用户名: 密码: 验证码:
三维超声辐射力场合成及其微操纵应用实验平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足微机电系统对微构件操纵技术的强烈需求,本文结合国家自然科学基金项目《基于三维可控超声辐射力场的微构件操纵的研究》(50375144)和国家高技术研究发展计划(863计划)《基于超声辐射力的微纳构件三维遥操纵关键技术研究》(2006AA04Z330),在对平面活塞换能器所产生的超声辐射力及其合成场进行分析计算的基础上,发展了一种基于超声辐射力的微纳构件三维遥操纵技术,并以ARM为中心测控单元,FPGA为接口模块,结合机器微视觉及图像处理单元,开发了一套基于三维超声辐射力场合成及其微操纵实验平台,利用该实验平台验证了本文所提出技术的可行性和有效性。具体工作在于:
     第一章,综合论述了开展微操纵应用研究的重要意义,对微操纵技术及其系统的发展现状与趋势进行了系统地概括,指明了基于超声辐射力微操纵应用的可行性和优越性,提出了本论文的研究内容及各章节的安排。
     第二章,在简要介绍声学基础知识和详细分析单个平面活塞换能器声场分布及其声场和辐射力关系的基础上,利用声波合成原理,建立了按不同空间位置放置的两个及多个平面活塞换能器合成声场及辐射力势分布理论和技术基础,并通过MATLAB仿真分析了利用超声辐射力实现三维微操纵的可行性和有效性。
     第三章,在提出基于三维超声辐射力场合成及微操纵应用实验平台总体方案的基础上,详细分析了各功能模块的具体实现过程,并结合机器微视觉及图像处理单元,开发了一套基于三维超声辐射力场合成及微操纵应用实验平台。
     第四章,应用本文所开发的基于三维超声辐射力场合成及微操纵应用实验平台,开展微操纵实验研究,并对实验结果与理论研究结果进行对比分析,验证了超声微操纵的可行性和优越性。
     第五章,对全文的工作进行全面总结,并展望了下一步的研究方向。
In order to satisfy the needs of the manipulation of the micro-component in Micro-Electro-Mechanical Systems (MEMS), combing with National Natural Science Fund "The technical research on remote manipulation of micro-components based on 3D controllable ultrasonic radiation force filed" (50375144) and National High-Tech R & D Program (863 Program) " The key technical research on 3D remote manipulation of micro-components based on ultrasonic radiation force" (2006AA04Z330) , based on analyzing the ultrasonic radiation force and its synthesized field of plane piston transducer, 3D remote manipulation of micro-components based on ultrasonic radiation force are proposed, then associating with machine micro-vision system, using central control unit by ARM and interface unit by FPGA, a three-dimensional ultrasonic radiation force field synthesize and its micro-manipulation application experimental system is developed, finally by using this system micro-manipulation experiment is practiced and the superiority is validated. The contents of this dissertation are presented as below:
     Chapter 1, a survey of important role of the research on micro-manipulation is given, the review of current status and future development trend of micro-manipulation technology is summarized, the feasibility and superiority of the micro-manipulation technology is based on ultrasonic radiation force is indicated clearly, and then the research content of this dissertation is presented and each chapter of this dissertation is arranged.
     Chapter 2, based on fundamental theory of acoustics, the sound field distribution of a plane piston transducer and the relationship between the sound field and radiation force are studied. Using ultrasonic wave synthetic theory, the sound field and radiation force potential distribution of two or more plane piston transducer placed different situation are established, then the feasibility of micro-manipulation using ultrasonic radiation force field are analyzed by MATLAB.
     Chapter 3, after the whole schedule design of the three-dimensional ultrasonic radiation force field synthesize and its micro-manipulation application experimental system is proposed, each function modules are analyzed in detail ,then combing with machine micro-vision system, a three-dimensional ultrasonic radiation force field synthesize and its micro-manipulation application experimental system is developed.
     Chapter 4, using the developed application experimental system of three -dimensional ultrasonic radiation force field synthesize, micro-manipulation experiment is practiced, then the feasibility and superiority are validated by comparing the experimental results with the theory .
     Chapters 5, the main conclusions of this dissertation are summarized and the prospect for the application of ultrasonic radiation force is put forward.
引文
[1] 李旭辉.MEMS发展应用现状.传感器与微系统,2006.5(1):184:187.
    [2] 李庆祥,李玉和等.微装配和微操作技术.北京:清华大学出版社,2001.
    [3] 席文明,姚斌等.微装配与微操作.北京:国防工业出版社,2005.
    [4] 刘静.操纵微小世界的工具—微纳米镊的研究与应用.微纳电子技术.2005.3,97-122
    [5] 孙立宁,孙绍云,荣伟彬.微操作机器人的发展现状.机器人,2002,24(2):184-187.
