用户名: 密码: 验证码:
微/纳米尺度对象灵巧操控方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人类探索微观世界的进程中,对微观目标物实现操作和控制的需求同宏观尺度一样无处不在。研制精确可靠、成本低廉的微型控制器件,已成为研究者们共同关注的前沿方向之一。本文基于这一重要需求,将微型控制技术分为微型固体操控技术与微型液体控制技术,从全新的角度和原理出发,提出并实现了多种灵巧高效的微型控制方法:
     针对崭新的微纳米固体操作器件——冰镊,首先利用数值模拟的方法对其典型执行机制进行了深入研究,在此基础上扩展出几类实现冰镊操作器的新型工作原理。通过系统的理论和试验证实,借助于微对流冷却效应可以实现具有良好工作性能及适应能力的冰镊操作器。进而,论文将此种原理的冰镊操作器推进到纳米尺度,并引入自由分子流区的传热模型对其可行性进行了理论评估。此外,还提出热辐射型微纳米冰镊操作器并从理论上进行了评估。
     在液体操控器件方面,论文对三种微器件提出了新的工作原理。针对依靠流体自身相变来实现流道开启或关闭的微型冰阀,深入研究了其典型执行机制,发展出借助单个冰阀控制微流道阵列的方法,并建立了可对冰阀阵列工作过程实施非接触式监测的红外热成像手段;在微流体驱动方面,论文提出了借助干燥多孔材料与液体之间的主动润湿效应来实现流体驱动的新型润湿驱动泵的工作原理,系统揭示了其工作性能及各种外界影响因素;基于两相流理论,论文对泰勒扩散型微混合器的工作过程进行了理论刻画,进而展示了有效提高混合效率的方案,并引入红外热成像法实现了对微型混合器工作过程的实时监测。
     本文建立的系列灵巧性微/纳米操控方法,可望在诸多微系统与纳米技术领域中发挥重要作用。
During the exploration of the microcosms, the heavy demand for the diversification of micro manipulation remains the same as its counterpart macro-scale tasks. As a result, developing micro/nano scale manipulation device which is low in cost, high in reliability and precision has become one of the major targets within the MEMS area. Aiming to tackle such tough issues, the present thesis attributed the micro manipulation into two types: the micro manipulation on the object at solid state and that at liquid phase. Several new flexible methods for manipulating micro/nano scale objects were proposed:
     Aiming to the micro object at solid state, this thesis is dedicated to investigate a new kind of manipulation tool named as freeze tweezer. Numerical simulation is performed to understand its typical implementation mechanisms and several new working principles are proposed to improve its performances. Through the systematical analysis and experiments, it is demonstrated that the convective cooling enabled freeze tweezer could take on a quite excellent performance and adaptability. As a significant extension, the feasibility of the freeze tweezer with such principle in nano scale is illuminated via the theoretical heat transfer evaluation in free molecular flow. In addition, numerical simulation has also been carried out to demonstrate the radiative cooling enabled freeze nano tweezer.
     For the manipulation devices of the micro object at liquid state, this thesis proposed new working principles respectively for three micro devices. Aiming at the ice valve which was developed to close or open the micro/nano channel by freeze/thawing the working fluid inside, its typical implementation behaviors are numerically simulated; an alternative strategy for the controlling of the micro channel array via only a single ice valve is developed and a non-contact monitoring way for monitoring the ice valve array based on the far-infrared thermal imaging system is established. For the micro flow driving, this thesis presented a low cost micro pump for lab on chip through flexibly utilizing the wetting mechanism between the dry porous material and liquid. The working performance and several factors on the running state of the wetting pump have been proposed and evaluated. Further, based on the two-phase flow theory, this thesis established theoretical hydrodynamics model to characterize the micromixing pattern enabled by the time-interleaved segmentation feeding of micro fluid and put forward effective program to further improve the mixing efficiency. And the far-infrared thermal imaging system was also adopted to detect and map the surface temperature distribution of a micro mixture.
     In summary, the series of flexible manipulation methods for micro/nano scale objects as established in this thesis are expected to play an important role in micro/nano technology.
