用户名: 密码: 验证码:
基于超声辐射力场的微构件非接触操纵关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统作为人们在微观领域认识和改造客观世界的一种高新技术,面对其研究对象尺度的微型化、制造技术追求高深宽比的三维化以及制造工艺和材料的多样化等所带来的挑战,在近三十年的发展历程中,对微米至纳米级尺度的微构件实现有效操纵一直以来具有强烈的需求。特别是随着微机电系统领域从原先注重单元零部件的生产向混合复杂系统的集成方向快速发展,微操纵技术更加体现出其重要性和迫切性。因此,探索新理论、新机理并发展相应的新技术,已成为目前微机电系统这个新兴技术领域内一个最基础的、关键的热点研究课题。基于微机电系统所具有的特点,一种微构件无损、非接触操纵技术是当前研究和发展的主体,而基于超声辐射力场的超声操纵技术由于其无损和非接触的特点,预示着非接触操纵的发展方向。目前该技术的理论基础研究仍停留于平衡位置振动微小球体的超声辐射力计算上,应用主要根据生物组织、细胞的俘获、悬浮和分拣等功能展开,至于针对微构件操纵和微机电系统集成装配为背景的理论和应用研究还少有涉足。为此,本学位论文结合国家自然科学基金项目“基于三维可控超声辐射力场的微构件操纵技术的研究(No.50375144)”、国家高技术研究发展计划项目“基于超声辐射力的微纳构件三维遥操纵关键技术研究(No.2006AA042329)”和浙江省自然科学基金重点项目“基于声操纵的三维自动微装配理论与实践研究(No.Z1110393)”,提出开展基于超声辐射力场的微构件非接触操纵关键技术的研究,通过对复杂形状微构件受力和力矩、超声辐射力产生机理和影响因素的理论分析与实验研究,采用声波合成的方式,形成一种力和力矩大小、方向可控的超声辐射力场合成理论和技术,实现超声辐射力场的精确控制,发展一套适合于微机电系统应用的基于超声辐射力场的微操纵理论新体系,以应用于微构件操纵和微机电系统的集成装配中,为微机电系统研究和制造提供一种具有自主知识产权的共性技术手段。具体的研究内容和创新点体现在:第一章,分析微操纵技术在微机电系统、高新产业及国民经济发展中的作用和地位,说明开展微操纵技术研究的重要意义,并在阐述微操纵技术国内外研究现状及其发展趋势的基础上,对目前最具发展潜力的微操纵方法——基于超声辐射力场的微操纵技术的研究现状进行系统概括,对其存在的问题进行评述,为论文研究指明方向。第二章,开展散射声场计算理论研究,突破传统声波Rayleigh散射理论关于入射声场相对于散射体轴对称的限制,建立适用于任意入射声场中非规则Rayleigh散射体散射声场计算理论。同时,应用T矩阵法将相关研究延伸到共振散射区,进一步完善散射场计算理论的系统性。解决超声辐射力和力矩计算中的一个关键基础性问题,为实现任意声场中非规则散射体的超声辐射力和力矩计算奠定必要的理论基础。第三章,应用传声介质与散射体的整体动量和角动量守恒原理,建立超声辐射力和辐射力矩计算的通用理论框架,突破传统理论仅限于计算理想形式入射声场中无限长圆柱、球体等几种规则形状散射体超声辐射力以及平面波入射声场中盘状散射体超声辐射力矩的限制,创建任意入射声场中非规则形状Rayleigh散射体与共振区散射体的超声辐射力和力矩分析理论,为超声操纵力源的有效控制提供理论支撑。第四章,针对传统声场合成方法中声源必须置于合成区域边界上或只能逐点控制的不足,提出一种基于模式匹配与逆滤波的空间声场合成技术,并利用Bessel函数衰减特性与逆边界元法,实现局部微小区域声场的精确合成。同时,为获得前向传播算子以计算合成声场的声源阵列输入向量,考虑到实际应用中非自由声场空间障碍物的不利影响,提出一种新的声场分离算法。该部分工作为实现可控、精确和柔性的微构件非接触操纵提供关键的共性技术保障。第五章,针对微操纵的各种应用,分别设计具有相应操纵能力的合成声场。采用多束平面波合成声场俘获微构件,进而通过相位调整驱动微构件平移;在分析拉盖尔-高斯波对微构件的超声辐射力和力矩作用基础上,提出将其与反向平面行波干涉叠加合成,分析表明合成的声场具有同时俘获与旋转操纵的能力;为解决固体壁面上微构件的拾取与平移操纵问题,提出将两束对称布置平面波叠加,其超声辐射力场能够将微构件拾取到距壁面确定高度,并可通过相位调整驱动微构件水平运动。第六章,在完成多通道超声信号发生器、超声换能器环形阵列、超声场测量系统、显微成像与处理系统等模块设计开发基础上,集成开发了一套超声辐射力场合成与应用实验平台,以满足空间声场合成和微操纵应用的需求。在此基础上,开展基于超声辐射力场的微构件非接触操纵实验研究,实验结果证实本文超声操纵技术的可行性和有效性,体现出应用对象范围广、精度高以及适合微尺度构件操纵等特点。第七章,总结论文研究取得的成果和创新之处,并对以后的工作进行展望。
The Micro Electro-Mechanical System (MEMS), as a kind of high technology which helps people to understand and change the microscopic world, always possesses intensive demand to effectively manipulate micro-components with micro to nano meters in its development history of 30 years, because of the challenges due to the dimension miniaturization of research objectives, the three-dimensional manufacture with high depth-to-width ratio and the diversity of manufacture process & material. Especially, as the quick development of MEMS from the manufacturing of elemental parts to the integrated systems, the micromanipulation technology becomes even more important and urgent. Hence, exploring new theories and mechanisms to develop this technology is now the most basic and key topic in MEMS area.Considering the characteristics of MEMS, a kind of nondestructive, noncontact and remote manipulation technology should be the main trend in the current research and development. Hence, the manipulation technology based on ultrasonic radiation force field represents the direction of development. However, the theoretic research of this technology is still limited to the calculation of the radiation force on vibrating micro sphere at balance position, and its application is mainly on seizing, suspending and picking of biological tissue and cells. The research on theories and applications oriented to the characteristics of manipulation of micro-components and assembly of MEMS is seldom carried out.Therefore, the key technologies of noncontact manipulation for micro-components based on ultrasonic radiation force field were studied in this dissertation, which is supported by National Natural Science Foundation Program "Research on