    [6] J. Hesselbach, S.Buttgenbach, J.Wrege, et. Centering electrostatic microgripper and magazine for microassembly tasks Proceedings of SPIE, Microrobotics and Micromanipulation, 2001, 4568: 270-277.
    [7] Y.Zhou, B.J.Nelson. Adhesion force modeling and measurement for micromanipulation. Proceedings of SPIE, Microrobotics and Micromanipulation, 1998: 169-180.
    [8] M.Takeuchi, R.Muragama, K.Kobayashi, T.Kojima. Laser ultrasonics micromanipulator. IEEE ULTRAONCS SYMPOSIUM, 2000: 681-686.
    [9] K.Taguchi, K.Atsuta, T. Nakata and M.Ikeda. Experimental and theoretical study of single-beam optical fiber trap. SPIE, 1999, 3891: 238-245.
    [10] A..Ashkin. Acceleration.and.trapping.of particals by radiation pressure. Phys.Rev. 970, 24: 156-159.
    [11] K.Yasuda, S.S.Haupt, S.Umemura, et.al. Using acoustic radiation force as concentration method for erythrocytes. Acoust.Soc.Am. 1997, 102(1): 642-645.
    [12] K.Philip, M.Charles, LI Q. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277(5330): 1287.
    [13] L.Jin, Z.Yixin, Y.Tianhua. Freeze tweezer to manipulate mini/micro objects. Journal of micromechanics and microengineering. 2004, 14: 269-276
    [14] M.Sitti, H.Hashimoto. Controlled pushing of nanopaticles. IEEE Trans on mechantronics, 2000, 5 (2): 199—211.
    [15] D.S.Haliyo, Y.Rollot, S.Regnier. Manipulation of micro-objects using adhesion forces and dynamical effects. Proc 2002 IEEE Publisher, 2002, 1949-1954.
    [16] H.Lee, A.M.Purdon, R.M.Westerwelt. Micromanipulation of biological systems with micro-electromagnets. IEEE Transactions on Magnetics., 2004, 40(4): 2991-2993.
    [17] H.Van-Brussel, J.Perirs, D.Reynaerts. Assembly of Microsystems. Annals of the CIRP. 2000, 49(2): 451-7472.
    [18] K.Morishima., T.Fukuda, K.Yoshikawa. Manipulation of DNA molecule utilizing the conformational transition in the higher order structure of DNA. Proc ICRA, 1997, 3891, 1454-1459.
    [19] R.Eriksen, V.Daria, J.Glockstsd. Fully dynamic multiple-beam optical tweezer. Optics Express, 2002, 10(14): 579-602.
    [20] K.Sun, Y.Huang, P.Chen. Cell manipulation by use of diamond microparticles as handles of optical tweezer. J Opt Soc B, 2001, 18(10): 1483-1489.
    [21] Chaumer P C, Rahmani A, Nieto Vesperinas M. Optical trapping and manipulation of nano-objects with an apermreless probe. Physical Review Letters. 2002, 88(12): 1-4.
    [22] Albrecht H, Adrian N, Gerald R, et al. Positioning, displacement, and localization of cells using ultra-sonic forces. Biotechnology and Bioengineering, 2005, 92(1): 8-14.
    [23] 解文军.声悬浮优化设计理论及其应用研究.西安:西北工业大学,2002.
    [24] Jeremy J H, Joseph J C, David A, et al. Ultrasonic manipulation of particles in microgravity. J. Phys. D Appl. Phys, 1998, 31: 1673-1680.
    [25] Hu J H, Li G R, Choy C L. A standing wave-type non-contact linear ultrasonic motor. IEEE Trans on UFFC, 2001, 48(3): 699-707.D
    [26] Takeuchi M, Muragama R, Kobayashi K, et al. Laser ultrasonic micromanipulator. IEEE Ultrasonics Symposium, 2000: 681-686.
    [27] Taguchi K, Atsuta K, Nakata T, et al. Experimental and theoretical study of single-beam optical fiber trap [J]. SPIE, 1999, 3891: 238-245.
    [28] M.Takeuchi. Ultrasonic micromanipulator using visual feedbsck. IEEE Ultrasonics Symposium, 1997: 463-466.
    [29] M.Takeuchi, R.Muragama, K.Kobayashi, T.Kojima. Laser ultrasonics micromanipulator. IEEE Ultrasonic symposium, 2000: 681-686.
    [30] Teruyuki KOZUKA, Toru TUZIUTI. Three-dimensional acoustic micromanipulation using four ultrasonic transducers. 2000 international symposium on micromechatronics and human science, 2000: 201-206.
    [31] 田文超,贾建援.单分子操纵技术.仪器仪表学报.2003,4(24):531-542.
    [32] 许肖梅.声学基础.北京:科学出版社,2003.
    [33] J.C.Lockwood, J.G..Willette. High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston. The Journal of the Acoustic Society of America, 1972: 735-741.