引文
[1]张帅,贾育秦, MEMS技术的研究现状和新进展,现代制造工程,2005,9,109-112
    [2] R H Tai, MEMS & Microsystems-Design and Manufacture, McGraw-HillCompanies, Inc, USA
    [3]金铃,MEMS技术研究及应用,现代雷达,2004,26,26-29
    [4]李炳乾,朱长纯,刘君华,微电子机械系统的研究进展,国外电子元器件,2001,1,4-9
    [5]王宏,微电子系统(MEMS)发展研究,微处理机,2002,3,4-7
    [6]王冬生,王春明,胡桂珍,MEMS技术概述,机械设计与制造,2006,3,106-108
    [7]刘静,操纵微小世界的工具——微/纳米镊的研究与应用,微纳电子技术,2005,3,97-106
    [8] A Huebner, S Sharma, M Srisa-Art, F Hollfelder, J B. Edel, A J. DeMello, Microdroplets: a sea of applications?, Lab Chip, 2008, 8, 1244-1254
    [9]张凯,胡坪,梁琼麟,罗国安,微流控芯片中微液滴的操控及其应用,分析化学(FENXI HUAXUE)评述与进展,2008,36,556-562
    [10] U Demirci, G G Yaralioglu, E H?ggstr?m, B T Khuri-Yakub, Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays, IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 709-715
    [11] Y Kudo, T Nakahara, T Nakagama, N Seino, M Shinoda, K Uchiyama, Development of a surface-reaction system in a nanoliter droplet made by an ink-jet microchip, Analytical Sciences January, 2007, 23, 91-95
    [12] Y H Lin, C H Lee, G B Lee, Droplet formation utilizing controllable moving-wall structures for double-emulsion applications, Journal of MicroelectromechanicalSystems, 2008, 17, 573 - 581
    [13] H T Chen, G B Lee, Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip, Journal of Microelectromechanical Systems, 2006, 15, 1492-1498
    [14] B Zheng, J D Tice, L S Roach, R F Ismagilov, A droplet-based, composite pdms/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction, Angew. Chem. Int. Ed, 2004, 43, 2508-2511
    [15] J Collins, A P Lee, Control of serial microfluidic droplet size gradient by step-wise ramping of flow rates, Microfluid Nanofluid, 2007, 3, 19-25
    [16] N T Nguyen, S Lassemono, F A Chollet, Optical detection for droplet size control in microfluidic droplet-based analysis systems, Sensors and Actuators B, 2006, 117, 431-436
    [17] H Kinoshita, S Kaneda, T Fujii, M Oshima, Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV, Lab Chip, 2007, 7, 338-346
    [18] P Paik, V K Pamula, R B Fair, Rapid droplet mixers for digital microfluidic systems, Lab Chip, 2003, 3, 253-259
    [19] X Z Niu, M Y Zhang, J B Wu, W J Wen, P Sheng, Generation and manipulation of‘‘smart’’droplets, Soft Matter, 2009, 5, 576-581
    [20] S Abraham, E Ho Jeong, T Arakawa, S Shoji, K C Kim, I Kim, J S Go, Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants, Lab Chip, 2006, 6, 752-756
    [21] L H Hung, K M Choi, W Y Tseng, Y C Tan, K J Shea, A P Lee, Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis, Lab Chip, 2006, 6, 174-178
    [22] I Shestopalov, J D Tice, R F Ismagilov, Multi-step synthesis of nanoparticlesperformed on millisecond time scale in a microfluidic droplet-based system, Lab Chip, 2004, 4, 316-321
    [23] H Song, R F Ismagilov, Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Soc., 2003, 125, 14613-14619
    [24] T Taniguchi, T Torii, T Higuchi, Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media, Lab Chip, 2002, 2, 19-23
    [25] M G Pollack, A D Shenderov, R B Fair, Electrowetting-based actuation of droplets for integrated microfluidics, Lab Chip, 2002, 2, 96-101
    [26] P Dubois, G Marchand, Y Fouillet, J Berthier, T Douki, F Hassine, S Gmouh, M Vaultier, Ionic liquid droplet as e-microreactor, Anal. Chem. 2006, 78, 4909-4917
    [27] R Hofer, M Textor, N D Spencer, Imaging of surface heterogeneity by the microdroplet condensation technique, Langmuir 2001, 17, 4123-4125
    [28] Y F Yu, P H Yap, A Q Liu, Microdroplet interferometry for local pressure monitoring in microfluidic chips, Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences 7-11 October 2007, Paris, France, 1059-1061
    [29] S K Kang, D B Lee, N S Choi, Fiber/epoxy interfacial shear strength measured by the microdroplet test, Composites Science and Technology, 2009, 69, 245-251
    [30] Z L Wan, H J Zeng, A Feinerman, Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets, Applied Physics Letters, 2006, 89, 201107
    [31] B C Khoo, E Klaseboer, K C Hung, A collapsing bubble-induced micro-pump using the jetting effect, Sensors and Actuators A, 2005, 118, 152-161
    [32] J Y Jung, H Y Kwak, Fabrication and testing of bubble powered micropumps using embedded microheater, Microfluid Nanofluid, 2007, 3, 161-169
    [33] D A Ateya, A A Shah, S Z Hua, An electrolytically actuated micropump, Rev. Sci. Instrum., 2004, 75, 915-920
    [34] P G Deng, Y K Lee, P Cheng, Two-dimensional micro-bubble actuator array toenhance the efficiency of molecular beacon based DNA micro-biosensors, Biosensors and Bioelectronics, 2006, 21, 1443-1450
    [35] P G Deng, Y K Lee, P Cheng, The growth and collapse of a micro-bubble under pulse heating. Int. J. Heat Mass Trans., 2003, 46, 4041-4050
