes Activited Carbon in Drillkillg Water Treatlment: A Critical Review[J]. AWWA, 1991, 83(1):65~76.
    [18]岳舜琳.提高自来水水质的策略[J].中国给水排水,1999,15(5):42~45.
    [19]立本英机,安部郁夫编著,高尚愚译.活性炭的应用技术-其维持管理及存在问题,2002.
    [20]Gayle N, David C. Influences on the removal of tastes and odours by Powderes Activited Carbon, Water Supply: Reasearch and Technology, 2002, 51(8): 463~474.
    [21]炭素材料学会编,高尚愚等译.活性炭基础及应用.中国林业出版社,1984.6.
    [22]JoseA. HS. et al. Benzene Removal by Powderes Activited Carbon in Jet Flocculation System[J]. Environmental Engineering, 1997, 10: 1011~1018.
    [23]Richard J.M et al. Treatment of Seasonal Pesticides in Surface Water [J]. AWWA, 1989, 81(l): 43~52.
    [24]Istvan L. Dissolved Oganic Removal by Solid-Liquid Phase Seperation (Adsorption and Coagulation) [J]. Water Science and Technology, 1993, 11.
    [25]B R Mcleod et al. Pilot Plant Treatment Techniques for Trihalomethane Precursor Teduction-Some Financial Implications[J]. AWWA, 1998, 90(10).
    [26]李宁,李光明,赵建夫.光催化氧化降解水中有机污染物的研究进展[J].韶关学院学报(自然科学) .2003,12.
    [27]刘淑彦.饮用水深度净化技术的现状与发展方向[J].哈尔滨工业大学学报,2003,35(6):711~714.
    [28]李圭白,杨艳玲,李星.第三代饮用水净化工艺初探[J].中国给水排水,2006.9,22(增刊):119~222.
    [29] Floch J., Hideg M., Application of ZW-1000 membranes for arsenic removal from water sources[J]. Desalination, 2004, 162(1):75~83.
    [30]Yasumoto Magara, Shoichi Kunikane, Masaki Itoh. Advanced membrane technology for application to water treatment[J]. Water Science and Technology, 1998, 37(10):91~99.
    [31]Gunther, Hapke J., Design of membrane separation plants using a module data base[J]. Desalination, 1996, 104(1~2): 19~128.
    [32]H. Sumitomo. pH and Mg/Ca control for biological treatment of an offensive flavour(2-MIB)[J]. Water Science and Technology, 1998, 37(10):101~106.
    [33]Masahiro Otaki, Kazuyoshi Yano, Shinichiro Ohgaki..Virus removal in a membrane separation process[J].Water Science and Technology, 1998, 37(10):107~116.
    [34]李伟英.长江原水超滤膜处理工艺艺研究[D].同济大学工学博士学位论文,2002.
    [35]Wataru Nishijima, Mitsumasa Okada. Particle separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological activated carbon[J]. Water Science and Technology, 1998, 37(10):117~124.
    [36]A. Graveland. Particle and micro-organism removal in conventional and advanced treatment technology[J]. Water Science and Technology, 1998, 37(10):125~134.
    [37]Paul Fu et. al. Selecting membranes for removing NOM and DPB precursors[J]. Jour. AWWA, 1994, 86(12):55~72.
    [38]Koffi Marcus Agbekodo et al. Organics in NF permeate[J]. Jour. AWWA, 1996, 88(5):67~74.
    [39]Maryam Alborzfar et al. Removal of natural oganic matter from two types of humic ground waters by nanofiltration[J]. Wat. Res., 1998, 32(10):2983~2994.
    [40]丁志斌,查吕应,张平等.微滤技术在处理地表原水中的应用探讨[J].工业水处理,2003,23(7):16~19.
    [41]C. Blocher, M. Noronha, L. Funfrocken, et al. Recycling of spent process water in the food industry by an integrated process of biological treatment and membrane separaton[J]. Desalination, 2002, 144(1-3): 143~150.
    [42]陈贻明,王欣泽,何圣兵等.低压膜技术在饮用水处理中的应用和研究现状[J].西南给排水.2005,27(1):5~8.
    [43]Botes J P, Jacobs E P, Bradshaw S M. Long-term evaluation of a UF pilot plant for potable water production[J]. Desalination, 115: 229~238.
    [44]陈治安,刘通,尹华升,陈益清,夏黄建,邝璐.超滤在饮用水处理中的应用和研究进展[J].工业用水与废水,2006.7,37(3):7~10.
