用户名: 密码: 验证码:
面向微束类分析仪器样品视频的可分级视频编码方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子显微镜、电子探针等微束类分析仪器应用广泛、价格昂贵,具有较高的共享价值,是网络实验室的研究热点。本文基于最新的可分级视频编码标准H.264/SVC对微束类分析仪器网络实验室建设中的关键技术——样品视频编码进行深入研究。提出一种空域可分级快速模式决策算法,采用减少预测模式的方法和提前退出算法,提高了模式决策的速度。提出一种基于抽样的快速块匹配算法,从块匹配准则和块匹配计算两个方面进行优化,实现了高效的运动估计块匹配算法。针对常用运动估计算法中存在的固定搜索范围问题,提出一种基于自适应搜索范围的快速运动估计算法,有效地减少了运动估计的搜索点。面向分级B帧编码结构,提出一种码率控制算法,对现有码率控制算法的若干环节进行改进,实现了精确的码率控制,并设计低复杂度的分级B帧QP计算方法,加强了码率分级性,使码流可适应带宽差异较大的多种网络环境。
With the development of computer and network technology, the construction of scientific instrument network lab becomes possible. Through the Internet users can operate instruments remotely and view sample images with interaction of various means, such as text, voice, video, etc, as if users were personally on the scene. Compared with the traditional way of local experiment, the network lab can break through the limits of time, space and the number of people participating in the experiment, so that more researchers and students can use instrument. Network lab can promote sharing of instruments and improve utilization efficiency in some extent, so that it has important value of application.
     Micro-beam analytical instruments such as electron microscopes and electron probes, which are expensive and widely used, with high value of sharing, have become a research hotspot in the network lab.Sample image coding is one of the critical technologies about network lab for this kind of instruments. Sample video is defined as the dynamic sample image sequence formed in the process of searching for location of the sample and scanning the sample. Nowadays, sample images tend to be encoded in the way of video, but commonly, general video coding technology is adopted directly. Special coding algorithms based on characteristics of sample video are not deep enough, and there is large research space for improving their performance. In addition, MPEG-4, H.264 and other traditional single-layer video coding algorithms can only encode for different channel rates respectively, but they could not cope with the problems induced by the changeable network bandwidth and terminal diversity.
     Encoding video of highest spatial-temporal format for only one time, the latest scalable video coding standard H.264/SVC can get bit-stream with different frame rates, spatial resolutions and qualities, so that it can solve the problems of the terminal diversity and dynamic of network faced with in video applications. In this paper, H.264/SVC video coding standard was chosen to encode sample video. Due to its high complexity of encoding, this paper analyzed and used the characteristics of the sample video, studied fast algorithms for mode decision and motion estimation of high computational complexity, so as to improve the encoding speed. Meanwhile studying rate control algorithm for the coding structures with hierarchical B-frames contributed to improving the ability of controlling rate. All these work laid on the foundation for the establishment of network lab. The main contents are as follows:
     (1)The Fast Mode Decision Algorithm
     The multi-layer coding structure and excessive prediction mode of H.264/SVC lead to high computational complexity, which seriously influences the efficiency of real-time video coding. In order to increase the calculating speed of mode decision, a fast mode decision algorithm was proposed for spatial SVC. According to the distributed relationship of modes, the algorithm removed the prediction modes, which have less distribution and less influence on the quality of encoding. Meanwhile considering the computational complexity of each prediction mode, the rest prediction modes were divided into different mode sets. Based on the layer which is the current macroblock located at, and the rate-distortion cost from adjacent macroblocks in temporal and inter-layer directions, different thresholds of early termination were designed for each mode set, and a reasonable strategy of threshold was proposed to remove the unnecessary prediction modes. Experimental results show that, compared with the reference algorithm, proposed fast mode decision algorithm, which can be adapted to different bit rate environment, can save the encoding time by 78% with similar PSNR and bit rate.