    [36] X L Wang, F Moraga, D Attinger, A micro-rotor driven by an acoustic bubble, Nanoscale and Microscale Thermophysical Engineering, 2006, 10, 379-385
    [37] J Kao, J Warren, J Xu, D Attinger, A bubble-powered micro-rotor: manufacturing, assembly and characterization, Proceedings of IMECE2006 2006 ASME International Mechanical Engineering Congress and Exposition November 5-10, 2006, Chicago, Illinois, USA
    [38] T G Leighton, The acoustic bubble. 1994: Academic Press, London
    [39] M S Longuet-Higgins, Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A, 1998, 454, 725-742
    [40] K M Liao, R Chen, B C S Chou, A novel thermal-bubble-based micromachined accelerometer, Sensors and Actuators A, 2006, 130-131, 282-289
    [41] C P Steinert, I Goutier, O Gutmann, H Sandmaier, M Daub, B Heij, R Zengerle, A highly parallel picoliter dispenser with an integrated, novel capillary channel structure, Sensors and Actuators A, 2004, 116, 171-177
    [42] M Yamada, T Hirano, M Yasuda, M Seki, A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing, Lab Chip, 2006, 6, 179-184
    [43] S Yang, Aündar, J D Zahn, A microfluidic device for continuous, real time blood plasma separation, Lab Chip, 2006, 6, 871-880
    [44] C I Hung, K C Wang, C K Chyou, Design and flow simulation of a new micromixer, JSME International Journal, Series B, 2005, 48, 17-24
    [45] J Melin, G Giménez, N Roxhed, W Wijngaart, G Stemme, A fast passive and planar liquid sample micromixer, Lab Chip, 2004, 4, 214-219
    [46] C C Hong, J W Choi, C H Ahn, A novel in-plane passive microfluidic mixer withmodified Tesla structures, Lab Chip, 2004, 4, 109-113
    [47] D J Kim, H J Oh, T H Park, J B Choo, S H Leea, An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions, Analyst, 2005, 130, 293-298
    [48] Y C Chung, Y L Hsu, C P Jen, M C Lu, Y C Lin, Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab Chip, 2004, 4, 70-77
    [49] R Chein, S H Tai, Microfluidic flow switching design using volume of fluid model, Biomedical Microdevices, 2004, 6, 81-90
    [50] R F Ismagilov, D Rosmarin, P J A Kenis, D T Chiu, W Zhang, H A Stone, G M Whitesides, Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch, Anal. Chem., 2001, 73, 4682-4687
    [51] R Ferrigno, A D Stroock, T D Clark, M Mayer, G M Whitesides, Membraneless vanadium redox fuel cell using laminar flow, J. Am. Chem. Soc., 2002, 124, 12930-12931
    [52] G Binnig, C F Quate, C Gerber, Atomic force microscope, Phys Rev Lett, 1986, 56, 930-933
    [53] K H Kim, J S Ko, Y H Cho, K Lee, B M Kwak, K Park, A skew-symmetric cantilever accelerometer for automotive airbag applications, Sensors and Actuators A, 1995, 50, 121-126
    [54] H P Lang, R Berger, C Gerber, J K Gimzewski, F M Battiston, P Fornaro, J P Ramseyer, E Meyer, H J Guntherodt, M K Baller, An artificial nose based on a micromechanical cantilever array, Analytica Chimica Acta, 1999, 393, 59-65
    [55] J Fritz, M K Bailer, H P Lang, H Rothuizen, P Vettiger, E Meyer, H Güntherodt, C Gerber, J K Gimzewski, Translating biomolecular recognition into nanomechanics, Science, 2000, 288, 316-318
    [56]庄志伟,王喆垚,刘理天,表面应力测量SOI压阻悬臂梁传感器设计与优化,半导体学报,2006,27,1844-1850
    [57]黄正,国外MEMS继电器的发展,中国电子科学院学报,2008,5,468-473
    [58] M Sitti, H Hashimoto, Force controlled pushing of nanoparticles: modeling and experiments, Proceeding of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, September 19-23, 1999, Atlanta, USA
    [59] B Ilic, H G Craighead, Attogram detection using nanoelectromechanical oscillators, J. Appl. Phys. , 2004, 95, 3694-3730
    [60] B Ilic, Y Yang, H G Craighead, Virus detection using nanoelectromechanical devices, Appl. Phys. Lett. , 2004, 85, 2604-2606
    [61]陈大鹏,王玮冰,欧毅,杨清华,谢常青,刘辉,董立军,叶甜春,基于薄膜结构的MEMS技术研究,电子工业专用设备,2004,108,16-20
    [62]颜鹰,史铁林,基于MEMS压力传感器的研究,仪表技术与传感器,2005,2,7-8
    [63] J C Galas, V Studer, Y Chen, Characterization of pneumatically activated microvalves by measuring electrical conductance, Microelectronic Engineering, 2005, 78-79, 112-117
    [64] J H Kim, K H Na, C J Kang, D Jeon, Y S Kim, A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass, Microelectronic Engineering, 2004, 73-74, 864-869
    [65] P Selvaganapathy, E T Carlen, C H Mastrangelo, Electrothermally actuated inline microfluidic valve, Sensors and Actuators A, 2003, 104, 275-282
    [66] C Yamahata, F Lacharme, Y Burri, M A M Gijs, A ball valve micropump in glass fabricated by powder blasting, Sensors and Actuators B, 2005, 110, 1-7
    [67] Y Z Zheng, W Dai, H K Wu, A screw-actuated pneumatic valve for portable, disposable microfluidics, Lab Chip, 2009, 9, 469-472
    [68] S Y An, M N Bui, Y J Nama, K N Hana, C A Li, J Choo, E K Lee, S Katohb, Y Kumadac, G H Seong, Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates, Journal of Colloid and Interface Science, 2009, 331, 98-103