    [45]王农村,张振家,姜义行.PVC合金超滤膜在油田采出水会用中的应用研究[J].环境科学与技术,2006,Vol.28(8):86~88.
    [46]朱建文,吴浩汀.BAF+常规工艺+UF工艺在微污染源水处理中的应用展望[J].工业水处理,2004,24(1):12~16.
    [47]Samer S Adham, Joseph G Jacangelo, Jean-Michel Laine. Characteristics and costs of MF and UF plants[J]. J. AWWA, 1996, 88(5):22~31.
    [48]Joseph G. Jacangelo et al. Assessing hollow-fiber ultrafiltration for particulate removal[J]. Jour. AWWA, 1989, 81(11):68~75.
    [49]Jean-Michel Laine et al. Ultrafiltration of lake water: effect of pretreatment on the partitioning of organics THMFP and flux[J]. Jour. AWWA, 1990, 82(12):82~87.
    [50]Kunikane S, Magara Y., Tanaks O.. Role of micro and ultrafiltration in drinking-water treatment [J]. Water Supply, 1996, 14(3-4): 473~477.
    [51]Judith Herschell Green, Michael Tylla. A Comparison of Ultrafiltration on Various River Waters[J]. Desalination, 1998, 119: 79~84.
    [52]Michal Bodzek, Krystyna Konieczny. Comparison of Various Membrane Types and Module Configurations in the Treatment of Natural Water by Means of Low-pressure Membrane Methods[J]. Separation and Purificafion Technology, 1998, 14: 69~78.
    [53]张捍民,王宝贞.UF膜和MF膜技术在饮用水处理中应用现状的研究[J].哈尔滨建筑大学学报.2000,33(6):58~61.
    [54]V. Mavrov, H. Chmiel, J. Kluth, et a1. Comparative Study of Different MF and UF Membranes for Drinking Water Production[J]. Desalination, 1998, 117: 189~196.
    [55]P.希利斯,刘立广,赵广英.膜技术在水和废水处理中的应用[M].北京:化学工业出版社,2003.
    [56]Kunikane S et a1. A comparative study on the application of membrane technology to the public water supply[J]. Journal of Membrane Science. 1995, 102(1):149~154.
    [57]Koffi Marcus Agbekodo et al. Organics in NF permeate[J]. Jour. AWWA, 1996, 88(5): 67~74.
    [58]白晓琴,赵英,顾平.膜分离技术在饮用水处理中的应用[J].水处理技术,2005,31(9):1~5.
    [59]龚海宁.超滤膜处理淮河水工艺研究[D] .上海:同济大学硕士学位论文,2003.
    [60]孔繁钰,胡海修,吴爱兵.中空纤维超滤膜净化长江水的实验研究[J].重庆高等专科学校学报.2004,19(2):10~11.
    [61]AWWA Membrane Technology Research Committee. Committee Report: Membrane Processes in portable water treatment[J]. Journal AWWA. 1992, 84(1): 59~67.
    [62]Mark R.Wiesner et al. Membrane filtration of coagulated suspensions[J]. Jour. Environmental Engineering, 1989, 115(1).
    [63]Y.Kaiya et al. Analysisi of organic matter causing membrane fouling in drinking water treatment[J]. Water Science and Technology, 2000, 41(10-11): 59~67.
    [64]G. Crozes et al. Effect of adsorption of organic matter on fouling of ultrafiltration membrane[J]. Jour. Membrane Science, 1993, 84: 61~77.
    [65]董秉直.超滤膜与混凝、粉末活性炭联用处理微污染水源[D].同济大学工学博士学位论文.
    [66]Carroll T. King S, Gray S, et al. The fouling of microfiltration membranes by NOM after coagulation treatment[J]. Journal Wat. Res., 1997. Vol. 31(5):1021~1026.
    [67]卞如林なと.河川水のUF膜ぅ過にぉけゐ膜フクリンケ凳見機搆[J].水道協會雜誌,2000, 69(2):12~23.
    [68]Veronique Lahoussin-Turcaud et al. Fouling in tangential-flow ultrafiltration: the effect of colloid size and coagulation pretreatment[J]. Jour. Membrane Science., 1990, 52: 173~190.
    [69]C. Visvanathan et al. Removal of THMP by nanofiltration: effects of interference parameters[J]. Joul. Wat. Res., 1998, 32(12): 3527~3528.
