用户名: 密码: 验证码:
硅碳氮薄膜的结构及光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅碳氮(SiCN)集成了碳化硅(SiC)和四氮化三硅(Si3N4)的优良特性,具有高硬度、高抗氧化能力、化学惰性和宽带隙等优良的光、电和力学性能,在超硬涂层、光电子、铜互连的介质阻挡层以及微机电系统方面具有广泛的应用前景。其能发射蓝光或蓝紫外光的特点使其成为解决国际上“蓝光问题”的重点研究材料之一同时与硅集成电路工艺兼容特点使其成为光电集成电路的优选材料。但SiCN薄膜的成分、结构与特性非常复杂。本文作者使用两种工艺(Ar/C2H2/N2+多晶Si靶,Ar/N2+烧结SiC靶)制备SiCN薄膜样品,优化了制备工艺;使用光电子谱仪、红外傅立叶光谱仪、X射线衍射仪、紫外-可见分光光度计和荧光光谱仪等对薄膜样品的成分、化学键、晶体结构、光致发光等特性进行了表征;分析了薄膜的制备工艺、成分、微结构及光学特性之间的相互作用规律;探讨了SiCN薄膜的370nm、400nm和440nm发光机理。
     利用第一性原理的密度泛函理论和材料计算软件Material Studio5中CASTEP模块,基于β-Si6N8晶体模型构建β-Si12-nCnN16(n=0,4,6,8,12)超晶胞,并计算它们的结构和光学特性。结果发现随着碳(C)原子不断地替代Si原子,它们的晶格常数a、c及晶胞体积不断减少,但它们的a/c比值基本保持不变,表明SiCN在a和c方向保持各向同性收缩,β-Si12-nCnN16(n=4,6,8)超晶胞的能带结构特性更接近β-Si12N16,而不是接近β-C12N16;β-Si12-nCnN16(n=0,4,6,8,12)结构的光透性随n增大有变差的趋势,其吸收峰位置向短波长方向移动。
     研究了溅射功率对薄膜沉积速率、成分、微结构及光学带隙的影响及其影响机理。溅射功率增大,沉积速率先增大后减少,光学带隙单调减少,薄膜中C的含量单调减少,而Si的含量单调增大,N含量基本保持不变。发现SiCN网络结构中Si和C原子占据相似的位置。研究发现沉积态SiCN薄膜中主要形成了C-N、N-Hn、C-Hn、C-C、C≡N、Si-H和Si-C键,高溅射功率有利于C≡N、Si-H和C-Hn键的形成。
     研究了C2H2流速对薄膜沉积速率、成分、微结构及光学带隙的影响及其影响机理。C2H2流速增大,沉积速率急剧增大,薄膜中C的含量增大而Si和N含量减少,Si-C和C-N键单调增大,而Si-H键明显减少,以及薄膜光学带隙单调减少。发现薄膜中C含量的增加有利于Si-C和C-N键的形成,SiCN薄膜表面与薄膜内部的成键状态不一致,在薄膜表面形成了Si-O、C-C、C-O、C-N、N-Si和C=N键的网络结构。
     研究了N2/Ar流速比对薄膜沉积速率、成分、微结构及光学带隙的影响及其影响机理。N2/Ar流速比增大,薄膜的沉积速率增大,薄膜中N元素含量增加,而C和Si含量的减少,薄膜表面粗糙度增大。发现薄膜中N含量的增加促进了Si-N键的形成,而抑制了C-C、C-Si和N-C等键的形成;同时发现具有较高光学带隙的Si-N键增加,而较低光学带隙的Si-C、C-C和C-N键减少,从而引起薄膜光学带隙增大。
     研究了薄膜成分、微结构与薄膜发光特性的关系。在沉积态中观察到了400nm发光,在退火的SiCN薄膜中观察到了强烈的370nm和440nm发光。370nm、400nm和440nm的发光分别起源于SiCN薄膜中SiOx的发光中心、C团簇和SiC晶粒。发现600℃退火有利于SiCN薄膜中的SiC晶粒的形成,可以通过提高Si-C键的含量提高SiCN薄膜的440nm的发光强度。
A compound of silicon carbonitride (SiCN) integrates the unique characteristics of SiC and Si3N4, and is of excellent optical, electrical and mechanical properties, such as high hardness, high antioxidant capacity, chemical inertness and wide band gap. It has potential application prospects in superhard coating, optoelectronics, dielectric barrier layer in copper interconnect and micro-electro-mechanical systems. Its characteristic of emitting blue or blue-ultraviolet light makes it to be one of the key research materials which can resolve the international "blue light" problem. And its compatibility with the silicon integrated circuits process makes it to be the preferred materials for optoelectronic integrated circuits. But its compositions, structures and properties are very complex. In this work, SiCN thin films were prepared using two kinds of process (Ar/C2H2/N2mixed gas+polysilicon target, Ar/N2mixed gas+sintered SiC target), and the characteristics of the composition, chemical bonding, crystal structure and photoluminescence were characterized by X-ray photoelectron spectrometry, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet-visible spectrophotometer and fluorescence spectrometer. The mutual interactions among the preparation process, composition, microstructure and optical property of the films were analysized. The photoluminescence mechanisms of370nm,400nm and440nm for the SiCN thin films were discussed.