    [69] K L Helton, K E Nelson, E Fu, P Yager, Conditioning saliva for use in a microfluidic biosensor, Lab Chip, 2008, 8, 1847-1851
    [70] F Kurtha, C A Schumanna, L M Blanka, A Schmida, A Manza, P S Dittrich, Bilayer microfluidic chip for diffusion-controlled activation of yeast species, Journal of Chromatography A, 2008, 1206, 77-82
    [71] M Tencer, P Berini, Design of microfluidic channels separated by an ultra-thin free-standing dielectric membrane, Microfluid Nanofluid, 2009, 6, 17-26
    [72] D Y Stevens, C R Petri, J L Osborn, P Spicar-Mihalic, K G McKenziea, P Yager, Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage, Lab on Chip, 2008, 8, 2038-2045
    [73] M Ebara, J M Hoffman, A S Hoffman, P S Stayton, Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels, Lab on Chip, 2006, 6, 843-848
    [74] H Sato, T Kakinuma, J S Go, S Shoji, In-channel 3-D micromesh structures using maskless multi-angle exposures and their microfilter application, Sensors and Actuators A, 2004, 111, 87-92
    [75] N Wilke, C Hibert, J O Brien, A Morrissey, Silicon microneedle electrode array with temperature monitoring for electroporation, Sensors and Actuators A, 2005, 123-124, 319-325
    [76] S Rajaraman, H T Henderson, A unique fabrication approach for microneedles using coherent porous silicon technology, Sensors and Actuators B, 2005, 105, 443-448
    [77] S J Moon, S S Lee, H S Lee, T H Kwon, Fabrication of microneedle array using LIGA and hot embossing process, Microsystem Technologies, 2005, 11, 311-318
    [78] J Z Hilt, N A Peppas, Microfabricated drug delivery devices, International Journal of Pharmaceutics, 2005, 306, 15-23
    [79] Gerstel et al., Drug Delivery Device, US 3964482 patent, 1976
    [80] E V Mukerjee, R R Issseroff, S D Collins, R L Smith, Microneedle array withintegrated microchannels for transdermal sample extraction and in situ analysis, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, 2003, 8-12, 1439-1441
    [81] S P Davis, M R Prausnitz, M G Allen, Fabrication and characterization of laser micromachined hollow microneedles, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, 2003, 8-12, 1435-1438
    [82] J W L Zhou, H Y Chan, T K H To, K W C Lai, W J Li, Polymer MEMS actuators for underwater micromanipulation, IEEE-ASME Trans. Mechatronics, 2004, 9, 334-342
    [83] P Kim, C M Lieber, Nanotube nanotweezers, Science, 1999, 286, 2148-2150
    [84] C A Mirkin, Tweezers for the nanotool kit, Science, 1999, 286, 2095-2096
    [85] G Y Li, Y N Xi, C Wang, M M Yu, W K Fung, Planning and control of 3-D nano-manipulation, Acta Mech. Sin., 2004, 20 117-124
    [86] A Ashkin, Applications of laser radiation pressure, Science, 1980, 210, 1081-1088
    [87] M P MacDonald, L Paterson, K Volke-Sepulveda, J Arlt, W Sibbett, K Dholakia, Creation and manipulation of three-dimensional optically trapped structures, Science, 2002, 296, 1101-1103
    [88] L Paterson, M P MacDonald, J Arlt, W Sibbett, P E Bryant, K Dholakia, Controlled rotation of optically trapped microscopic particles, Science, 2001, 292, 912-914
    [89] P Foubert, P Vanoppen, M Martin, T Gensch, J Hofkens, A Helser, A Seeger, R M Taylor, A E Rowan, R J M Nolte, F C Schryver, Mechanical and optical manipulation of porphyrin rings at the submicrometre scale, Nanotechnology, 2000, 11, 16-23
    [90] L Sacconi, G Romano, R Ballerini, M Capitanio, M DePas, M Giuntini, D Dunlap, L Finzi, F S Pavone, Three-dimensional magneto-optic trap for micro-boject manipulation, Opt. Lett., 2001, 26, 1359-1361
    [91] R W Stark, F J Rubio-Sierra, S Thalhammer, W M Heckl, Combinednanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection, Eur. Biophys. J., 2003, 32, 33-39
    [92] S Curran, D L Carroll, P M Ajayan, P Redlich, S Roth, M Rühle, W Blau, Picking needles from nano-haystacks, Adv. Mater., 1998, 10, 311-313
    [93] C Thelander, L Samuelson, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes, Nanotechnology, 2002, 13, 108-113
    [94] K F B?hringer, B R Donald, N C MacDonald, Single-crystal silicon actuator arrays for micro manipulation tasks, Proc. IEEE Workshop Micro Electro Mech. Struct. (MEMS) (San Diego, CA, USA), 1996, 7-12
    [95] T Taniguchi, T Torii, T Higuchi, Micro chemical reactor in micro droplets - electrostatic manipulation of micro droplets, Proceedings of International Symposium Microchemistry and Microsystems, Kawasaki, Japan: Royal Society of Chemistry, 2001, 104-105
    [96] T Tanikawa, T Arai, Development of micro-manipulation system having a two-fingered micro-band, IEEE Transactions on Robotics and Automation, 1999, 15, 152-162
    [97] S K Jericho, M H Jericho, T Hubbard, M Kujath, Micro-electro-mechanical systems microtweezers for the manipulation of bacteria and small particles, Rev. Sci. Instrum., 2004, 75, 1280-1281