     (2) The fast block matching algorithm based on sub-sampling
     For reducing the computational complexity of motion estimation, a new fast block matching algorithm was proposed which based on sub-sampling. The algorithm divided the block matching criterion into three kinds:sum of absolute differences (SAD), half sub-sampling SAD, and quarter sub-sampling SAD, then analyzed their respective characteristics. According to the principle of Skip and BLSkip prediction mode, and the spatial correlation and the inter-layer correlation between macroblocks, the algorithm predicted the motion state of macroblock and chose a suitable block matching criterion combined with which layer the macroblock is located at. Besides, lossless early termination algorithm was designed to remove the calculation of redundancy in the process of block matching. Experiments show that compared with the reference algorithm, the proposed algorithm can approximately reduce coding time by 40% with similar PSNR and bit rate. The proposed block matching algorithm can be conveniently combined with mode decision and other types of motion estimation algorithm and so on, and it is suitable for sample video and nature video.
     (3)The fast motion estimation algorithm based on adaptive search range
     Common motion estimation algorithm with a fixed search range generates a large number of invalid search points during encoding process. In view of this a fast motion estimation algorithm based on adaptive search range is proposed, in light of the motion principle of sample video. We divided macroblocks into different types using the similar method in previous algorithm, and utilized the characteristics that they have strong spatial and inter-layer correlation, to reduce the motion estimation search range by calculating the horizontal and vertical search range separately which based on motion vector difference in both reference frame and current frame. In addition, early termination algorithms were designed respectively for matching block searching and inter-frame prediction to further eliminate unnecessary search points. Experiments show that the proposed algorithm reduces by approximately 89% of the motion estimation search points, save about 62% of encoding time, while PSNR and bit rate maintain close to the reference algorithm.
     (4) The rate control algorithm for hierarchical B frames
     In order to enhance the encoder's ability of rate control, a rate control algorithm for hierarchical B frame was proposed. The prediction of target bits for each P frame were improved by optimizing distribution of residual bits and limiting target bits for each P frame, and further improved the bit distribution of base units. According to spatial correlation between macroblocks, MAD linear prediction was further optimized. Moreover, this algorithm restricted QP range of P frame and B frame. The rate control algorithm for hierarchical B frame coding is not convenient for application, because it is lack of bit rate scalability between different temporal hierarchical levels. For this problem, a QP compute method of hierarchical B frame was designed. Experiments show that the proposed algorithm can realize accurate bit rate control, and flat bit-stream. In addition, it embodies the bit rate scalability of temporal scalable coding, so that bit-stream can adapt to different network environments of large viarety in bandwidth. The proposed algorithm is applicable to both sample video and nature video.
引文
[1]陈晞.微束分析技术简介[J].福建分析测试,2000,9(2):1255-1256.
    [2]姚骏恩.电子显微镜的现状与展望[J].电子显微学报,1998,(6): 767-776.
    [3]刘维.电子显微镜的原理和应用[J].现代仪器,1996,(1):9-12.
    [4]林天辉.电子探针的基本原理和应用[J].上海钢研,1984,(3):18-23.
    [5]陈亚东.离子探针技术的特点和应用[J].桂林冶金地质学院学报,1998,8(2):197-200.
    [6]华巍,黄宇营,何伟,等.同步辐射高分辨X射线荧光谱仪及其应用进展[J].核技术,2004,27(10):740-743.
    [7]王桂友,臧斌,顾昭.质谱仪技术发展与应用[J].现代科学仪器,2009,(6): 124-128.
    [8]商飞.面向大型科学仪器网络实验室的视觉视频关键技术研究与应用[D].长春:吉林大学,2009.
    [9]刘金伟.电子探针样品图像采集及传输技术的研究与应用[D].长春:吉林大学,2009.
    [10]李军.电子探针样品图像流媒体实时传输技术的研究[D].长春:吉林大学,2010.
    [11]刘永康.微束分析技术简介[J].矿物岩石地球化学通报,1985,3:132-134.
    [12]张铭诚,袁自强,万周存,等.电子束扫描成像及微区分析[M].北京:原子能出版社,1987,第一版.
    [13]Zmola C, Kapp O H. Networking of an electron microscope laboratory internally and to the internet[C].//Applications of Optical Engineering:Proceedings of OE/Midwes, USA:SPIE, 1990:331-334.
    [14]杨红生,田地,杨光等.远程电子显微镜技术研究综述[J].电子显微学报,2009,28(5):505-510.
    [15]Fan G Y, Mercurio P J. Young S J, et al. Telemicroscopy[J]. Ultramicroscpy,1993,52: 499-503.