     Using the density functional theory of first-principles calculations and the CASTEP module of the material calculation software Material Studio5, the structures and optical properties of the constructed β-Si12-nCnN16(n=0,4,6,8,12) supercells based on β-Si6N8crystal structure were calculated. The results show that the lattice constants a, c and cell volume of the calculated supercells become smaller, while their a/c ratio is essentially unchanged when Si atoms are continually replaced by C atoms. These indicate they maintain isotropic shrinkage in the lattice a and c directions. The band structures of the β-Si12-nCnN16(n=4,6,8) supercells are closer to P-Si12N16rather than β-C12N16. The light transmission for β-Si12-nCnN16(n=0,4,6,8,12) structures has a trend of deterioration and their absorption peak wavelengths move to shorter wavelength with the increase of n.
     The influence of sputtering power on thin film deposition rate, composition, microstructure and optical band gap and its mechanism were studied. With sputtering power increasing, the deposition rate first increases and then decreases, and optical band gap monotonously decreases, and the Si content monotonously increases and the C content monotonously decreases while the N content is essentially unchanged. It is found that Si and C atoms accupy similar sites in the SiCN network. The C-N, N-Hn, C-Hn, C-C,C≡N, Si-H and Si-C bonds were mainly formed in the SiCN films, and a higher sputtering power is in favor of the formation of C=N, Si-H and C-Hn bonds.
     The influence of C2H2flow rate on thin film deposition rate, composition, microstructure and optical band gap and its mechanism were studied. With C2H2flow rate increasing, the deposition rate sharply increases, and the C content increases while the Si and N contents decrease in the films, and optical band gap monotonously decreases, and Si-C and C-N bonds monotonically increase while Si-H bond obviously decreases. It is found that the increase of C content favors to the formation of the Si-C and C-N bonds and supresses the formation of the Si-H bond. The bondings are not consistent between in the film surface and in the SiCN film, and Si-O, C-C, C-O, C-N, N-Si and C=N network structure is formed in the film surface.
     The influence of the N2/Ar flow ratio on thin film deposition rate, composition, structure and optical band gap and its mechanism were studied. With the N2/Ar flow ratio increasing, the deposition rate increases, and the N content increases while the Si and C contents decrease in the films, and the surface roughness values of the films increase. It is found that the increase of N content in the SiCN films promotes the formation of Si-N bond, and supresses the formation of C-C, C-Si and N-C bonds. The increase of Si-N bond with higher optical band gap and the decrease of the Si-C, C-C and C-N bonds with lower optical band gap bring about the increase of optical band gap of the SiCN film.
     The dependence of photoluminescence of the thin films on their compositions and structures were studied. The strong photoluminescence at400nm was observed in the deposited SiCN films, while the strong photoluminescence at370nm and440nm was observed in the annealed SiCN films. The photoluminescences at370nm,400nm and440nm respectively originate SiOx luminescence center, C clusters and the SiC crystal particles in the SiCN films. It is found that the600℃annealing favors to the formation of the SiC crystal particles in the SiCN film, and the emitting light intensity at440nm in the films can be improved by improving the content of the Si-C bond.
引文
[1]Y. Matsuda, S.W. King, J. Bielefeld. Fracture properties of hydrogenated amorphous silicon carbide thin films [J]. Acta Mater.,2012,60:682-691.
    [2]W. Yu, X.Z. Wang, W.B Lu. Effects of substrate temperature on microstructural and photoluminescent properties of nanocrystalline silicon carbide films [J]. Physica B,2010,405:1624-1627.