remote manipulation technology for micro-components based on controllable 3D ultrasonic radiation force field (No.50375144)", National High Technology Research and Development Program " Research on Key technologies of 3D tele-manipulation for micro and nano components based on ultrasonic radiation force (No. 2006AA04Z329)" and Key Project of Natural Science Foundation of Zhejiang Province "Research on theory and application of automatic 3D micro-assembly technology based on acoustic manipulation (No. Z1110393)". According to the characteristics of MEMS, by theoretical analysis and experimental study on the ultrasonic radiation force and torque of free-moving micro-components with complicated shape, the technology of spatial ultrasonic radiation force field synthesis was established to realize the precise control of ultrasonic radiation force and torque. This new technology can be applied in manipulation of micro-components and integrative assembly of MEMS, and can provide a general solution with self-owned intellectual property rights for the researches and productions of MEMS. The detailed contents and innovative points of this dissertation as below:In chapter one, by discussing the role and status of micromanipulation technology in MEMS, high-tech industries and the development of national economy, the significance to conduct the research on micromanipulation technology was described. The research status of the micromanipulation technology based on ultrasonic radiation force field was systematically summarized, its problems were observed and the research direction was pointed out.In chapter two, a universal scattering theory suitable for irregular Rayleigh scatterers in arbitrary sound fields was established to break out the limitation of the traditional theory that the incident sound field must be axisymmetric with respect to the scatterer. Besides, the theory was extended to the resonance scattering area by applying the T matrix method. The key basic problem in calculating ultrasonic radiation force and torque was solved.In chapter three, by applying the conservation law of entire momentum and angular momentum of sound intermediate and scatterer, a general framework for ultrasonic radiation force and torque was established. Then, the calculation of ultrasonic radiation force and torque on Rayleigh and resonant scatterers with irregular shape in arbitrary sound fields was realized to provide the theoretic foundation for the effective control of acoustic manipulation power source.In chapter four, in order to overcome the disadvantages of traditional ultrasonic field synthesizing methods that the sound source must be placed on the control boundary or the acoustic pressure can only be controlled point by point, a technology to synthesize ultrasonic field based on mode matching and inverse filtering was proposed, and the precise synthesis of ultrasonic fields in local area was also achieved by utilizing the attenuation property of Bessel function and inverse boundary element method. Meanwhile, in order to get the forward propagation operator, a new algorithm for sound field separation was raised by taking into consideration of the obstacle's disturbance in none-free space. This part of research provides the key technological guarantee for the controllable, precise and flexible manipulation of micro-components.In chapter five, according to different manipulation demands, the research on the synthesis and the adjustment of ultrasonic fields were carried out. Firstly, by adjusting the relative phase of plane waves, the positions of the acoustic potential wells were controlled to drive the micro-components to move along the desired route in wide range. Secondly, by utilizing the orbit angle moment of Laguerre-Gauss