    [34] Jame F.Kelly. Nearfield pressure calculations for circular transducers. The Journal of the Acoustic Society of America, 2003: 1-10.
    [35] Andrew Hancock, John S.Allen. Standing wave pressure fields generated in an acoustic levitation chamber. Ultrasonic Imaging and Signal Processing, 2001: 535-545.
    [36] 杨克己,张宝龙.微构件所受超声辐射力理论研究.工程设计学报,2004,11(6):316-320.
    [37] 张宝龙.二维超声辐射力场合成及微操纵实验平台的研究.浙江大学硕士论文,2006
    [38] Teruyuki KOZUKA. Non-Contact acoustic filtering of particles by a standing wave field. 2002 international symposium on micromechatronics and human science, 2000: 165-168.
    [39] 马忠梅,徐英慧,叶勇建等.ARM核微控制器机构与开发.北京:北京航空航天大学出版社,2003
    [40] 王道宪.CPLD/FPGA可编程逻辑器件应用与开发.北京:国防工业出版社,2004.
    [41] 孙航.Xilinx可编程逻辑器件的高级应用与设计技巧.北京:电子工业出版社,2004.
    [42] Spartan-3E FPGA Family: Complete Data Sheet. Xilinx Company.
    [43] Platform Flash In-System Programmable Configuration PROMS Datesheet. Xilinx Company
    [44] 陈铭,薛敏彪,胡永红等.基于FPGA的直接数字频率合成器的设计与实现.测控技术,2004,23(9):1-2.
    [45] 周俊峰,陈涛.基于FPGA的直接数字频率合成器的设计和实现.国外电子元器件,2003,1:4-6.
    [46] 夏宇闻.Verilog数字系统设计教程.北京:北京航空航天大学出版社,2004.
    [47] TOPRO—LCDC—64M/EL显示控制板使用手册.北京拓普自控设备有限责任公司.
    [48] 甄军红.AD9708及其在数据采集系统中的应用.电子世界,2003,11:43-45.
    [49] AD9708 14-Bit, 100 MSPS TxDAC D/A Converter Datesheet. Analog Devices.
    [50] 林书玉.超声换能器的原理及设计.北京:科学出版社,2003.
    [51] 刘亚欣,陈立国,孙立宁,王会香.超声显微切割工具驱动与控制系统的研究.机械与电子,2005,6:35-38.
    [52] 冯尚民.用于电力载波机功率驱动的高速大电流运算放大器PA19及其应用.国外电子元器件,2003,3:54-56.
    [53] High Speed, Low Power Wide Supply Range Amplifier Datesheet. Analog Devices.
    [54] 李福良.基于PA85的新型压电陶瓷驱动电源.压电与声光,2005,4:392-394.
    [55] Http://www.apexmictoteh.com. APEX.
    [56] 马伯志,吴敏生,陈以方,薛林.基于DDS技术的智能超声波功率源的研制.自动化与仪器仅表,2004,8:24-27.
    [57] 郭建中,林书玉,郭勇亮.压电换能器电端匹配电路的优化.测控技术,2004,8:73-75.
    [58] 郭建中,林书玉,高伟.超声换能器电感电容匹配电路的改进.压电与声学,2005,3(27),257-259.
    [59] 林伟,叶虎年,冯海,叶梅.压电陶瓷致动器驱动电源的研究.MEMS器件与技术.2006,3:183-141
    [60] 冯晓光,赵万生,栗岩,狄士春.电陶瓷微位移器驱动电源及减小其纹波的方法.1997,1:31-38.
    [61] 庞佑兵,梁伟.电压反馈和电流反馈运算放大器的比较.微电子学,2003,2(30):132-139.
    [62] 赵玮.面向生物工程的微操纵机器人系统的控制[D].北京航空航天大学博士学位论文,2001.
    [63] Brussel H V, Peirs J, Reynaerts D, et al. Assembly of microsystems [J]. Annals of the CIRP, 2000, 49 (1): 451-472.
    [64] Tomomasa Sato, Koichi Koyano, Masayuki Nakao, Yotaro Hatamura. Novel Manipulator for Micro Object Handing as Interface Between Micro and Human Worlds. IEEE/RSJ International Conference on Intelligent Robots and Systems. Yokohama. Japan. 1993. 1674-1681.
    [65] 孙立宁,孙绍云,荣伟彬等.微操作机器人的发展现状.机器人,2002,24(2):184-187.
    [66] 李庆祥,李玉和.微装配与微操作技术[M].北京:清华大学出版社,2004.
    [67] 孙立宁.基于显微视觉的微操作机器人系统的研究.哈尔滨工业大学,博士学位论文,2003.
    [68] 于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量.科学出版社,2002.
    [69] 王守杰.微操纵机器人级显微视觉的研究.北京航空航天大学,博士学位论文,1998.
    [70] 宗光华.微操作机器人显微视觉系统及其关键技术的研究.北京航空航天大学,博士学位论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700