    [3]Z.D. Sha, X. M. W., L.J. Zhuge. Structure and photoluminescence properties of SiC films synthesized by the RF-magnetron sputtering technique [J]. Vacuum, 2005,79:250-254.
    [4]E.Q. Xie, Z.W. Ma, H.F. Lin. Preparation and characterization of SiCN films [J]. Opt. Mater.,2003,23:151-156.
    [5]V. Ciupina, R. Vladoiu, C.P. Lungu. Investigation of the SiC thin films synthetized by thermionic vacuum arc method (TVA) [J]. Eur. Phys. J. D,2012, 66:99.
    [6]J.P. Alper, M.S. Kim, M. Vincent. Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors [J]. J. Power Sources,2013,230:298-302.
    [7]J. Xu, J.X. Mei, Y.J. Rui. UV and blue light emission from SiC nanoclusters in annealed amorphous SiC alloys [J]. J. Non-Cryst. Solids,2006,352:1398-1401
    [8]Z.D. Sha, X.M. Wu, L.J. Zhuge. Initial study on the structure and photoluminescence properties of SiC films doped with Al [J]. Appl. Surf. Sci., 2006,252:4340-4344.
    [9]S.X. Li, Y.Q. Cao, J. Xu. Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique [J]. Appl. Surf. Sci.,2013,270:287-291.
    [10]D.K. Basa, G. Ambrosone, U. Coscia, A. Setaro. Crystallization of hydrogenated amorphous silicon carbon films with laser and thermal annealing [J]. Appl. Surf. Sci.,2009,255:5528-5531.
    [11]F. Liao, S.L. Girshick, W.M. Mook. Superhard nanocrystalline silicon carbide films [J]. Appl. Phys. Lett.,2005,86:171913.
    [12]Y.P. Guo, J.C. Zheng, A.T.S. Wee. Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix [J]. Chem. Phys. Lett.,2001, 339(5-6):319-322.
    [13]S.-S. Chang, A. Sakai. Luminescence properties of spark-processed SiC [J]. Mater. Lett.,2004,58:1212-1217.
    [14]K.C. Chin, A. Gohel, H.I. Elim. Optical limiting properties of amorphous SixNy and SiC coated carbon nanotubes [J]. Chem. Phys. Lett.,2004,383:72-75.
    [15]X.T. Li, C.L. Shao, S.L. Qiu. Blue photoluminescence from SiC nanoparticles encapsulated in ZSM-5 [J]. Mater. Lett.,2001,48(3-4):242-246.
    [16]F.A. Reboredo, L. Pizzagalli, G Galli. Computational engineering of the stability and optical gaps of SiC quantum dots [J]. Nano Lett.,2004,4:801-804.
    [17]C.C. Ling, X.D. Chen, M. Gong. Wang. Electron energy dependence on inducing the photoluminescence lines of 6H-SiC by electron irradiation [J]. Physica B, 2006,376-377:374-377
    [18]E. Janzen, O. Kordina, A. Henry. SiC-a semiconductor for high-power, high-temperature and high-frequency devices [J]. Phys. Scr.,1994, T54.283
    [19]J. Xu, L. Yang, Y.J. Rui. Photoluminescence characteristics from amorphous SiC thin films with various structures deposited at low temperature [J]. Solid State Commun.,2005,133:565-568.
    [20]S.Y. Myong, S.S. Kim, K.S. Lim. In situ ultraviolet treatment in an Ar ambient upon p-type hydrogenated amorphous silicon-carbide windows of hydrogenated amorphous silicon based solar cells [J]. Appl. Phys. Lett.,2004,84:5416-5418.
    [21]L.Z. Cao, H. J., H. Song. Thermal CVD synthesis and photoluminescence of SiC/SiO2 [J]. J. Alloys Compd.,2010,489:562-565.
    [22]J.J. Li, S.L. Jia, X.W. Du. Preparation and annealing effect on photoluminescent properties of Si/SiC thin films by alternate sputtering [J]. Surf. Coat. Technol., 2007,201:5408:5411.
    [23]T.T.T. Pham, J.H. Lee, Y.S. Kim. Properties of SixNy thin film deposited by plasma enhanced chemical vapor deposition at low temperature using SiH4/NH3/Ar as diffusion barrier film [J]. Surf. Coat. Technol.,2008, 202:5617-5620.