wave, the ultrasonic field is synthesized to endow the manipulation ability to trap and rotate the micro-components simultaneously through the interference of a Laguerre-Gauss wave with a plane wave of the same frequency but an opposite direction. Lastly, a strategy to pick up micro-components on a solid wall was raised, by synthesizing acoustic field using two symenetrically arranged incident plane waves.In chapter six, on the basis of completing the development of the multi-channel ultrasonic signal generator, ultrasonic annular array, ultrasonic field testing and microscopic imaging modular, an experiment platform for the synthesis and application of ultrasonic radiation force field was developed to satisfy the requirement of controllable synthesis of spatial acoustic fields and the application of micromanipulation. The noncontact manipulation experiments based on ultrasonic radiation force field were conducted by using above experiment platform. The results demonstrated the feasibility and effectiveness of the ultrasonic manipulation technology proposed in this dissertation and revealed its advantages including wide application range, high manipulation accuracy and suitability for manipulating micro-components.In chapter seven, the research results and the innovative points of this dissertation were summarized, and the future research works were also forecast.
引文
[1]李庆祥,李玉和.微装配与微操纵技术[M].北京:清华大学出版社,2004.
    [2]刘静.操纵微小世界的工具——微/纳米镊的研究与应用[J].微纳电子技术,2005(3):97-106.
    [3] Cecil J, Powell D, Vasquez D. Assembly and manipulation of micro devices—A state of the art survey [J]. Robotics and Computer Integrated Manufacturing,2007,23(5):580-588.
    [4] Brussel H V, Peris J, Reynaerts D, et al. Assembly of Microsystems[J]. Annals of the CIRP,2000,49(2): 451-472.
    [5] Probst M, Hurzeler C, Borer R, et al. A Microassembly System for the Flexible Assembly of Hybrid Robotic Mems Devices[J]. International Journal of Optomechatronics,2009,3(2):69-90.
    [6] Yang G, Gaines J A. A Supervisory Wafer-Level 3D Microassembly System for Hybrid MEMS Fabrication J]. Journal of Intelligent and Robotic Systems,2003,37(1):43-68.
    [7] Kim B, Kang H, Kim D H, et al. A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components [J]. International Journal of Advanced Manufacturing Technology, 2006,28(3-4):379-386.
    [8] Bargiel S, Rabenorosoa K, Clevy C, et al. Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench[J]. Journal of Micromechanics and Microengineering, 2010,20(4):1-12.
    [9]孙立宁,陈立国,荣伟彬,等.面向微机电系统组装与封装的微操作装备关键技术[J].机械工程学报,2008,44(11):13-19.
    [10] Gauthier M, Regnier S. Robotic Micro-Assembly[M]. Hoboken: John Wiley & Sons, Inc.,2010.
    [11]中华人民共和国国务院.国家中长期科学和技术发展规划纲要[M].北京:中国法制出版社,2006.
    [12]王莹MEMS将迎来第三次发展浪潮[J].电子产品世界,2010(7):9-11.
    [13] Qin Y, Brockett A, Ma Y, et al. Micro-manufacturing:research, technology outcomes and development issues [J]. International Journal of Advanced Manufacturing Technology,2010,47(9-12):821-837.
    [14] Lambert P, Regnier S. Surface and contact forces models within the framework of micro assembly[J]. Journal of Micromechatronics,2006,3(2):123-157.
    [15] Menciassi A, Eisinberg A, Izzo I, et al. From "Macro" to "Micro" Manipulation:Models and Experiments[J]. IEEE/ASME Transactions on Mechatronics,2004,9(2):311-320.
    [16] Bou S, Almansa A, Balabanava N, et al. Handling Processes in Microsystems Technology[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey,2005:384-389.
    [17] Tichem M, Lang D, Karpuschewski B. A classification scheme for quantitative analysis of micro-grip principles[J]. Assembly Automation,2004,24(1):88-93.
    [18] Savia M, Koivo H N. Contact Micromanipulation—Survey of Strategies[J]. IEEE/ASME Transactions on Mechatronics,2009,14(4):504-514.