    [70]陈艳,董秉直,高乃云等.超滤膜处理地表原水膜阻力特性研究[J].佳木斯大学学报(自然科学版),2006,24(02):298~301.
    [71]张颖,顾平,齐庚申.膜技术应用于饮用水处理的进展[J].中国给水排水,2001,17(5):29~3.
    [72]M.Hasgino et al. Pilot plant evaluation of an ozone-macrofiltration system for drinking water treatlnent[J]. Journal of Water Seience and Technology, 2000, 41(10): 17~23.
    [73] Massoud Pirbazari et al. MF-PAC for treating Wraters Contaminated with Natural and Synthetic Organics[J]. Journal of AWWA, 1992, 84(12): 95~103.
    [74] Joseph E. Williams, Ramesh Goel, Joseph R. V. Flora, Radisav Vidic. Investigating Role of Growing Adsorbent Bed in a Dead-End PAC/UF Process[J]. Journal of Environmental Engineering, 2005, 131(11):1583~1588.
    [75]Jacangelo, J. G., Buckley C. A.“Microfiltration”Water Treatment Membrane Process[C], 1996, Singapore.
    [76]董秉直,曹达文,范瑾初.粉末活性炭-超滤膜处理黄浦江原水的研究[J].上海环境科学,2003,22(11):731~733.
    [77]Jacangelo, J.G., Laine, J.M., Cummings et al. UF with Pertreatment for Removing DBP Precursors[J]. J. AWWA, 1995, 87(3): 100~115.
    [78]James A.Nilson, Francis A.Di Glano. Influence of NOM Composition on nanofiltration[J]. Joural of AWWA, 1996, 88(5): 53~66.
    [79]Laine J M. Membrane technology and its application to drinking water production[C]. Intemational Workshop on membrane Application for water & Wastewater Treatment, 1999.
    [80] Carroll T, King S, Gray S R, et al. The fouling of microfitration membranes by NOM after coagulation treatment[J]. Water Research, 2000, 34(11): 2861~2868.
    [81] Bian R., Y. Watanabe, G.. Ozawa. Removal of humic substances by UF and NF membrane syetemd[J]. Journal of Water Seience and Technology, 1999, 40(9): 121~129.
    [82] Fu L. F., B.A. Dempsey. Effects of charge and Coagulant Dose on NOM removal and Membrane fouling mechanism[C]. In proc. of 1997 AWWA Membrand Technology Conference. Denver, CO: AWWA, 1997.
    [83]董秉直,夏丽华,陈艳等.混凝处理防止膜污染的作用与机理[J].环境科学学报,2005,25(4): 530~534.
    [84] A Maartens, P. Swart, E. P. Jacobs. Feed-water pretreatment: Methods to reduce membrane fouling by nature organic matter[J]. Joural of Membrane Science, 1999, 163(l): 51~62.
    [85]天津市建设委员会.天津市再生水资源利用与发展情况[C].全国城市污水再生利用经验交流和技术研讨会,2003.10.
    [86]龚云峰,吴春华,丁桓如.强化混凝在给水处理工程中的应用[J] .中国给水排水,2000,16(12):29~31.
    [87]李青山.中国水资源保护问题及其对策措施[J].水资源保护,1999,56(2):28~30.
    [88]黄仲杰.我国城市供水现状、问题及对策[J].给水排水,1998,24(2):18~20.
    [89]EATON A D. Measuring UV-Absorbing Organics: A Standard Method[J]. Jour. AWWA, 1995, 87(2): 86~90.
    [90]P. Singer, J. Barry, G. Palen and A. Scivner, Trihalomethane formation potential in North Carolina drinking waters[J]. J. AWWA, 1981, 73(8): 392~401.
    [91]M. Anne. Using PAC-UF to Treat a low-Quality Surface Water[J]. Journal of AWWA, 1998, 90(11):83~95.
    [92]董秉直,曹达文,范瑾初等.混凝和粉末炭去除黄浦江原水中DOM的效果[J].中国给水水,2000,16(3):1~4.
    [93]Samer S. Adbam et al. Predicting and Verifying TOC Removal by PAC in Pilot-Scale UF Systems[J]. Journal of AWWA, 1993, 85(12):58~68.
    [94]林星杰,杨慧芬,宋存义.UV254在水质监测中应用的研究[J].能源与环境,2006,1:22~24.
    [95]Marcel Muder著,李琳译,单德芳校.膜技术基本原理(第2版)[M].北京:清华大学出版社,1999.