    [98] E W H Jager, O Ingan?s, I Lundstr?m, Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation, Science, 2000, 288, 2235-2238
    [99] D J Díaz, J E Hudson, G D. Storrier, H D Abrun, N Sundararajan, and C K Ober, Lithographic applications of redox probe microscopy, Langmuir 2001, 17, 5932-5938
    [100] S Maruo, K Ikuta, H Korogi, Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett., 2003, 82, 133-135
    [101] M S Z Kellermayer, S B Smith, H L Granzier, C Bustamante,Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science, 1997, 276, 1112-1116
    [102]吴睿婷,蒋稼欢,吴云鹏,微阀的研究进展,医用生物力学,2007,22,314-319
    [103] H Hartshorne, C J Backhouse, W E Lee, Ferrofluid-based microchip pump and valve, Sensors and Actuators B, 2004, 99, 592–600
    [104] E F Hasselbrink, T J Shepodd, J E Rehm, High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem. 2002, 74, 4913-4918
    [105] R H Liu, J Bonanno, J Yang, R Lenigk, P Grodzinski, Single-use, thermally actuated paraffin valves for microfluidic applications, Sensors and Actuators B, 2004, 98, 328–336
    [106]苏宇锋,陈文元,基于MEMS的微泵研究进展,微纳电子技术,2004,5,33-40
    [107]白兰,吴一辉,张平,基于MEMS的微流体混合器的研究与进展,哈尔滨工业大学学报,2006,36,543-545
    [1] M S Z Kellermayer, S B Smith, H L Granzier, C Bustamante, Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science, 1997, 276, 1112-1116
    [2] J M Fernandez, S Chu, A F Oberhauser, RNA structure: Pulling on hair(pins)., Science, 2001, 292, 653-654
    [3] T Sato, Micro/nano manipulation world, Proc. IROS 1996, Osaka, Japan: IEEE Publisher, 1996, 834-841
    [4] E W H Jager, O Ingan?s, I Lundstr?m, Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation, Science, 2000, 288, 2235-2238
    [5] J H Lu, H K Li, H J An, G H Wang, Y Wang, M Q Li, Y Zhang, J Hu, Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR, J. Am. Chem. Soc., 2004, 126, 11136-11137
    [6] S Curran, D L Carroll, P M Ajayan, P Redlich, S Roth, M Rühle, W Blau, Picking needles from nano-haystacks, Adv. Mater., 1998, 10, 311-313
    [7]刘静,操纵微小世界的工具——微/纳米镊的研究与应用,微纳电子技术,2005,3,97-106
    [8] J Liu, Y X Zhou, T H Yu, Freeze tweezer to manipualte mini/micro objects, J. Micromech Microeng., 2004, 14, 269-276
    [9] J W L Zhou, H Y Chan, T K H To, K W C Lai, W J Li, Polymer MEMS actuators for underwater micromanipulation, IEEE-ASME Trans. Mechatronics, 2004, 9, 334-342
    [10] P Kim, C M Lieber, Nanotube nanotweezers, Science, 1999, 286, 2148-2150
    [11] C A Mirkin, Tweezers for the nanotool kit, Science, 1999, 286, 2095-2096
    [12] G Y Li, Y N Xi, C Wang, M M Yu, W K Fung, Planning and control of 3-D nano-manipulation, Acta Mech. Sin., 2004, 20 117-124
    [13] A Ashkin, Applications of laser radiation pressure, Science, 1980, 210, 1081-1088
    [14] M P MacDonald, L Paterson, K Volke-Sepulveda, J Arlt, W Sibbett, K Dholakia, Creation and manipulation of three-dimensional optically trapped structures, Science, 2002, 296, 1101-1103
    [15] L Paterson, M P MacDonald, J Arlt, W Sibbett, P E Bryant, K Dholakia, Controlled rotation of optically trapped microscopic particles, Science, 2001, 292, 912-914
    [16] P Foubert, P Vanoppen, M Martin, T Gensch, J Hofkens, A Helser, A Seeger, R M Taylor, A E Rowan, R J M Nolte, F C Schryver, Mechanical and optical manipulation of porphyrin rings at the submicrometre scale, Nanotechnology, 2000, 11, 16-23
    [17] L Sacconi, G Romano, R Ballerini, M Capitanio, M DePas, M Giuntini, D Dunlap, L Finzi, F S Pavone, Three-dimensional magneto-optic trap for micro-boject manipulation, Opt. Lett., 2001, 26, 1359-1361
    [18] R W Stark, F J Rubio-Sierra, S Thalhammer, W M Heckl, Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection, Eur. Biophys. J., 2003, 32, 33-39
    [19] D J Díaz, J E Hudson, G D Storrier, H D Abrun, N Sundararajan, C K Ober, Lithographic applications of redox probe microscopy, Langmuir 2001, 17, 5932-5938
    [20] C Thelander, L Samuelson, AFM manipualtion of carbon nanotubes: realization of ultra-fine nanoelectrodes, Nanotechnology, 2002, 13, 108-113
    [21] K F B?hringer, B R Donald, N C MacDonald, Single-crystal silicon actuator arrays for micro manipulation tasks, Proc. IEEE Workshop Micro Electro Mech. Struct. (MEMS) (San Diego, CA, USA), 1996, 7-12
    [22] T Taniguchi, T Torii, T Higuchi, Micro chemical reactor in micro droplets - electrostatic manipulation of micro droplets, Proceedings of International Symposium Microchemistry and Microsystems, Kawasaki, Japan: Royal Society of Chemistry, 2001, 104-105
    [23] M Sitti, H Hashimoto, Controlled pushing of nanopariticles: modeling and experiments, IEEE/ASME Trans on Mechantronic, 2000, 5, 199-211
    [24] B D Matthews, D A Lavan, D R Overby, J Karavitis, D E Ingber, Electromagnetic needles with submicron pole tip radii for nanomanipualtion of biomolecules and living cells, Appl. Phys. Lett., 2004, 85, 2968-2970