    [19] Chen K L. Novel MEMS Grippers for Pick-Place of Micro and Nano Objects[D]. Toronto of Canada: University of Toronto,2009.
    [20]王晓东,刘冲,王立鼎.微型夹钳的最新研究[J].功能材料与器件学报,2004,10(1):1-8.
    [21]王乐峰.微构件粘着接触模型和基于粘着力的微操作方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [22] Haliyo D S, Rollot Y, Regnier S. Manipulation of micro-objects using adhesion forces and dynamical effects[C]. International Conference on Robotics & Automation, Washington, DC,2002:1949-1954.
    [23] Lambert P. Capillary Forces in Microassembly[M]. New York: Springer,2007.
    [24] Lazarou P, Aspragathos N A. An integrated mechatronic approach for the systematic design of force fields and programming of microactuator arrays for micropart manipulation[J]. Mechatronics,2009, 19(3):287-303.
    [25] Vandaele V, Lambert P, Delchambre A. Non-contact handling in microassembly:Acoustical levitation[J]. Precision Engineering,2005,29(4):491-505.
    [26] Subramanian A, Vikramaditya B, Dong L X, et al. Micro and Nanorobotic Assembly using Dielectrophrosis[C]. Proceedings of Robotics:Science and Systems, Cambridge, USA,2005.
    [27] Ashkin A. Optical Trapping and Manipulation of Neutral Particles Using Lasers[M]. World Scientific Publishing Co. Pte. Ltd.,2006.
    [28] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters,1986,11(5):288-290.
    [29] Moffitt J R, Chemla Y R, Smith S B, et al. Recent Advances in Optical Tweezers[J]. Annual Review of Biochemistry,2008,77:205-228.
    [30] Gauthier R C, Taut R N, Mende H, et al. Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems[J]. Applied Optics,2001, 40(6):930-937.
    [31] Hesselbach J, Wrege J, Raatz A. Micro Handling Devices[J]. CIRP Annals-Manufacturing Technology, 2007,56(1):45-48.
    [32] Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micro manipulation in Liquid using an untethered mobile magnetic microrobot[J]. IEEE Transactions on Robotics,2009,25(6):1332-1342.
    [33] Sanchez-Salmeron A J, Lopez-Tarazon R, Guzman-Diana R. Recent development in micro handling systems for micro-manufacturing[J]. Journal of Meterials Processing Technology,2005,167(2-3): 499-507.
    [34] Vandaele V, Lambert P, Delchambre A. Non-contact handling in microassembly:Acoustical levitation[J]. Precision Engineering,2005,29(4):491-505.
    [35] McGlion D. Optical Tweezers:20 years on[J]. Phil. Trans. R. Soc. A,2006,364(1849):3521-3537.
    [36] Lee C P, Wang T G. Acoustic Radiation Pressure[J]. Journal of Acoustical Society of America,94(2): 1099-1109.
    [37] Groschl M, Burger W, Handl B. Ultrasonic Separation of Suspended Particles-Part III:Application in Biotechnology[J]. Acta Acustica united with Acustica,1998,84(5):815-822.
    [38] Svennebring J, Manneberg O, Skafte-Pedersen P, et al. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity[J]. Biotechnology and Bioengineering,2009,103(2): 323-328.
    [39] Volland B E, Heerlein H, Rangelow I W. Electrostatically driven microgripper[J]. MicroElectronic Engineering,2002,61-62:1015-1023.
    [40]王代华,杨群.一种压电致动微夹钳及其开环位移特性[J].纳米技术与精密工程,2010,8(1):47-53.
    [41] Giouroudi I, Hotzendorfer H, Kosel J. Development of a microgripping system for handling of microcomponents[J]. Precision Engineering,2008,32(2):148-152.
    [42] Lau G K, Goosen J F L, van Keulen F, et al. Polymeric Thermal Microactuator with Embedded Silicon Skeleton: Part Ⅰ Design and Analysis[J]. Journal of Microelectromechanical Systems,2008,17(4):809-822.
    [43] Duc T C, Lau G K, Sarro P M. Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part Ⅱ Fabrication, Characterization, and Application for 2-DOF Microgripper[J]. Journal of Microelectromechanical Systems,2008,17(4):823-831.
    [44] Lee A P, Ciarlo D R, Krulevitch P A, et al. A practical microgripper by fine alignment, eutectic bonding and SMA actuation[J]. Sensors and Actuators A:Physical,1996,54(1-3):755-759.
    [45] Zesch W, Brunner M, Weber A. Vacuum Tool for Handling Microobjects with a Nano robot[C]. IEEE International Conference on Robotics and Automation, Albuquerque,1997:1761-1766.