    [96]孔珑主编.流体力学(Ⅰ)[M].北京:高等教育出版社,2002.
    [97]R. W. Field, D. Wu, J. A. Howell, B. B. Gupta. Cfifical flux concept for microfdtration fouling[J]. J. Membr. Sci., 1995, 100: 259~272.
    [98]Pierre L. C., Bruce J. Chang I. S. et al. Critical flux determination by the flux step method in a submerged membrane bioreactor[J]. Journal of Membrane Science, 2003, 227: 81~93.
    [99]Defrance L., Jaffrin M Y.. Comparison between fihrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane hioreactor used for wastewater treatment[J]. Journal of Membrane Science,1999, 152: 203~210.
    [100]D. Y. Kwon, S. Vigneswaran, A. G. Fane, R. Ben Aim. Expefimental determination of critical flux in cross-flow microflitration [J]. Sep. Purif. Technol., 2000, 19: 169~181.
    [101]S. Ognier, C. Wisniewski, A. Grasmick. Characterisation and modelling of fouling in membrand bioreactors[J]. Desalination, 2002, 146: 141~147.
    [102]Harit K. Vyas, R. J. Bennett, A. D. Marshall. Performance of cross-flow microfiltmtion during constant transmembrane pressure and constant flux operations[J]. International Dairy Journal, 2002, 12: 473~479.
    [103]Owen, Douglas M., et al., NOM characterization and treatability. Joul[J]. AWWA, 1995, 87(1): 86~90.
    [104]Bolto B., Dixon D., Eldridge R.,et al. The use of cationic polymers as primary coagulants in water treatment[C]. In Chemical Water and Wastewater Treatment V. eds H. H. Hahn, E. Hoffman and H. Odegard, 1998,417-429. Springer, Berlin.
    [105]Croue J. P. Isolation, fractionation, characterization and reactive properties of natural organic matter[C]. In Proceedings of the AWWA 18th Federal Convention, Adelaide, Australia.
    [106]王晓莲,彭永臻,王宝贞.PAC-UF组合系统对水中污染物去除研究[J].哈尔滨工业大学学报,2005,37(12):1739~1742.
    [107]Dempsey, B. A. Reactions Between fulvic Acid and Aluminum: Effects on the Coagulation Process. Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants. (I. H. Suffet and P. MaoCarthy, editors)[C]. Amer. Chem. Soc., Washington, 1989.
    [108]Jiang, S. J. Etude de I'élimination de I'acide fulvique par coagulation-floculation ou filtration contact[Thèse de Docteur][C]. Génie des Procédés Industriels, Universitéde Technologie de Compiegne, France, Décembre, 1997.
    [109]Sinsabaugh, R. L. et al. Removal of Dissolved Organic Carbon by Coagulation With Iron Sulfate[J]. Jour. AWWA, 1986, 78(5): 74.
    [110]Edwards M., Benjamin M. M., Ryan J. N. Role of Organic Acidity in Sorption of Natural Organic Matter (NOM) to Oxide Surfaces[J]. Colloids & Surfaces A: Physiochem. & Engra, Aspects, 1996, 10: 297.
    [111]Alnirthajah A., Nolen C. H.. Coagulation of Organic Color With Ferric Chloride[C]. Proe.1986 AWWA Ann. Conf., Denver, Colo.
    [112]Cheng, R. C. et al. Enhanced CoagUlation: A Preliminary Evaluation[J]. Jour. AWWA, 1995, 87(2):91.
    [113]Gray K. A. The PrePajration, Characterization, and Use of Inorganic Iron (Ⅲ) Polymers for Coagulation in Water Treatinent.[Doetoral dissertation], The Johns HoP kins Univ., Baltimore,Md., 1988.
    [114]Leu R. J., Ghosh M. M.. Polyelectrolytic Characteristics and Flocculation [J]. Jour. AWWA, 1998, 80(4):159.
    [115]Haarhoff J., Cleasby, J. L.. Comparing Aluminum and Iron Coagulants for In-line Filtration of Cold Water [J]. Jour. AWWA, 1988, 80(4):168.
    [116]Koether M. c., Deutschman J. E., VanLoon G. W. Low-cost Polymeric Aluminum Coagulant[J]. Jour. Envir. Engrg. ASCE, 1997, 123(9):859.
    [117] C. H. Kim, M. Hosomi, A. Murakami, M. Okada. Characteristics of fouling due to clay-organic substances in potable water treatment by ultrafiltration[J]. Water Science and Technology, 1996, 34(9): 157~164.