    [25] M L Culpepper, G Anderson, Design of a low-cost nano-manipulator which utilizes a monolithic, spatial compliant mechanism, Precis. Eng., 2004, 28, 469-482
    [26] T H Yu, J Liu, Patent No. 02131418.7, 2002 (Authorize No. CN 1206339C)
    [27] Micro tweezers have ice grip http://www.trnmag.com/Stories/2004/012804/Micro tweezers have ice grip Brief 012804.html
    [28] B Lopez-Walle, M Gauthier, N Chaillet, Submerged freeze gripper to manipulate micro-objects, Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, Beijing, China; IEEE Publisher, 2006, 784-789
    [29] D F Lang, I Kurniawan, M Tichem, B Karpucshewski, First Investigations on Force Mechanisms in Liquid Solidification Micro-Gripping, Proc. 6th IEEE International Symposium on Assembly and Task Planning, Montreal, Canada: IEEE Publisher, 2005, 92-97
    [30] V R Voller, C Prakash, A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase-change problems,Int. J. Heat Mass Transfer, 1987, 30, 1709-1720
    [31] V R Voller, C R Swaminathan, Generalized source-based method for solidification phase change,Numer. Heat Transfer B, 1991, 19, 175-189
    [32]杨阳,刘静,微/纳米冰镊操作器执行过程的数值模拟,传感科技学报,2006,19,1673-1676
    [33]马庆芳,方荣生,项立成,离舜,“实用热物理性质手册”,中国农业机械出版社,北京,1986
    [34] H Bruus, Theoretical microfluidics, Lecture Notes, Department of Micro and Nanotechnology, Technical University of Denmark, fall 2005, 1-5
    [35] M Ciofalo, M W Collins, T R Hennessy, Nanoscale fluid dynamics in physiological processes, A Review Study, WIT Press 1999, 237-238
    [36] Y Yang, J Liu, Y X Zhou, A convective cooling enabled freeze tweezer for manipulating micro-scale objects, J. Micromech. Microeng., 2008, 18, 095008
    [37] S M Yang, W Q Tao, Heat transfer (in Chinese) 3rd edition Higher Education Press, Beijing, 1998,424-425
    [38] J Liu, Y X Zhou, Freezing curve based monitoring to quickly evaluate the viability of biological materials subject to freezing or thermal injury, Anal. Bioanal. Chem., 2003, 377, 173-181
    [39] J Liu, Micro/nano scale heat transfer (in Chinese), Science Press Beijing, 2001, 229-233
    [40] O M Haddad, M A Al-Nimr, M S Sari, Forced convection gaseous slip flow in circular porous micro- channels, Transp Porous Med, 2007, 70, 167-179
    [41] X Chen, Kinetic theory of gases and its applications to the studies of heat transfer and fluid flow (in Chinese), Tsinghua University Press Beijing, 1996, 194-201
    [42] G Karniadakis, A Beskok, N Aluru, Microflows and nanoflows: fundamentals and simulation, Springer New York, 2005, 59-61
    [43] F P Incropera, D P Dewitt, Fundamentals of heat and mass transfer (in Chinese), 2nd edition John Willy & Sons Canada, 1985, 331-339
    [44] F Kreith, M S Bohn, Principles of heat transfer (in Chinese), 4th edition Harper & Row New York, 1986, 360-361
    [45] FLUENT User’s Guide, Fluent Inc., 2006
    [1]王立文,高殿荣,微流动系统的研究现状与趋势,液压与气动,2005,10,1-4
    [2] A Luquea, J M Quero, C Hibert, P Flückiger, A M Ga?án-Calvo, Integrable silicon microfluidic valve with pneumatic actuation, Sensors and Actuators A, 2005, 118, 144-151
    [3] R Pal, M Yang, B N Johnson, D T Burke, M A Burns, Phase change microvalve for integrated devices, Anal. Chem., 2004, 76, 3740-3748
    [4] X Z Niu, W J Wen, Y K Lee, Electrorheological-fluid-based microvalves, Applied Physics Letters, 2005, 87, 243501
    [5] H Hartshorne, C J Backhouse, W E Lee, Ferrofluid-based microchip pump and valve, Sensors and Actuators B, 2004, 99, 592-600
    [6] H Hisamoto, S I Funano, S G Terabe, Integration of valving and sensing on a capillary-assembled microchip, Anal. Chem., 2005, 77, 2266-2271
    [7] P Selvaganapathy, E T Carlen, C H Mastrangelo, Batch fabricated inline microfluidic valve, Sensors and Actuators A, 2003,104, 275-282
    [8] M N Kozicki, P Maroufkhani, M Mitkova, Flow regulation in microchannels via electrical alteration of surface properties, Superlattices and Microstructures, 2003, 34, 467-473
    [9]吴睿婷,蒋稼欢,吴云鹏,微阀的研究进展,医用生物力学,2007,22,314-319
    [10] J H Kim, K H Na, C J Kang, D Jeon, Y S Kim, A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass, Microelectronic Engineering, 2004, 73-74, 864-869
    [11] R H Liu, J Bonanno, J Yang, R Lenigk, P Grodzinski, Single-use, thermally actuated paraffin valves for microfluidic applications, Sensors and Actuators B, 2004, 98, 328–336
    [12] K W Oh, C H Ahn, A review of microvalves, J Micromech Microeng, 2006, 16, R13-R39
    [13] P Woias, Micropumps-past, progress and future prospects, Sensors and Actuators B, 2005, 105, 28-38
    [14] M Zimmermann, P Hunziker, E Delamarche, Valves for autonomous capillary systems, Microfluid Nanofluid, 2008, 5, 395-402
    [15] F P Man, C H Mastrangelo, M A Burns, D T Burke, Microfabricated capillarity-driven stop valve and sample injector, In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems, 1998, 45-50