    [46] Luo J K, He J H, Fu Y Q, et al. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages[J]. Journal of Micromechanics and Microengineering,2005,15(8):1406-1413.
    [47] Shahini M, Melek W W, Yeow J T W. Characterization of surface micro forces under varying operational conditions in micro-sized object pushing: an empirical approach[J]. Journal of Micromechanics and Microengineering,2010,20(5):1-12.
    [48] Hesselbach J, Buttgenbach S, Wrege J, et al. Centering electrostatic microgripper and magazines for microassembly tasks[C]. Microrobotics and Microassembly, Boston,2001:270-277.
    [49] Lambert P, Delchambre A. Design rules for a capillary gripper in microassembly[C].6th IEEE International Syposium on Assembly ans Task Planning, Montreal,2005:67-73.
    [50] Vasudev A, Zhe J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters,2008, 93(10):1-3.
    [51] Lopez-Walle B, Gauthier M, Chaillet N. Principle of a Submerged Freeze Gripper for Microassembly [J]. IEEE Transactions on Robotics,2008,24(4):897-902.
    [52] Fantoni G, Porta M. A critical review of releasing strategies in microparts handling [M]//Ratchev S, Koelemeijer S. Micro-Assembly Technologies and Applications, New York:Springer,2008.
    [53] Clevy C, Hubert A, Agnus J, et al. A micromanipulation cell including a tool changer[J]. Journal of Micromechanics and Microengineering,2005,15(10):292-301.
    [54] Clevy C, Hubert A, Chaillet N. Flexible micro-assembly system equipped with an automated tool changer[J]. Journal of Micro-Nano Mechatronics,2008,4(1-2):59-72.
    [55] Morgan H, Green N G. AC Electrokinetics:Colloids and Nanoparticles[M]. Philadelphia: Research Studies Press,2003.
    [56] Pethig R. Review Article—Dielectrophoresis:Status of the theory, technology, and applications[J]. Biomicrofluidcs,2010,4(2):1-35.
    [57] Gosse C, Croquette V. Magnetic Tweezers:Micromanipulation and Force Measurement at the Molecular Level[J]. Biophysical Journal,2002,82(6):3314-3329.
    [58] Khamesee M, Shameli E. Pole Piece Effect on Improvement of Magnetic Controllability for Noncontact Micromanipulation[J]. IEEE Transactions on Magnetics,2007,43(2):533-542.
    [59]朗道LD,栗弗席兹E M.连续媒质电动力学[M].北京:人民教育出版社,1963.
    [60] Bingelyte V, Leach J, Courtial J, et al. Optically controlled three-dimensional rotation of microscopic objects[J]. Applied Physics Letters,2003,82(5):829-831.
    [61] Paterson L, MacDonald M P, Arlt J, et al. Controlled Rotation of Optically Trapped Microscopic Particles[J]. Science,2001,292:912-914.
    [62] Grier D G. A revoltion in optical manipulation[J]. Nature Photonics,2003,424:810-816.
    [63] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications,2002, 207(1-6):169-175.
    [64] Jesacher A, Maurer C, Schwaighofer A, et al. Full phase and amplitude control of holographic optical tweezers with high efficiency [J]. Optics Express,2008,16(7):4479-4486.
    [65] Chu B T, Apfel R E. Acoustic Radiation pressure produced by a beam of sound[J].1982,72(6):1673-1687.
    [66] Maidanik G. Torques due to acoustical radiation pressure[J].1958,30(7):620-623.
    [67]解文军.声悬浮优化设计理论及其应用研究[D].西安:西北工业大学,1997.
    [68] King L V. On the acoustic radiation pressure on spheres[J]. Proceedings of Royal Society of London, Ser. A, 1935,147:212-240.
    [69] Lofstedt R, Putterman S. Theory of long wavelength acoustic radiation pressure[J]. Journal of Acoustic
    Society of America,1991,90(4):2027-2033.
    [70] Wei W, Thiessen D B, Marston P L. Acoustic radiation force on a compressible cylinder in a standing wave[J]. Journal of Acoustic Society of America,2004,116(1):201-208.
    [71] Wu J R, Du G H. Acoustic radiation force on a small compressible sphere in a focused beam[J]. Journal of Acoustic Society of America,1990,116(1):997-1003.
    [72] Mitri F G. Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves[J]. Ultrasonics,2006,44(3):244-258.