    [24]Y.H. Wang, M. R. M., R. Kumar. A comparative study of low dielectric constant barrier layer, etch stop and hardmask films of hydrogenated amorphous Si-(C, O, N) [J]. Thin Solid Films,2004,460:211-216.
    [25]J. Vlcek, M. Kormunda, J. Cizek. Reactive magnetron sputtering of Si-C-N films with controlled mechanical and optical properties [J]. Diamond Relat. Mater., 2003,12:1287-1294.
    [26]H.L. Chang, C.T. Kuo. Characteristics of Si-C-N films deposited by microwave plasma CVD on Si wafers with various buffer layer materials [J]. Diamond Relat. Mater.,2001,10:1910-1915.
    [27]L.C. Chen, K.H. Chen, S.L. Wei. Crystalline SiCN:a hard material rivals to cubic BN [J]. Thin Solid Films,1999,355-356:112-116.
    [28]A. Badzian, T. Badzian, R. Roy. Silicon carbonitride, a new hard material and its relation to the confusion about'harder than diamond'C3N4 [J]. Thin Solid Films, 1999,354(1-2):148-153.
    [29]X.C. Wu, R.Q. Cai, P.X. Yanl. SiCN thin film prepared at room temperature by r.f. reactive sputtering [J]. Appl. Surf. Sci.,2002,185:262-266.
    [30]D. Bielinski, A.M. Wrobel, A. Walkiewicz-Pietrzykowska. Mechanical and tribological properties of thin remote microwave plasma CVD a-Si:N:C films from a single-source precursor [J]. Tribol. Lett.,2002,13(2):71-76.
    [31]C. Fernandez-Ramos, J.C Sanchez-Lopez, M. Belin. Tribological behaviour and chemical characterisation of Si-free and Si-containing carbon nitride coatings [J]. Diamond Relat. Mater.,2002,11(2):169-175.
    [32]F. Schwarz, C. Hammer, G Thorwarth. Thermal stability of PⅢ deposited hard-coatings with compositions between diamond-like carbon and amorphous silicon-carbonitride [J]. Plasma Processes Polym.,2007,4:S254-S258.
    [33]R. Riedl, H. Kleebe, H. Schonfelder. A covalent micro/nano-composite resistant to high-temperature oxidation [J]. Nature,1994,374:526-528.
    [34]R. Kolb, C. Fasel, V. Liebau-Kunzmann. SiCN/C-ceramic composite as anode material for lithium ion batteries [J]. J. Europ. Ceram. Soc.,2006,26:3903-3908.
    [35]I.V. Afanasyev-Charkin, M. Nastasi. Hard Si-N-C films with a tunable band gap produced by pulsed glow discharge deposition [J]. Surf. Coat. Technol.,2005, 199:38-42.
    [36]H.L. Chang, C.T. Kuo. Properties of Si-C-N films prepared on Si substrate using cobalt interfacial layers [J]. Mater. Chem. Phys.,2001,72:236-239.
    [37]K.H Chen, J.-J Wu, C.Y Wen. Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition [J]. Thin Solid Films,1999,355-356:205-209.
    [38]Z.H. Nie, E. Kumacheva. Patterning surfaces with functional polymers [J]. Nat. Mater.,2008,7:277-290.
    [39]P.R.L. Malenfant, J.L. Wan, S.T. Taylor. Self-assembly of an organic-inorganic block copolymer for nano-ordered ceramics [J]. Nat. Nanotechnol.,2007,2:43-46
    [40]M. Kamperman, A. Burns, R. Weissgraebe. Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles [J]. Nano Lett.,2009,9 (7):2756-2762
    [41]Y. Chen, C. Li, Y. Wang. Self-assembled carbon-silicon carbonitride nanocomposites:high-performance anode materials for lithium-ion batteries [J]. J. Mater. Chem.,2011,21(45):18186-18190
    [42]S. Bulou, L.L.Brizoual, P. Miska. Structural and optical properties of a-SiCN thin film synthesised in microwave plasma at constant temperature and different flow of CH4 added to HMDSN/N2/Ar mixture [J]. Surf. Coat. Technol.,2011, 205:S214-S217.
    [43]K.B. Sundaram, J. Alizadeh. Deposition and optical studies of silicon carbide nitride thin films [J]. Thin Solid Films,2000,370:151-154.
    [44]N.-M. Park, S.H. Kim, G.Y. Sung. Band gap engineering of SiCN film grown by pulsed laser deposition [J]. J. Appl. Phys.,2003,94(4):2725-2728.