    [16]Martin H H, Stephen J Y, Steven T P, et al. Web-Based Telemicroscopy[J]. Journal of Structural Biology,1999,125(2-3):235-245.
    [17]Mansfield J F, Adamson A, Coffman K. Development of a System to Provide Full, Real-time Remote Control of a Scanning Electron Microscope across the Second Generation Internet: The Teaching SEM[J]. Microscopy and Microanalysis,2000,6(1):31-41.
    [18]Internet2. Remote Instrumentation[EB/OL]. [2009-5-26] http://www.internet2.edu/science/remote.html.
    [19]Mansfield J F. Remote Microscopy for Training Groups of Student Users[J]. Microscopy and Microanalysis,2008,14(Suppl.2):876-877.
    [20]Potter C S, Carragher B, Carroll L, et al. Bugscope:A Practical Approach to Providing Remote Microscopy for Science Education Outreach[J]. Microscopy and Microanalysis, 2001,7(3):249-252.
    [21]Imaging Technology Group. Bugscope[EB/OL]. [2009-5-26] http://bugscope.Beckman.uiuc.edu/.
    [22]Chumbley L S, Meyer M, Fredrickson K, et al. Computer networked scanning electron microscope for teaching, research, and industry applications[J]. Microscopy Research and Technique,1995,32(4):330-336.
    [23]Chumbley L S, Meyer M, Fredrickson K, et al. A New Paradigm Multi-User Scanning Electron Microscopy[J]. The Minerals, Metals & Materials Society,1995,47(9):13-17.
    [24]Chumbley L S, Cassucio G, Kritikos D, et al. Development of a web-based SEM specifically for K-12 education[J]. Microscopy Research and Technique,2000,56(6):454-461.
    [25]Kiyokazu Y, Akio T, Soichiro H, et al. Development of a remote operation system for an ultra-high-voltage electron microscope[J]. Journal of Electron Microscopy,1999,48(6): 865-872.
    [26]Takaoka A, Yoshida K, Mori H, et al. International telemicroscopy with a 3 MV ultrahigh voltage electron microscopes[J]. Ultramicroscopy,2000,83(1-2):93-101.
    [27]Yoshida K, Mori H, Shimojo S, et al. Design of a remote operation system for trans-pacific microscopy via international advanced networks[J]. Journal of Electron Microscopy,2002, 51 (Supplement):253-257.
    [28]Mori H, Yoshida K, Shimojo S, et al. A remote operation system for the 3MV electron microscope with a both-direction conversation capability[C].//Proceedings of the 2004 International Symposium on Applications and the Inter Workshops, USA:IEEE,2004:608-610.
    [29]Yamada A. The Remote Control Scanning Microscope with Web Operation interface (WebSEM), JEOL News,2001,36(1):25-27.
    [30]Yamada A, Hirahara O, Tsuchida T, et al. A practical method for the remote control of the scanning electron microscope[J]. Journal of Electron Microscopy,2003,52(2):101-109.
    [31]Furuya K, Tanaka M, Mitsuishi K, et al. Public-opened Internet Electron Microscopy 2005 inJapan[J]. Microscopy and Microanalysis,2005,11(2):68-69.
    [32]刘敦一.大型科学装备远程共享示范研究-离子探针示范系统[J].地球学报,2006,50.
    [33]霍正聃,田地,江游,等.科学仪器远程操作中样品图像传输模型的研究与实现[J].计算机应用研究,2006,2:149-151.
    [34]华蕊,叶邦彦,裴胜伟.基于Internet的金相显微镜远程监控系统设计[J].机床与液压,2003,3:54-57.
    [35]华蕊,叶邦彦,陈就,等.基于Internet的远程教学实验系统的设计[J].电化教育研究, 2004,4:53-55.
    [36]Pei S, Du M, He J, et al. Low computation complexity and error-resilient video transmission for remote microscope monitoring system[C].//Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, USA:IEEE,2004:671-674.
    [37]程志英,朱静,闫允杰,等.场发射电子显微镜的远程共享[J].电子显微学报.2005,24(4):379-379.
    [38]李学静,刘飞,杨育.仪器资源网络化产学研共享系统研究[J].现代科学仪器,2005,4:37-40.
    [39]张英,杨育,梁田甜,等.基于Internet的透射式电子显微镜网络化共享系统[J].机械与电子,2005,1:47-50.