    [73] IIinskii Y A, Meegan G D, Zabolotskaya E A. Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force[J]. Journal of Acoustic Society of America,2004,117(4):2338-2346.
    [74] de Sarabia E R F, Gallego-Juarez J A, Rodriguez-Corral G, et al. Application of high-power ultrasound to enhance fluid/solid particle separation processes[J]. Ultrasonics,38(1-8):642-646.
    [75] Benes E, Groschl M, Nowotny H, et al. Ultrasonic Separation of suspended particles[C]. IEEE Ultrasonics Symposium,2001,1:649-659.
    [76] Doinikov A A. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. Ⅰ. General formula[J]. Journal of Acoustic Society of America,1997,101(2):713-721.
    [77] Doinikov A A. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. Ⅱ. Force on a rigid [J]. Journal of Acoustic Society of America,1997,101(2):722-730.
    [78] Doinikov A A. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. Ⅲ. Force on a liquid drop[J]. Journal of Acoustic Society of America,1997,101(2):731-740.
    [79] Mitr F G. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field[J]. Ultrasonics,2005,43(8):681-691.
    [80] Mitr F G. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids:Example of a high-order Bessel beam of quasi-standing waves[J]. The European Physical Journal E:Soft matter and biological physics,2009,28(4):469-478.
    [81] Mitr F G. Acoustic radiation force acting on absorbing spherical shells[J]. Wave Motion,2005,43(1): 12-19.
    [82] Wang J T, Dual J. Numerical simulations for the time-averaged acoustic forces acting on rigid cylinders in ideal and viscous fluids[J]. Journal of Physics A:Mathematical and Theoretical,2009,42(28):1-17.
    [83] Marston P L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force[J]. Journal of Acoustic Society of America,2006,120(6):3518-3524.
    [84] Marston P L. Negative axial radiation forces on solid spheres and shells in a Bessel beam [J]. Journal of Acoustic Society of America,2007,122(6):3162-3165.
    [85] Danilov S D, Mironov M A. Mean force on a small sphere in a sound field in a viscous fluid[J]. Journal of Acoustic Society of America,2000,107(1):143-153.
    [86] Fan Z W, Yang K J, Chen Z C. Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field[J] Journal of Acoustic Society of America,2008,124(5):2727-2732.
    [87] Yosioka K, Kawasima Y. Acoustic radiation pressure on a compressible sphere[J]. Acustica,1955,5: 167-173.
    [88] Hasegawa T, Yosioka K. Acoustic radiation force on a solid elastic sphere[J]. Journal of Acoustic Society of America,1969,46(5B):1139-1143.
    [89] Hasegawa T, Yosioka K. Acoustic radiation force on fused silica spheres, and intensity determination[J]. Journal of Acoustic Society of America,1975,58(3):581-585.
    [90] Hasegawa T, Watanabe Y. Acoustic radiation pressure on an absorbing sphere[J]. Journal of Acoustic Society of America,1978,63(6):1733-1737.
    [91] Hasegawa T. Acoustic radiation force on a sphere in a quasistationary wave field — theory [J]. Journal of
    Acoustic Society of America,1979,65(1):32-40.
    [92] Hasegawa T, Saka K, Naoki I, et al. Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field[J]. Journal of Acoustic Society of America,1988,83(5):1770-1775.
    [93] Hasegawa T, Hino Y, Annou A, et al. Acoustic radiation pressure acting on spherical and cylindrical shells[J]. Journal of Acoustic Society of America,1993,93(1):154-161.
    [94] Crum L A. Acoustic Force on a Liquid Droplet in an Acoustic Stationary Wave[J]. Journal of Acoustic Society of America,1971,50(1B):157-161.
    [95] Xie W J, Wei B. Dynamics of acoustically levitated disk samples[J]. Physical Review E,2004,70(4):1-11.
    [96] Mitri F G. Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2005,44(1):71-78.
    [97] Mitri F G. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field[J]. Ultrasonics,2005,43(8):681-691.
    [98] Embleton T F W. Mean force on a sphere in a spherical sound field[J]. Journal of Acoustic Society of America,1954,26(1):40-45.
    [99] Gor'kov L P. On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Soviet Physical Doklady,1962,6(9):773-775.
    [100] Barmatz M, Collas P. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields[J]. Journal of Acoustic Society of America,1985,77(3):928-945.
    [101] Chen X, Apfel R E. Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers [J]. Journal of Acoustic Society of America,1996,99(2): 713-724.
    [102] Mitri F G. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers[J]. Annals of Physics,2008,323(7):1604-1620.