    [118]董秉直,曹达文,管晓涛等.混凝对膜过滤的影响[J].中国给水排水,2002,18(12):34~36.
    [119]闰昭辉,董秉直.混凝/超滤处理微污染原水的实验研究[J].净水技术,2005,24(6):4~6.
    [120]董秉直,陈艳,高乃云等.混凝对膜污染的防止作用[J].环境科学,2005,26(1):90~93.
    [121]Oh J, Lee S h. Influence of streaming potential on flux decline of microfiltration with in-line pre-coagulation process for drinking water production [J]. Jour. of Membrane Science, 2005, 254 (1-2): 39~47.
    [122]王捷.浸没式膜-生物反应器运行工况及系统设计的优化研究[D].天津大学博士论文,2007.
    [123]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):91~94. [124」Box G. E. P., Hunter W. G., Hunter J. S.. In: Statistics for Experiments[M]. An Introduction to Design Data Analysis and Model Bullding, Wiley, New York, 1978.
    [125]周纪芗.实用回归分析方法[M].上海:上海科学技术出版社,1990:77~79.
    [126]刘忠洲,续暑光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1992,23(4):187~197.
    [127]Akira Yuasa. Drinking water production by coagulation-microfiltration and adsorption-ultrafiltration [J]. Water science and technology, 1998, 37(10):135~146.
    [128]董秉直,曹达文,范瑾初等.UF膜过滤天然原水阻力特性的研究[J].水处理技术,2001,27(2):80~82.
    [129] A. I. Sch?fer, U. Schwicker, M. M. Fischer, et al. Microfiltration of colloids and natural organic matter[J]. Journal of Membrane Science, 2000, Vol 171(2): 151~172.
    [130] Cho B. D., Fane A. G. Fouling transients in nominally subcritical flux operation of a membrane bioreactor [J]. Membrane Science, 2002, 209: 391~403.
    [131] Yu KaiChang, Wen XiansHua, Bu QingJie, et al. Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater[J]. Journal of Membrane Science, 2003, 224: 69~79.
    [132]俞开昌,文湘华,庆杰,黄霞.次临界操作下的膜污染机理研究[J].环境污染治理技术与设备,2004,5(1):23~27.
    [133] Ognier S., Wisniewski C., Grasmick A.. Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept [J]. Journal of Membrane Science, 2004, 229: 171~177.
    [134]魏春海,黄霞,赵曙光,文湘华.SMBR在次临界通量下的运行特性[J].中国给水排水,2004,20(11):10~13.
    [135]董秉直,陈艳,高乃云等.粉末活性炭-超滤膜处理微污染原水实验研究[J].同济大学学报(自然科学版),2005,33(6):777~780.
    [136]K. Khatib, J. Rose, O. Barres, W. Stone, J-Y. Bottero, C. Anselme. Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan) [J]. Journal of Membrane Science, 1997, 130(1-2): 53~62.
    [137]莫罹,黄霞,吴金玲.混凝-微滤膜组合净水工艺中膜过滤特性及其影响因素[J].环境科学,2002,23(2):45~49.
    [138]J.Y. Bottero, K. Khatib, F. Thomas, K. Jucker, J.L. Bersillon, J. Mallevialle. Adsorption of atrazine onto zeolites and organoclays, in the presence of background organics[J]. Water Research, 1994, 28(2): 483~490.
    [139]宫美乐,袁国梁.我国微孔滤膜研究现状与发展[J].膜科学与技术,2003,23(4):186~189.
    [140]王捷,张宏伟,贾辉等.浸没式中空膜纤维尺寸优化的模拟[J].膜科学与技术,2008,28(1):31~34.
    [141] Seong-Hoon Yoon, Sangho Lee, Ik-Tae Yeom. Experimental verification of pressure drop models in hollow fiber membrane [J]. Journal of Membrane Science, 2008, 310 (1): 7~12.
    [142]王绍亭,陈涛.动量、热量与质量传递[M].天津:天津科学技术出版社,1986:22~23,74~75.
    [143]杨大春,顾平,刘锦霞.膜生物反应器的中空纤维膜组件优化设计[J].中国给水排水,2002,18(4):10-13.
    [144]杨大春.U型中空纤维膜水力特性的模型分析[J].膜科学与技术,2004,24(1):16~19.
    [145]株式会社クボタ.クボタ液中膜设计指南[Z].2004.5.25修订.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700