    [45]C.W. Chen, C.C. Huang, Y.Y. Lin. Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection [J]. Diamond Relat. Mater.,2005,14:1010-1013.
    [46]T.H. Chou, Y.K. Fang, Y.T. Chiang. A low cost n-SiCN/p-SiCN homojunction for high temperature and high gain ultraviolet detecting applications [J]. Sens. Actuators, A,2008,147:60-63.
    [47]R. Reyes, C. Legnani, P.M. Ribeiro Pinto. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films [J]. Appl. Phys. Lett., 2003,82:4017.
    [48]W.R. Chang, Y.K. Fang, S.F. Ting. The contact characteristics of SiCN films for opto-electrical devices applications [J]. J. Electron. Mater.,2004,33 (3):181-184.
    [49]A. Limmanee, M. Otsubo, T. Sugiura. Effect of thermal annealing on the properties of a-SiCN:H films by hot wire chemical vapor deposition using hexamethyldisilazane [J]. Thin Solid Films,2008,516:652-655.
    [50]M. Vetter, I. Martin, A. Orpella. IR-study of a-SiCx:H and a-SiCxNy:H films for c-Si surface passivation [J]. Thin Solid Films,2004,451-452:340-344.
    [51]C.-Z. Wang, E.G. Wang, Q. Dai. First principles calculations of structural properties of β-SinC3-nN4 (n=0,1,2) [J]. J. Appl. Phys.,1998,83(4):1975-1978.
    [52]C.W. Chen, M.-H. Lee, L.C. Chen. Structural and electronic properties of wide band gap silicon carbon nitride materials—a first-principles study [J]. Diamond Relat. Mater.,2004,13:1158-1165.
    [53]P. Jedrzejowski, J. Cizek, A. Amassian. Mechanical and optical properties of hard SiCN coatings prepared by PECVD [J]. Thin Solid Films,2004,447-448: 201-207.
    [54]T.C. Wang, Y.L. Cheng, Y.L. Wang. Comparison of characteristics and integration of copper diffusion-barrier dielectrics [J]. Thin Solid Films,2006, 498:36-42.
    [55]Z. Chen, K. Prasad, C.Y. Li. Characterization and performance of dielectric diffusion barriers for Cu metallization [J]. Thin Solid Films,2004,462-463:223-226.
    [56]K. Kobayashi, H. Yokoyama, M. Endoh. Leakage current and paramagnetic defects in SiCN dielectrics for copper diffusion barriers [J]. Appl. Surf. Sci.,2008, 254:6222-6225.
    [57]J. Hohage, U. Mayer, M.U. Lehr. Copper-dielectric cap interface with enhanced reliability for 45 nm technology and beyond [J]. Microelectron. Eng.,2010, 87:2119-2123.
    [58]K. Kobayashi, T. Ide. Photoinduced paramagnetic defects and negative charge in SiCN dielectrics for copper diffusion barriers [J]. Thin Solid Films,2010, 518:3305-3309.
    [59]A. Mallikarjunan, A.D. Johnson, L. Matz. Silicon precursor development for advanced dielectric barriers for VLSI technology [J]. Microelectron. Eng.,2012, 92:83-85.
    [60]W. Kafrouni, V. Rouessac, A. Julbe. Synthesis of PECVD a-SiCxNY:H membranes as molecular sieves for small gas separation [J]. J. Membr. Sci.,2009, 329:130-137.
    [61]Y. Zhou, D. Probst, A. Thissen. Hard siliconcarbonitride films obtained by RF-plasma-enhanced chemical vapour deposition using the single-source precursor bis (trimethylsilyl) carbodiimide [J]. J. Eur. Ceram. Soc.,2006, 26(8):1325-1335.
    [62]D. Probst, H. Hochea, Y. Zhou, R. Hauser. Development of PE-CVD Si/C/N:H films for tribological and corrosive complex-load conditions [J]. Surf. Coat. Technol.,2005,200:355-359.
    [63]B.P. Swain, N.M. Hwang. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition [J]. Appl. Surf. Sci.,2008,254:5319-5322.
    [64]Y. Awad, M. A. El Khakani, M. Scarlete. Structural analysis of silicon carbon nitride films prepared by vapor transport-chemical vapor deposition [J]. J. Appl. Phys.,2010,107:033517.
    [65]Y. Awad, M.A. El Khakani, C. Aktil. Structural and mechanical properties of amorphous silicon carbonitride films prepared by vapor-transport chemical vapor deposition [J]. Surf. Coat. Technol.,2009,204:539-545.