    [103] Marston P L. Radiation force of a helicoidal Bessel beam on a sphere[J]. Journal of Acoustic Society of America,2009,125(6):3539-3547.
    [104] Spengler J F, Coakley W T, Christensen K T. Microstreaming Effects on Particle Concentration in an Ultrasonic Standing Wave[J]. AlChE Journal,2003,49(11):2773-2782.
    [105] Keller J B. Acoustic Torques and forces on disks[J]. Journal of Acoustic Society of America,1957,29(10): 1085-1090.
    [106] Maidanik G. Torques due to acoustical radiation pressure[J]. Journal of Acoustic Society of America,1958, 30(7):620-623.
    [107] Lee C P, Wang T G. Near-boundary streaming around a small sphere due to two orthogonal standing waves[J]. Journal of Acoustic Society of America,1989,85(3):1081-1088.
    [108] Yamahira S, Hatanaka S, Kuwabara M, et al. Orientation of fibers in liquid by ultrasonic standing waves[J]. Jpn. J. Appl. Phys.,2000,39(6A):3683-3687.
    [109] Kirkeby O, Nelson P A. Reproduction of plane wave sound fields[J]. Journal of Acoustic Society of America,1993,94(5):2992-3000.
    [110] Kirkeby O, Nelson P A, Orduna-Bustamante F, et al. Local sound field reproduction using digital signal processing[J]. Journal of Acoustic Society of America,1993,94(5):2992-3000.
    [111]Tanter M, Aubry J-F, Gerber J, et al. Optimal focusing by spatio-temporal inverse filter. Ⅰ Basic principles [J]. Journal of Acoustic Society of America,2001,110(1):37-47.
    [112] Aubry J-F, Tanter M, Gerber J, et al. Optimal focusing by spatio-temporal inverse filter. Ⅱ. Experiments. Application to focusing through absorbing and reverberating media[J]. Journal of Acoustic Society of America,2001,110(1):48-58.
    [113] Tanter M, Thomas J-F, Fink M. Time reversal and the inverse filter[J]. Journal of Acoustic Society of America,2000,108(1):223-234.
    [114] Berkhout A J, de Vries D, Vogel P. Acoustic control by wave field synthesis[J]. Journal of Acoustic Society of America,1993,93(5):2764-2778.
    [115]Spors S, Buchner H, Rabenstein R. Spatio-Temporal Adaptive Inverse Filtering in the Wave Domain[M]//Hansler E, Schmidt G, Speech and Audio Processing in Adverse Environments, Berlin: Springer,2008.
    [116] Gauthier P A, Berry A. Adaptive wave field synthesis with independent radiation mode control for active sound field reproduction:Theory[J]. Journal of Acoustic Society of America,2006,119(5):2721-2737.
    [117] Gauthier P A, Berry A. Adaptive wave field synthesis with independent radiation mode control for active sound field reproduction:Experimental results[J]. Journal of Acoustic Society of America,2008,123(4): 1991-2002.
    [118] Ward D B, Abhayapala T D. Reproduction of a plane-wave sound field using an array of loudspeakers[J]. IEEE Transations on speech and audio processing,2001,9(6):697-707.
    [119] Wu Y J, Abhayapala T D. Soundfield reproduction using theoretical continuous loudspeaker[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas,2008:377-380.
    [120] Wu Y J, Abhayapala T D. Theory and Design of Soundfield Reproduction Using Continuous Loudspeaker Concept[J]. IEEE Transactions on Audio, Speech, and Language Processing,2009,17(1):107-116.
    [121] Kennedy R A, Sadeghi P, Abhayapala T D, et al. Intrinsic Limits of Dimensionality and Richness in Random Multipath Fields[J]. IEEE Transactions on Signal Processing,2007,55(6):2542-2556.
    [122] Ward D B, Abhayapala T D. Performance bounds on sound field reproduction using a loudspeaker array[C]. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Platz,2001:187-190.
    [123] Wu J R. Acoustical tweezers[J]. Journal of Acoustic Society of America,1991,89(5):2140-2143.
    [124] Kozuka T, Tuziuti T, Mitome H. Micromanipulation Using a Focused Ultrasonic Standing Wave Field[J]. Electronics and Communications in Japan, Part 3,2000,83(1):53-60.
    [125] Hu J H. A π-Shaped Ultrasonic Tweezers Concept for Manipulation of Small Particles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2004,51(11):1499-1507.
    [126] Hu J H, Tan C, Hu W Y. Ultrasonic microfluidic transportation based on a twisted bundle of thin metal wires[J]. Sensors and Actuators A: Physical,2007,135(2):811-817.