    [16] T S Leu, P Y Chang, Pressure barrier of capillary stop valves in micro sample separators, Sens Actuators A Phys, 2004, 115, 508-515
    [17] V Siljegovic, N Milicevic, P Griss, Passive, programmable flow control in capillary force driven microfluidic networks, TRANSDUCERS’05. In: The 13th international conference on solid-state sensors, actuators and microsystems, 2005, 2, Digest of Technical Papers (IEEE Cat. No. 05TH8791), 1565-1568
    [18] H Cho, H Y Kim, J Y Kang, T S Kim, How the capillary burst microvalve works,J Colloid Interface Sci, 2007, 306, 379-385。
    [19] J Chen, P Huang, M Lin, Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluidics and Nanofluidics, 2008, 4, 427-437
    [20] H Andersson, W VanderWijngaart, P Griss, F Niklaus, G Stemme, Hydrophobic valves of plasma deposited octafluorocyclobutane in drie channels. Sens Actuators B, 2001, 75, 136-141
    [21] C M Lu, Y B Xie, Y Yang, M M C Cheng, C G Koh, Y L Bai, L J Lee, New valve and bonding designs for microfluidic biochips containing proteins, Anal Chem, 2007, 79, 994-1001
    [22] E Stemme, G Stemme, A valveless diffuser/nozzle fluid pump, Sensors Actuators A, 1993, 39, 159-167
    [23] A Olsson, G Stemme, E Stemme, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors Actuators A, 2000, 84, 165-175
    [24] E F Hasselbrink, T J. Shepodd, J E Rehm, High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem. 2002, 74, 4913-4918
    [25] L Gui, J Liu, Ice valve for mini/micro flow channel, Journal of Micromechanics and Microengineering, 2004, 14, 242-246
    [26] V R Voller, C Prakash, A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase-change problems,Int. J. Heat Mass Transfer, 1987, 30, 1709-1720
    [27] V R Voller, C R Swaminathan, Generalized source-based method for solidification phase change,Numer. Heat Transfer B, 1991, 19, 175-189
    [28]马庆芳,方荣生,项立成,离舜,“实用热物理性质手册”,中国农业机械出版社,北京,1986
    [29] L Gui and J Liu, Study on micro-fluidic ice valve array system, 6th InternationalSymposium on Heat Transfer, Beijing: Higher Education Press, 2004, 242-246
    [1] C L Ren, D Q Li, Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients, Journal of Colloid and Interface Science, 2006, 294, 482-491
    [2] B T Good, C N Bowman, R H Davis, A water-activated pump for portable microfluidic applications, Journal of Colloid and Interface Science, 2007, 305, 239-249
    [3] J J Loverich, I Kanno, H Kotera, Concepts for a new class of all-polymer micropumps, Lab Chip, 2006, 6, 1147-1154
    [4]苏宇锋,陈文元,基于MEMS的微泵研究进展,微纳电子技术,2004,5,33-40
    [5] C G Cooney, B C Towe, A thermopneumatic dispensing micropump, Sensors and Actuators A, 2004, 116, 519-524
    [6] T Fujii, Y Sando, K Higashino, Y Fujii, A plug and play microfluidic device, Lab Chip, 2003, 3, 193-197
    [7] M Nakano, S Katsura, G G Touchard, Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field, IEEE Transactions On Industry Applications, 2007, 43, 232-237
    [8] M J Mandou, G J Kellogg, The LabCD:A centrifuge-based microfluidic platform for diagnostics, SPIE, 1998, 3259, 80-93
    [9] N Ichikawa, K Hosokawa, R Maed, Interface motion of capillary-driven flow in rectangular microchannel, Journal of Colloid and Interface Science, 2004, 280, 155-164
    [10] R H Farahi, A Passian, S Zahrai, A L Lereu, T L Ferrell, T Thundat, Microscale marangoni actuation: all-optical and all-electrical methods, Ultramicroscopy, 2006, 106, 815-821
    [11] L Oroszi, A Dér, H Kirei, P Ormos, V Rakovics, Control of electro-osmostic flow by light, Applied Physics Letters, 2006, 89, 263508
    [12] W Satoh, H Hosono, H Suzuki, On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions, Anal. Chem., 2005, 77, 6857-6863
    [13] W Sim, J Oh, B Choi, Fabrication, experiment of a microactuator using magnetic fluid for micropump application, Microsyst Technol, 2006, 12, 1085-1091
    [14] K S Yun, I J Cho, J U Bu, C J Kim, E Yoon, A surface-tension driven micropump for low-voltage and low-power operations, Journal of Microelectromechanical Systems, 2002, 11, 454-461
    [15] Y Y Feng, Z Y Zhou, X Y Ye, Y H Tang, Progresses on technologies of driving and controlling micro fluids, Advances in Mechanics, 2002, 32, 1-16
    [16] X B Yao, Z Z Xia, Z Y Guo, Numerical study on the fluid flow driven by moving heat sources, Journal of Engineering Thermophysics, 2001, 22, 332-336
    [17] K Ozaki, Pumping mechanism using periodic phase changes of a fluid, In: Proc MEMS’95. Amsterdam. Netherlands, 1995, 31-36
    [18] R Yokokawa, T Saika, T Nakayama, H Fujita, S Konishi, On-chip syringe pumps for picoliter-scale liquid manipulation, Lab Chip, 2006, 6, 1062-1066