    [66]I. Blaszczyk-Lezak, A.M. Wrobel, M.P.M. Kivitorma. Silicon carbonitride films produced by remote hydrogen microwave plasma CVD using a (dimethylamino) dimethylsilane precursor [J]. Chem. Vap. Deposition,2005,11(1):44-52.
    [67]N.I. Fainer, M.L. Kosinova, Yu. M. Rumyantsev. Synthesis and physicochemical properties of nanocrystalline silicon carbonitride films deposited by microwave plasma from organoelement compounds [J]. Glass Phys. Chem.,2005, 31(4):427-432.
    [68]F. Zhou, B. Yue, X. Wang. Surface roughness, mechanical properties and bonding structure of silicon carbon nitride films grown by dual ion beam sputtering [J]. J. Alloys Compd.,2010,492:269-276.
    [69]H. Hoche, C. Pusch, R. Riedel. Properties of SiCN coatings for high temperature applications-Comparison of RF-, DC-and HPPMS-sputtering [J]. Surf. Coat. Technol.,2010,205:S21-S27.
    [70]Z. Chen, H. Lin, J. Zhou. IR studies of SiCN films deposited by RF sputtering method [J]. J. Alloys Compd.,2009,487:531-536.
    [71]A.S. Bhattacharyya, G.C. Das, S. Mukherjee. Effect of radio frequency and direct current modes of deposition on protective metallurgical hard silicon carbon nitride coatings by magnetron sputtering [J]. Vacuum,2009,83:1464-1469.
    [72]T. Fu, Y.G. Shen, Z.F. Zhou. Surface smoothing of sputter deposited amorphous CNX films by silicon addition [J]. J. Non-Cryst. Solids,2008,354:3235-3240.
    [73]S. Ma, B. Xu, G. Wu. Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system [J]. Surf. Coat. Technol.,2008,202:5379-5382.
    [74]S.K. Mishra, A.S. Bhattacharyya. Effect of substrate temperature on the adhesion properties of magnetron sputtered nano-composite Si-C-N hard thin films [J]. Mater. Lett.,2008,62:398-402.
    [75]S.K. Mishra, A.S. Bhattacharyya, P.K.P. Rupa. XPS studies on nanocomposite Si-C-N coatings deposited by magnetron sputtering [J]. Nanoscience and Nanotechnology Letters,2012,4 (3):352-357.
    [76]Z. Shi, Y. Wang, N. Huang. Microstructure, mechanical properties and wetting behavior of F:Si-C-N films as bio-mechanical coating grown by DC unbalanced magnetron sputtering [J]. J. Alloys Compd.,2013,552:111-118.
    [77]G. Radno'czi, G. Sa'fra'n, Zs. Cziga'ny. Structure of DC sputtered Si-C-N thin films [J]. Thin Solid Films,2003,440:41-44
    [78]H.C. Lo, J.J. Wu, C.Y. Wen. Bonding characterization and nano-indentation study of the amorphous SiCxNy films with and without hydrogen incorporation [J]. Diamond and Relat. Mater.,2001,10:1916-1920.
    [79]H. Hoche, D. Allebrandt, M. Bruns. Relationship of chemical and structural properties with the tribological behavior of sputtered SiCN films [J]. Surf. Coat. Technol.,2008,202:5567-5571
    [80]F. Zhou, Y. Yuan, K. Chen. Influence of nitrogen ion implantation energies on surface chemical bonding structure and mechanical properties of nitrogen-implanted silicon carbide ceramics [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2009,267:2858-2865.
    [81]A.A. Suvorova, S. Rubanov, A.V. Suvorov. Structural and compositional complexity of nitrogen implantation in silicon carbide [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2012,272:462-465.
    [82]K. Yamamoto, Y. Koga, S. Fujiwara. XPS studies of morphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laserdeposition of SiC target [J]. Diamond Relat. Mater.,2001,10(9-10)1921-1926.
    [83]R. Machorro, E.C. Samano, G. Soto. SiCxNy thin films alloys prepared by pulsed excimer laserdeposition [J]. Appl. Surf. Sci.,1998,127-129:564-568.
    [84]L.C. Chen, C.K. Chen, S.L. Wei. Crystalline silicon carbon nitride:A wide band gap semiconductor [J]. Appl. Phys. Lett.,1998,72(19):2463-2465
    [85]M. Xu, S. Xu, S.Y. Huang. Growth and visible photoluminescence of SiCxNy/AlN nanoparticle superlattices [J]. Physica E,2006,35:81-87.