    [40]Mighela F, Perra C. Remote Control for Microscopy Applications[C].//Instrumentation and Measurement Technology Conference (IMTC 2006), USA: IEEE,2006,530-535.
    [41]Perkins J M, Blom D A, McComb D W, et al. Functional Remote Microscopy via the AtlanTICC Alliance[J]. Microscopy and Microanalysis,2007,13(2):1702-1703.
    [42]Chand G, Breton B C, Caldwell N H M. World Wide Web-Controlled Scanning Electron Microscope[J]. Scanning,1997,19(4):292-296.
    [43]Fei S, Guang Y, Hongsheng Y, et al. Efficient global motion estimation using macroblock pair vectors[C].//2009 International Conference on Information Technology and Computer Science, Kiev,2009:225-228.
    [44]Video Codec for Audiovisual Services at px64 kbit/s, ITU-T Rec.H.261, ITU-T, Version 1: Nov.1990, Version 2:Mar.1993.
    [45]Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s-Part2:Video, ISO/IEC 11172-2 (MPEG-1 Video), ISO/IEC JTC1, Mar.1993.
    [46]Generic Coding of Moving Pictures and Associated Audio Information-Part 2:Video, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG-2 Video), ITU-T and ISO/IEC JTC 1, Nov.1994.
    [47]Video Coding for Low Bit Rate communication, ITU-T Rec. H.263, ITU-T, Version 1: Nov.1995, Version 2:Jan.1998, Version 3:Nov.2000.
    [48]Coding of audio-visual objects-Part 2:Visual, ISO/IEC 14492-2 (MPEG-4 Visual), ISO/IEC JTC1, Version 1:Apr.1999, Version 2:Feb.2000, Version 3:May 2004.
    [49]Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1:May 2003, Version 2: May 2004, Version 3:Mar.2005, Version 4:Sept.2005, Version 5 and Version 6:June 2006, Version7:Apr.2007, Version 8 (including SVC extension):Consented in July 2007.
    [50]刘马飞,曾学文,倪宏.基于H.264扩展的可伸缩编码技术最新进展[J].微计算机应用, 2008,29(9):52-57.
    [51]Wu D, Thomas Y W, Zhang Y Q. Transporting real-time video over the Internet:Challenges and Approaches[J]. Proceedings of the IEEE,2000,88(12):1855-1875.
    [52]Lu J. Signal Processing for Internet video streaming:a review[C].//Proceedings of SPIE Image and Video Communications and Processing'00,2000:1-14.
    [53]Girod B, Chakareski J, Kalman M, et al. Advances in Network-adaptive Video Streaming[C].//in Proc. of the International Workshop on Digital Communications,2002.
    [54]Lippman A. Video coding for multiple target audiences[C].//Proceedings of SPIE of Visual Communications and Image Processing'99,1999:780-782.
    [55]Furht B, Westwater R, Ice J. Multimedia broadcasting over the Internet II[J]. Video compression. IEEE multimedia,1999,6(1):85-89.
    [56]姜恩华,姜文彬.基于组播的视频信息传输技术研究[J].淮北煤炭师范学院学报,2004,25(1):50-53.
    [57]Tamer S, Mohammed G. Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats[J]. IEEE Trans. Multimedia,2000,2(2):101-110.
    [58]Youn J, Xin J, Sun M T. Fast video transcoding architecture for networked multimedia applications[C].//IEEE international symposium on Circuits and Systems, Geneva,2000, 4:25-28.
    [59]肖友能,薛向阳,曾玮.视频转码技术回顾[J].通信学报,2002,23(8):72-80.
    [60]Schwarz H, Hinz T, Kirchhoffer H. Technical Description of the HHI Proposal for SVC CE1. ISO/IEC/JTC1/SC29/WG11, Doc. M11244, Oct.2004.
    [61]ITU-T and ISO/IEC JTCl, Advanced video coding for generic audiovisual services. ITU-T Recommendation H.264-ISO/IEC 14496-10AVC,2007.
    [62]Wiegand T, Sullivan G J, Bjontegaard G, et al. Overview of the H.264/AVC Video Coding Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology,2003,13(7): 560-576.