    [19] J Y Jung, H Y Kwak, Fabrication and testing of bubble powered micropumps using embedded microheater, Microfluid Nanofluid, 2007, 3, 161-169
    [20] E Delamarche, D Juncker, H Schmid, Microfluidics for processing surfaces and miniaturizing biological assays, Adv. Mater., 2005, 17, 2911-2933
    [21] D Juncker, H Schmid, U Drechsler, H Wolf, M Wolf, B Michel, N De Rooij, E Delamarche, Autonomous microfluidic capillary system, Anal. Chem., 2002, 74, 6139-6144
    [22] M Zimmermann, H Schmid, P Hunziker, E Delamarche, Capillary pumps for autonomous capillary systems, Lab Chip, 2007, 7, 119-125
    [23] T D Blake, D H Everett, J M Haynes, Some basic considerations concerning thekinetics of wetting processes in capillary systems, Wetting: S.C.I. Monograph, 1967, 25, 164-173
    [24] J W Cahh, Critical point wetting, J. Chem. Phys, 1977, 66, 3667-3672
    [25] P G D Gennes, Wetting: statics and dynamics, Rev. Mod Physics, 1985, 57, 827-863
    [26] J C Bacri, R Perzynski, D Salin, Magnetic wetting transition, Lecture notes in physics: wetting phenomena, 1988, 354, 1-12
    [27] A E Scheidegger, The Physics of flow through porous media, Third edition, In: University of Toronto Press, 1974, 91
    [28] J Bear, Dynamics of fluids in porous media, American Elsevier Publishing Company, INC., 1972
    [29]马庆芳,方荣生,项立成,离舜,“实用热物理性质手册”,中国农业机械出版社,北京,1986
    [1] L M Fu, R J Yang, C H Lin, Y S Chien, A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency, Electrophoresis, 2005, 5, 1814-1824
    [2] T John, I Mezi?, Maximizing mixing and alignment of orientable particles for reaction enhancement, Physics of Fluids, 2007, 19, 123602
    [3] V V Khatavkar, P D Anderson, J M J Toonder, H E H Meijer, Active micromixer based on artificial cilia, Physics of Fluids, 2007, 19, 083605
    [4] J Melin, G Giménez, N Roxhed, W van der Wijngaart, G Stemme, A fast passive and planar liquid sample micromixer. Lab Chip, 2004, 4, 214-219
    [5] D J Kim, H J Oh, T H Park, J B Choo, S H Lee, An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions, The Analyst, ,2005, 130, 293-298
    [6] H Y Wu, C H Liu, A novel electrokinetic micromixer, Sensors and Actuators A,2005, 118, 107-115
    [7] C Bisson, J Campbell, R Cheadle, M Chomiak, J Lee, C Miller, C Milley, P Pialis, S Shaw, W Weiss, C Widrig, A microanalytical device for the assessment of coagulation parameters in whole blood, In: Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1998, 1-6
    [8] R C Anderson, G J Bogdan, A Puski, S Xing, Genetic analysis systems: improvements and methods, In: Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1998, 7-10
    [9] N Kockmann, T Kiefer, M Engler, P Woias, Convective mixing and chemical reactions in microchannels with high flow rates, Sensors and Actuators B, 2006, 117, 495-508
    [10] X Z Niu, L Y Liu, W J Wen, P Sheng, Active microfluidic mixer chip, Applied Physics Letters, 2006, 88, 153508
    [11] P B Howell, D R Mott, S Fertig, C R Kaplan, J P Golden, E S Oran, F S Ligler, A microfluidic mixer with grooves placed on the top and bottom of the channel, Lab Chip, 2005, 5, 524-530
    [12]白兰,吴一辉,张平,基于MEMS的微流体混合器的研究与进展,哈尔滨工业大学学报,2006,36,543-545
    [13] N T Nguyen, X Y Huang, Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modeling and experiment, Lab Chip, 2005, 5, 1320-1326
    [14] L D Deshmukh, A P Pisano, Continous micromixer with pulsatile micropumps, Technical Digest of the IEEE Solid State Sensors and Actuator Workshop, 2000, 73-76
    [15] T Fujii, Y Sando, K Higashino, Y Fujii, A plug and play microfluidic device, Lab Chip, 2003, 3, 193-197
    [16] U T Okamoto, H O Kitoh, New methods for increasing productivity by using microreactors of planar pumping and alternating pumping types, Chem. Eng. J.,2004, 101, 57-63
    [17] C C Hong, J W Choi, C H Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab Chip, 2004, 4, 109-113
    [18] G I Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. London A, 1953, 219, 186-203
    [19] G I Taylor, Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion, Proc. R. Soc. London A, 1954, 225, 473-477
    [20] R Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. London A, 1956, 235, 67-77
    [21] N G Barton, On the method of moments for solute dispersion. J. Fluid Mech, 1983, 126, 205-218
    [22] H Brenner, D A Ewards, Macrotransport Processes, 1st Ed., Boston: Butterworth-Heinemann, MA., 1993
    [23] M Manninen, V Taivassalo, S Kallio, On the mixture model for multiphase flow, VTT Publications 288, Technical Research Center of Finland., 1996
    [24]马庆芳,方荣生,项立成,离舜,实用热物理性质手册,中国农业机械出版社,北京,1986
    [25]童震松,沈卓身,金属封装材料的现状及发展,电子与封装,2005,5,6-15
    [26]邵毅,鲍修风,吴承远,杨扬,TJ骨粘固剂颅骨缺损整形修补的基础研究,中华神经外科杂志1999,2,109-110
    [27] http://zhidao.baidu.com/question/71764951.html
    [28] http://www.solarva.cn/news/n10.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700