    [86]M. Xu, S. Xu, S.Y. Huang. Enhancement of photoluminescence in SiCxNy nanoparticle films by addition of a Ni buffer layer [J]. J. Non-Cryst. Solids,2006, 352:5463-5468.
    [87]X.-W. Du, Y. Fu, J. Sun. The effect of annealing atmosphere on photoluminescent properties of SiCN films [J]. Surf. Coat. Technol.,2007, 201:5404-5407.
    [88]X.-W. Du, Y. Fu, J. Sun. Intensive light emission from SiCN films by reactive RF magnetron sputtering [J]. Mater. Chem. Phys.,2007,103:456-460.
    [89]Z. Chen, J. Zhou, X. Song. The effect of annealing temperatures on morphologies and photoluminescence properties of terbium-doped SiCN films [J]. Opt. Mater., 2010,32:1077-1084.
    [90]Y. Liu, X. Zhang, C. Chen. The photoluminescence of SiCN thin films prepared by C+implantation into a-SiNx:H [J]. Thin Solid Films,2010,518:4363-4366.
    [91]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994.
    [92]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2008.
    [93]马孜,吕百达.光学薄膜表面形貌的原子力显微观察[J].电子显微学报,2000,19(5):704-708.
    [94]王鹏飞,丁士进,张卫等.ULSI低介电常数材料制备中的CVD技术[J].微细加工技术,2001,1:30-35
    [95]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社,2006.
    [96]薛晨阳,张文栋.半导体薄膜光谱学[M].北京:科学出版社,2008.
    [97]周世勋.量子力学教程[M].北京:高等教育出版社,1992.
    [98]P. Hohenberg, W. Kohn. Inhomogeneous electron gas [J]. Phy. Rev.,1964, 136:B864-E871.
    [99]W. Kohn, L.J. Shma. Self-consistent euqations including exchange and correlation effects [J]. Phy. Rev.,1965,140:A1133-1138.
    [100]M.I. McMahon, R.J. Nelmes. Observation of a cinnabar phase in GaAs at high pressure [J]. Phys. Rev. Lett.,1997,78:3697-3700.
    [101]D.C. Langreth, J.P. Perdew. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works [J]. Phys. Rev. B,1980,21:5469-5493.
    [102]A.D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. B,1988,38:3098-3100
    [103]J.P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B,1986,33:8822-8824.
    [104]J.P. Perdew, Y. Wang. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation [J]. Phys. Rev. B,1986,33:8800-8802
    [105]J.P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45:13244-13249.
    [106]徐龙道.物理学字典[M].北京:科学出版社,2007.
    [107]R.W.G. Wyckoff. Crystal structures [M]. New York:Interscience Publishers, 1964,2:159.
    [108]H.J. Du, D.C. Li, J.L. He. Hardness of α-and β-Si3-nCnN4 (n=0,1,2,3) crystals [J]. Diamond Relat. Mater.,18:72-75.
    [109]A. Iqbal, W.B. Jackson, C.C. Tsai. Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy [J]. J. Appl. Phys.,1987,61(8):2947-2954.
    [110]R.D. Carson, S.E. Schnatterly. Valence-band electronic structure of silicon nitride studied with the use of soft-x-ray emission [J]. Phys. Rev. B,1986,33: 2432-2438.
    [111]V. Milman, M.C. Warren. Elasticity of hexagonal BeO [J]. J. Phys.:Condens. Matter.,2001,13:241-246.
    [112]D.H. Zhang, Y. Gao, J. Wei, Z.Q. Mo. Influence of silence partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD [J]. Thin Solid Films,2000,37-38:607-610.
    [113]S. Muhl, J. M. Mendez. A review of the preparation of carbon nitride films [J]. Diamond Relat. Mater.,1999,8(10):1809-1830.
    [114]H.Y. Lin, Y.C. chen, C.Y. Lin. Field emission of nanostructured amorphous SiCN films deposited by reactive magnetron sputtering of SiC in CH4/N2 atmosphere [J]. Thin Solid Films,2002,416:85-91.
    [115]C.W. Chen, C.C. Huang, Y.Y. Lin. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film [J]. Diamond Relat. Mater., 2005,14:1126-1130.