    [63]Schwarz H, Marpe D, Wiegand T. Overview of the Scalable Video Coding Extension of the H.264/AVC Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007,17(9):1103-1120.
    [64]Schwarz H, Marpe D, Wiegand T. Hierarchical B Pictures./Joint Video Team, Doc. JVT-P014, Jul.2005.
    [65]Schwarz H, Marpe D, Wiegand T. Analysis of hierarchical B-pictures and MCTF[C].//in Proc. ICME, Toronto,2006:1929-1932.
    [66]Segall C A, Sullivan G J. Spatial Scalability Within the H.264/AVC Scalable Video Coding Extension[J]. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(9): 1121-1135.
    [67]Schwarz H, Marpe D, Wiegand T. SVC Core Experiment 2.1:Inter-Layer Prediction of Motion and Residual Data. ISO/IEC JTC1/SC29/WG11, Doc. M11043, Jul.2004.
    [68]Schwarz H, Hinz T, Marpe D, et al. Constrained inter-layer prediction for single-loop decoding in spatial scalability[C].//in Proc.of ICIP'05, Genoa,2005,2:870-873..
    [69]Schwarz H, Marpe D, Wiegand T. Further results on constrained inter-layer prediction. Joint Video Team, doc. JVT-O074, Busan, April.2005.
    [70]Segall A, Sullivan G J. Spatial scalability[J]. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(9):1121-1135.
    [71]Francois E, Vieron J, Bottreau V. Interlaced coding in SVC[J]. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(9):1136-1148.
    [72]Li W P. Overview of Fine Granularity Scalability in MPEG-4 Video Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology,2001,11(3):301-317.
    [73]Schwarz H, Marpe D, Wiegand T. Independent parsing of spatial and CGS layers, Joint Video Team, doc, JVT-S069, Geneva, Switzerland, March.2006.
    [74]H.264/SVC SBP Decoder Software Module[EB/OL]. [2011-3-25] http://cache.freescale.com/files/dsp/doc/fact_sheet/H264SVCDCDRFS.pdf?fsrch=1&sr= 1.
    [75]H.264/SVC SBP Encoder Software Module[EB/OL]. [2011-3-25] http://cache.freescale.com/files/dsp/doc/fact_sheet/H264SVCENCDRFS.pdf?fsrch=1&sr=2.
    [76]GIPS Announces Integration of Scalable Video Coding H.264 SVC for Desktop Video Conferencing[EB/OL]. [2011-3-25]http://www.prnewswire.com/news-releases/gips-announc es-integration-of-scalable-video-coding-h264-svc-for-desktop-video-conferencing-61844367. html.
    [77]SCOPIA Elite MCU 5000 Series[EB/OL]. [2011-3-25] http://www.radvision.com/NR/rdonlyres/DDAC219C-E432-402A-84AE-1028A6098CEE/0/S COPIA_Elite_MCU5000_MKT 1005AEN_Screen.pdf.
    [78]VidyoConferencingTM for Service Providers A Solution & Business Model that Works[EB/OL]. [2011-3-25]http://www.vidyo.com/documents/resources/VidyoConferencing_ServiceProvider_0709.pdf.
    [79]毕厚杰.新一代视频压缩编码标准-H.264/AVC[M].北京:人民邮电出版社,2005.
    [80]Tourapis A M, Wu F, Li S P. Direct Mode Coding for Bipredictive Slices in the H.264 Standard[J]. Circuits and Systems for Video Technology,2005,15(1):119-126.
    [81]Sullivan G J, Wiegand T. Rate-Distortion Optimization for Video Compression[J]. IEEE Signal Processing Magazine,1998,15(6):74-90.
    [82]Lim K P, Sullivan G, Wiegand T. Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods. ISO/IEC/JTC1/SC29/WG11 and ITU-TQ6/SG16, Doc. JVT-X101, Joint Video Team (JVT) 24th Meeting, Geneva, Jun.2007.
    [83]Grecos C, Yang M. Fast mode prediction for the baseline and main profiles in the H.264 video coding standard[J]. IEEE Transactions on Multimedia,2006,8(6):1125-1134.
    [84]Ren J F, Kehtarnavaz N, Budagavi M. Computationally Efficient Mode Selection in H.264/AVC Video Coding[J]. IEEE Transactions on Consumer Electronics,2008,54(2): 877-886.