    [127] Liu Y Y, Hu J H. Ultrasonic trapping of small particles by a vibrating rod[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(4):798-805.
    [128]杨斌.非接触压电微马达的相关理论与实验研究[D].上海:上海交通大学,2006.
    [129] Haake A, Neild A, Radziwill G. Positioning, Displacement, and Localization of Cells Using Ultrasonic Forces[J]. Biotechnology and Bioengineering,2005,92(1):8-14.
    [130] Svennebring J, Manneberg O, Skafte-Pederson P, et al. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity[J]. Biotechnology and Bioengineering,2009,103(2): 323-328.
    [131] Wood C D, Evans S D. Alignment of particles in microfluidic systems using standing surface acoustic waves[J]. Applied Physics Letters,2008,92(4):044104.
    [132] Frank Ihlenburg. Finite Element Analysis of Acoustic Scattering[M]. New York: Springer,1998.
    [133]LD朗道,E M栗弗席兹.流体力学[M].北京:高等教育出版社,1983.
    [134]LM米尔恩-汤姆森.理论流体力学.北京:机械工业出版社,1984.
    [135]张启仁.经典力学.北京:科学出版社,2002.
    [136] Waterman P C. T-matrix methods in acoustic scattering[J].2009,125(1):42-51.
    [137] Waterman P C. The T-matrix revisited[J]. Journal of the Optical Society of America A,2007,24(8):
    2257-2267.
    [138] Martin P A. On the T-matrix for scattering by small obstacles[J]. Journal of Computational and Applied Mathematics,2007,204(2):219-230.
    [139] Mishchenko M 1, Zakharova N T, Videen G. Comprehensive T-matrix reference database:A 2007-2009 update[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2010,111 (4):650-658.
    [140] Ganesh M, Graham I G. A high-order algorithm for obstacle scattering in three dimensions [J]. Journal of Computational Physics,2004,198(1):211-242.
    [141] Wriedt T. Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles[J]. Particle & Particle Systems Characterization,2002, 19(4):256-268.
    [142] Sobchenko I, Pesicka J, Baither D. Superellipsoids:A unified analytical description of the geometry of nanoscale second-phase particles of any shape[J]. Applied Physics Letters,2006,89(13):133107.
    [143] Morse P M, Ingard K U理论声学[M].北京:科学出版社,1984.
    [144] Williams E G. Fourier Acoustics:Sound Radiation and Nearfield Acoustical Holography [M]. San Diego: Academic Press,1999.
    [145]李卫兵,连美转,毕传兴,等.球坐标系下入射与散射声场分离理论[J].中国科学E辑:技术科学,2007,37(1):99-106.
    [146] Cheng M T, Mann J A, Pate A. Wave-number domain separation of the incident and scattered sound field in Cartesian and cylindrical coordinates [J]. Journal of Acoustic Society of America,1995,97(4):2293-2303.
    [147] Cheng M T, Mann J A, Pate A. Sensitivity of the wave-number domain field separation methods for scattering [J]. Journal of Acoustic Society of America,1996,99(6):3550-3557.
    [148] Bi C X, Chen X Z, Chen J. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography[J]. Journal of Acoustic Society of America,2008,123(3): 1472-1478.
    [149]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000.
    [150] Skeldon K D, Wilson C, Edgar M, et al. An acoustic spanner and its associated rotational Doppler shift[J]. New Journal of Physics,2008,10(1):1-9.
    [151] Santillan A O, Volke-Sepulveda K. A demonstration of rotating sound waves in free space and the transfer of their angular momentum to matter[J]. American Journal of Physics,2009,77(3):209-215.
    [152] Lekner J. Acoustic beams with angular momentum[J]. Journal of Acoustic Society of Ameirica,2006, 120(6):3475-3478.
    [153] Hefner B T, Marston P L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems[J]. Journal of Acoustic Society of America,1999,106(6):3313-3316.
    [154] Gspan S, Meyer A, Bernet S, et al. Optoacoustic generation of a helicoidal ultrasonic beam[J]. Journal of Acoustic Society of America,2004,115(3):1142-1146.
    [155] Gaunaurd G C, Huang H. Sound Scattering by a spherical object near a hard flat bottom[J]. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control,1996,43(4):690-700.
    [156] Rafaely B. Plane-wave decomposition of the sound field on a sphere by spherical convolution[J]. Journal of Acoustic Society of America,2004,116(1):2149-2157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700