    [116]X.C. Wu, R.Q. Cai, P.X. Yan, W.M. Liu, J. Tian. SiCN thin prepared at room temperature by r.f. reactive sputtering [J]. Appl. Surf. Sci.,2002,185:262-266.
    [117]B. Mitua, G. Dinescua, E. Budianu. Formation of intermediate SiCN interlayer during deposition of CNX on a-Si:H or a-SiC:H thin films [J]. Appl. Surf. Sci.,2001,184:96-100.
    [118]G. Lazar, B. Bouchet-Fabre, K. Zellama. Structural properties of nitrogenated amorphous carbon films:Influence of deposition temperature and radiofrequency discharge power [J]. J. Appl. Phys.,2008,104(073534):1-14
    [119]X.F. Peng, L.X. Song, J. Meng, Y.Z. Zhang, X.F. Hu. Preparation of silicon carbide nitride thin films by sputtering of siliconnitride target [J]. Appl. Surf. Sci., 2001,173:313-317.
    [120]I.V Afanasyev-Charkin, M. Nastasi. Hard Si-N-C films with a tunable band gap produced by pulsed glow discharge deposition [J]. Surf. Coat. Technol.,2005, 199:38-42.
    [121]T. Stapinski, B. Swatowska, S. Kluska. Optical and structural properties of amorphous silicon-carbon films for optoelectronic applications [J]. Appl. Surf. Sci.,2004,238:367-374.
    [122]V.M. Ng, M. Xu, S.Y. Huang. Assembly and photoluminescence of SiCN nanoparticles [J]. Thin Solid Films,2006,506-507:283-287.
    [123]D.H. Zhang, Y. G., J. Wei. Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD [J]. Thin Solid Films, 2000,377-378:607-610.
    [124]M.J. Hernandez, M.C., J. Piqueras, M.A. Gonzalez. Hydrogen-free SiCN films obtained by electron cyclotron resonance plasma:A study of composition, optical, and luminescent properties [J]. J. Electrochem. Soc.,2007,154: H325-H330.
    [125]W.L. Li, Z.G. Zhang., J.L. Yang. Effect of electron beam irradiation on structure and properties of SiCN thin films prepared by plasma assisted radio frequency magnetron sputtering [J]. Vacuum,2011,86:457-460.
    [126]P. Gao, J. Xu, Y. Piao, et al. Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering [J]. Surf. Coat. Technol.,2007,201:5298-5301.
    [127]C.W. Chen, C.C. Huang, Y.Y. Lin. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film [J]. Diamond Relat. Mater., 2005,14:1126-1130.
    [128]H.S. Medeiros, R.S. Pessoa, J.C. Sagas. Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique [J]. Surf. Coat. Technol.,2011,206:1787-1795.
    [129]J.P. Wang, Y.H. Lu, Y.G. Shen. Effect of nitrogen content on phase configuration, nanostructure and mechanical behaviors in magnetron sputtered SiCxNy thin films [J]. Appl. Surf. Sci.,2010,256:1955-1960.
    [130]X.-W. Du, Y. Fu, J. Sun. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature [J]. J. Appl. Phys., 2006,99(093503):1-4.
    [131]R.M. Todi, A.P. Warren, K.B. Sundaram. X-Ray photoelectron spectroscopy analysis of oxygen annealed radio frequency sputter deposited SiCN thin films [J]. J. Elecrochem. Soc.,2006,153:G640-G643.
    [132]A. Mahmood, S. Muhl, L. Enrique Sansores. Dependency of reactive magnetron-sputtered SiC film quality on the deposition parameters [J]. Thin Solid Films,2000,373:180-183.
    [133]Z. Fu, M. Li, B. Yang. Intense ultraviolet photoluminescence from amorphous Si:O:C films prepared by liquid-solution-phase technique [J]. Thin Solid Films,2001,389:12-15.
    [134]R. Reitano, G. Foti, C.F. Pirri. Room temperature blue light emission from ECR-CVD deposited nano-crystalline SiC [J]. Mater. Sci. Eng. C,2001,15: 299-302.
    [135]C. Tan, X.L.Wu, S.S. Deng. Blue emission from silicon-based β-SiC films [J]. Phys. Lett. A,2003,310:236-240.
    [136]L.J. Zhuge, X.M. Wu, Q. Li. Origin of violet photoluminescence in SiO2 films co-doped with silicon and carbon [J]. Physica E,2004,23:86-91. 518:4363-4366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700