    [85]Zeng H Q, Cai C H, Ma K K. Fast Mode Decision for H.264/AVC Based on Macroblock Motion Activity[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009,19(4):491-499.
    [86]Paul M, Lin W, Lau C T, et al. Direct inter-mode selection for H.264 video coding using phase correlation[J]. IEEE Transactions on Image Processing,2011,20(2):461-473.
    [87]Yang M, Wang W S. Fast Macroblock Mode Selection Based on Motion Content Classification in H.264/AVC[C].//IEEE International Conference on Image Processing(ICIP'04), Singapore,2004,2:741-744.
    [88]Kim B G. Novel Inter-Mode Decision Algorithm Based on Macroblock(MB) Tracking for the P-Slice in H.264/AVC Video Coding[J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(2):273-279.
    [89]Kim J H, Kim B G. Fast Block Mode Decision Algorithm in H.264/AVC video Coding[J]. Journal of Visual Communication and Image Representation,2008,19(3): 175-183.
    [90]Ren J F, Kehtarnavaz N, Budagavi M. Fast Adaptive Early Termination for Mode Selection in H.264/AVC Standard Based on x264 Implementation[C].//Proceedings of SPIE Conference on Real-time Image Processing, San Jose,2008.
    [91]Li H, Li Z G,, Wen C Y, et al. Fast Mode Decision for Spatial Scalable Video Coding[C].//IEEE International symposium on Circuits and Systems, San Diego,2006: 3005-3008.
    [92]Li H, LiZG, Wen C Y. Fast Mode Decision Algorithm for Inter-Frame Coding in Fully Scalable Video Coding[J]. IEEE Transaction on Circuit and Systems for Video Technology, 2006,16(7):889-895.
    [93]张昕,赵德斌,张永兵.基于统计的SVC层间编码快速模式决策算法[J].计算机工程, 2008,34(11):222-224.
    [94]杨大伟,赵旦峰,战滨.基于H.264空时SVC编码的快速模式决策算法[J].吉林大学学报(工学版),2009,39(增2):367-370.
    [95]崔晓磊.H.264/AVC中SVC宏块模式选择快速算法[D].西安:西安电子科技大学,2010.
    [96]Lee B, Kim M, Hahm S, et al. A Fast Mode Selection Scheme in Inter-layer Prediction of H.264 Scalable Extension Coding[C].//IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Seattle & Washington,2008:1-5.
    [97]Ren J F, Kehtarnavaz N. Fast Adaptive Early Termination for Mode Selection in H.264 Scalable Video Coding[C].//Proceedings of the 2008 IEEE International Conference on Image Processing, San Diego,2008:2464-2467.
    [98]Wang P C, Li G L, Lin S C. An Efficient Mode Decision Scheme by using RD Cost Correlation Coefficients in Scalable Video Coding[C].//2009 APSIPA Annual Summit and Conference, Sapporo,2009:57-63.
    [99]杨红生,田地,毛宏宇等.针对样品视频的H.264空域SVC快速模式决策算法[J].仪器仪表学报,2010,31(4):806-811.
    [100]傅祖芸.信息论-基础理论与应用[M].北京:电子工业出版社,1991.
    [101]陈特.基于H.264/AVC运动估计算法研究[D].西安:西安电子科技大学,2010.
    [102]李道盛.基于H.264的快速运动估计算法的研究[D].上海:上海交通大学,2010.
    [103]Koga T, limuma K, Hirano A, et al. Motion-compensated interframe coding for video conferencing[C].//Proceedings of the National Telecommunications Conference(NTC), USA:IEEE,1981, G5.3.1-5.
    [104]Kappagantula S, Rao K R. Motion compensated predictive coding[C].//Applications of Digital Image Processing Vi in SPIE 27th Proceedings, USA:SPIE,1983,432:64.
    [105]Kappagantula S, Rao K R. Motion compensated inter-frame image prediction[J]. IEEE Trans. Communication,1985,33(9):1011-1015.
    [106]Jing X, Zhu C, Chau L P. Smooth constrained block matching criterion for motion estimation[C].//IEEE International Conference On Acoustics, Speech, and Signal Processing(ICASSP 2003), Hong Kong,2003,3:661-664.
    [107]Jain A. Bit reduction based matching criterion for motion compensation in video coding[C].//International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT 2009), Taiwan,2009:36-39.
    [108]Ates H F, Altunbasak Y. SAD reuse in hierarchical motion estimation for the H.264 encoder[C].//IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP 2005), Philadelphia,2005,2:905-908.
    [109]You W Q, Song Y, Ikenaga T, et al. A High Quality Fast Motion Estimation Algorithm for H.264/AVC[C].//2008 International Congress on Image and Signal Processing (CISP 2008), Hainan,2008,1:375-379.
    [110]Nguyen V A, Tan Y P. Fast block-based motion estimation using integral frames[J]. IEEE Signal Processing Letters,2004,11(9):744-747.
    [111]Nguyen V A, Tan Y P. Efficient block-matching motion estimation based on Integral frame attributes[J]. IEEE Transactions on Circuits and Systems for Video Technology,2006, 16(3):375-385.
    [112]Liu B, Zaccarin A. New fast algorithms for the estimation of block motion vectors[J]. IEEE Transactions on Circuits and Systems for Video Technology,1993,3(2): 148-157.
    [113]Huang Y Q, Liu Q, Goto S, et al. Adaptive Subsampling and Motion Feature based Fast H.264 Motion Estimation[C].//2008 International Congress on Image and Signal Processing (CISP 2008), Hainan,2008,2:671-675.
    [114]Hong-sheng Yang, Jun Li, Jing Sun, et al. Fast Block Matching Algorithm for H.264/SVC Motion Estimation Based on Sub-sampling[C].//2010 2nd International Conference on Computer Engineering and Technology, Chengdu,2010,2:154-157.
    [115]Koga T, limuma K, Hirano A, et al. Motion compensated inter frame coding for video conferencing[C].//Proceedings of the National Telecommunications Conference(NTC), USA:IEEE,1981, G5.3.1-5.
    [116]Li R, Zeng B, Liou M L. A New Three-Step Search Algorithm for Block Motion Estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology,1994,4(4): 438-442.
    [117]Po L M, Ma W C. A novel four-step search algorithm for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology,1996,6(3): 313-317.
    [118]Zhu S, Ma K K. A new diamond search algorithm for fast block matching motion estimation[C].//International Conference on Information, Communications and Signal Processing, Singapore,1997:292-296.
    [119]Zhu C, Lin X, Chau L P. Hexagon-based search pattern for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2002, 12(5):349-355.
    [120]Chen Z B, Zhou P, He Y. Fast Integer-pel and fractional-pel motion estimation for JVT[C].//Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 6th Meeting:Awaji Island, JP,2002.
    [121]李翔,吴国威.一种适用于H.264的基于自适应搜索范围的快速运动估计算法[J].中国图象图形学报,2004,9(4):471-476.
    [122]Song T, Ogata K, Saito K, et al. Adaptive Search Range Motion Estimation Algorithm for H.264/AVC[C].//Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), New Orlens,2007:3956-3959.
    [123]Yamada T, Ikekawa M, KurodaI. Fast and Accurate Motion Estimation Algorithm by Adaptive Search Range and Shape Selection[C].//Proc. ICASSP, Philadelphia,2005,2: 897-900.
    [124]HONG M, Kim C. Further Improvement of Motion Search Range. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16, Doc. JVT-D117, Joint Video Team (JVT) 4th Meeting, Klagenfurt, July.2002.
    [125]XU X, He Y. Modification of Dynamic Search Range for JVT. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16, Doc. JVT-Q088-L, Joint Video Team (JVT) 17th Meeting, Nice, Oct.2005.
    [126]Chen Z X, Song Y, Ikenaga T, et al. Adaptive Search Range Algorithms for Variable Block Size Motion Estimation in H.264/AVC[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2008, E91-A(4):1015-1022.
    [127]Chen Z X, Liu Q, Ikenaga T, et al. A Motion Vector Difference based Self-incremental Adaptive Search Range Algorithm for Variable Block Size Motion Estimation[C].//2008 IEEE International Conference on Image Processing, San Diego,2008:1988-1991.
    [128]Paul A, Wang J F, Yang J F. Adaptive Search Range Selection for Scalable Video Coding Extension of H.264/AVC[C].//Proceedings of the IEEE Region 10 Conference, Hyderabad,2008:1-4.
    [129]Kim B G, Reddy K, Lim K W. Dynamic Search Range Control Algorithm for Inter-frame Coding in Scalable Video Coding [C].//IEEE International Conference on Multimedia & Expo, New York,2009:225-228.
    [130]杨红生,杨光,毛宏宇,等.针对样品视频的H.264/SVC快速运动估计算法[J].吉林大学学报(工学版),2010,40(6):1710-1714.
    [131]Chiang T, Zhang Y Q. A new rate control scheme using quadratic rate distortion model[J]. IEEE Transactions on Circuits and Systems for Video Technology,1997(7): 246-250.
    [132]Berger T. Rate Distortion Theory. Englewood Cliffs, New Jersey:Prentice-Hall,1971.
    [133]Ortega A, Ramchandram K. Rate-distortion methods for image and video compression[J]. IEEE Transactions on signal processing,1998,15(6):23-50.
    [134]Schuster G M, Melnikov G, Katsaggelos A K. A review of the minimum maximum criterion for optimal bit allocation among dependent quantizers[J]. IEEE Transactions on Multimedia,1999,1(1):3-7.
    [135]Li Z G, Lin X, Pan F. A Novel Rate Control Scheme for Video over the Internet[C].//in Proceeding of ICASSP2002, Orlando,2002:2065-2068.
    [136]Sethuraman S, Krishnamurthy R. Model based multi-pass macroblock-level rate control for visually improved video coding[C].//in Proceeding of workshop and exhibition on MPEG-4, San Jose,2001:59-62.
    [137]He Z. P-domain rate-distortion analysis and rate control for visual coding and communication. Dissertation of University of California Santa Barbara,2001.
    [138]Chiang T, Zhang Y Q. A new rate control scheme using quadratic rate distortion model[J]. IEEE Transactions on Circuits and Systems for Video Technology,1997,7(1): 246-250.
    [139]Ding W, Liu B, Rate Control of MPEG Video Coding and Recording by Rate-quantization Modeling[J]. IEEE Transactions on Circuits and Systems for Video Technology,1996,9(1):12-20.
    [140]Reichel J, Schwarz H, Wien M. Joint Scalable Video Model JSVM-12 text, Joint Video Team, Doc. JVT-Y202, Shenzhen, Oct,2007.
    [141]Leontaris A, Tourapis A M. Rate Control Reorganization in the Joint Model(JM)Reference Software, ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, Doc. JVT-W042,23rd Meeting, San Jose,2007.
    [142]Li Z G., Pan F, Lim K P, et al. Adaptive basic unit layer rate control for JVT. Joint Video Team of ISO/IEC MPEG and ITU-VCEG, JVT-G012,2003.
    [143]Lim K P, Sullivan G, Wiegard T. Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods, Doc. JVT-K049, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Munich,2004.
    [144]MPEG-2 Video Test Model 5. ISO/IEC/JTC1/SC29/WG 11, MPEG93/457,1993, (4): 9-18.
    [145]ITU-T.TMN8 video codec test model near-term version 8.Portland:Video Coding Experts Group,1997,15-59.
    [146]ISO/IEC/JTC1/SC29/WG11, MPEG-4 video verification model v 18.0, January 2001.
    [147]Liu Y, Li Z G, Soh Y C. Rate Control of H.264/AVC Scalable Extension[J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(1):116-121.
    [148]Xu L, Ga W, Ji X Y, et al. Rate Control for Hierarchical B-Picture Coding with Scaling-Factors[C].//IEEE International symposium on Circuits and Systems, Beijing,2007: 49-52.
    [149]徐龙,高文,季向阳,等.一种面向SVC的码率控制算法[J].计算机学报,2008,31(7),1175-1184.
    [150]Li M, Chang Y L, Yang F Z, et al. Frame layer rate control for H.264/AVC with hierarchical B-frames[J]. Signal Processing:Image Communication,2009,24(3):177-199.
    [151]王喻梅.分层B帧码率控制技术[D].西安:西安电子科技大学,2010.
    [152]Kan C, Bo Y, A Men, et al. Rate control for hierarchical B-frames in H.264/AVC[J]. The Journal of China Universities of Posts and Telecommunications,2010, 17(5):116-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700