用户名: 密码: 验证码:
微机电陀螺工艺允差分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统陀螺,微机电陀螺以其体积小、功耗低、成本低等特性,在对精度要求不高的惯性导航、姿态测量领域有广泛的应用。采用体硅工艺制造的微机电陀螺其测量精度受工艺误差影响较大,且工艺误差对陀螺性能的影响与陀螺结构有关,因而工艺允差分析及陀螺结构的优化设计显得尤为重要。
     本文研究的是Z轴线振动式微机电陀螺。首先建立陀螺动力学模型,再利用拉格朗日原理建立其在驱动方向和检测方向的动力学方程。Z轴陀螺可舍去一部分耦合作用项得到简化动力学方程,通过解方程得到驱动检测方向位移、品质因数、机械灵敏度、工作带宽等陀螺重要特性表达式。对静电梳齿电容驱动检测机理、静电调谐以及支撑梁刚度及其矩阵表达式进行了总体分析。
     Z轴陀螺因耦合项引起的原理性误差可以忽略。基于陀螺动力学及静电驱动理论分析了加工工艺引起的质心偏移、电容梳齿结构误差、梁结构误差以及工艺残余应力对陀螺性能的影响,给出相对误差或其作用项表达式。
     利用ANSYS对陀螺重要组件及整体进行仿真计算。两种支撑梁模态分析及刚度计算结果表明梁结构满足设计需要;梳齿电容仿真数据表明电容对梳齿宽度变化较敏感,梳齿刚度分析表明其在正常工作电压范围内可抗吸附。陀螺3D模型及2D模型模态分析及刚度计算表明陀螺模态频率符合匹配约束,刚度满足解耦要求,且2D模态分析与3D模态分析结果近似。陀螺3D模型及2D模型的过载分析结果表明陀螺满足过载要求。
     由陀螺各结构工艺相对误差及作用项表达式、陀螺仿真数据、结构参数结合陀螺技术指标计算各结构工艺允差范围。
     根据微机电陀螺动力学及仿真分析结果,确定其主要性能指标要求。考虑陀螺的指标性约束和设计性约束条件,将梁结构中长宽量作为设计变量,利用ANSYS中优化组件基于不同优化目标函数完成陀螺结构的优化设计
MEMS gyroscope has been applied widely in low precision inertial navigation and attitude determination systems for its smaller volume, lower power consumption, lower cost and some other features compared with traditional gyroscope. Measuring accuracy of MEMS gyroscope is great affected by bulk-silicon manufacture processing error, and the processing error effect on gyroscope performance is related with the gyroscope structure, so the analysis of processing tolerance and the gyroscope structure optimal design are very important.
     In this paper, the dynamic model of Z-axis linear vibration MEMS gyroscope was established firstly, and then the dynamic equations of drive and detect direction were attained by Lagrange Principle. Some coupling terms were discarded and the simplified kinetic equations of Z-axis gyroscope were achieved. The expression of driven displacement related with driving force, the quality factor, the mechanical sensitivity related with modal frequency, the bandwidth and other important gyroscope characteristics were obtained by solving the simplified kinetic equation. The drive and detection mechanism of electrostatic comb capacitive, electrostatic tuning, the support beam stiffness and its matrix expressions were analyzed overall.
     The theoretical error caused by coupling term can be ignored. Based on gyroscope dynamic and electrostatic drive theory, the effects on the gyroscope caused by center offset of mass, structure deviation of capacitor, structure deviation of beam and residual stress were analyzed. The expression of relative error and interaction term caused by processing error was listed.
     The model simulated calculation of important component and the entire gyroscope were done used ANSYS software. The model analysis of two folding support beam structures indicated that the stiffness of folding beam meet the design requirements; the simulation data of comb capacitor indicated that the capacitance is more sensitive for variation of comb width; the comb operated in normal voltage range can be anti-adsorption. The gyroscope mode analysis and stiffness calculations of 3D and 2D model show that gyroscope mode frequency satisfied matching constraints, stiffness meet the decoupling requirements and modal analysis of 2D have approximate result with 3D modal analysis. The overload results of 3D and 2D model show that the gyroscope anti-overload requirement has been satisfied.
     From relative processing error expression of different gyroscope structures, the interaction term expressions caused by process error, gyroscope simulation data and structural parameters combined with gyroscope technology targets, the different processing tolerance ranges were calculated.
     According to the gyroscope dynamics and simulation results, the major MEMS gyroscope performance requirements were determined. The target constraints and design constraints were both taken into account, the length and width of beam structure were set as design variables, the optimal design of gyroscope structure was completed based on different objective functions used optimal component in ANSYS.
引文
[1]周衍柏.理论力学教程[M].北京:高等教育出版社,1986:254-258.
    [2]杨培根,龚智炳.光电惯性技术[M].北京:兵器工业出版社,1999.
    [3]Eddy.D.S, Sparks.D.R. Application of MEMS Technology in Automotive Sensors and Actuators [DB/OL]. Proc. IEEE,1998,86(8):1747-1755.
    [4]蒋庆华.音叉电容式微机械陀螺接口电路设计研究[D].西安:西北工业大学,2004,3:1-7.
    [5]熊斌.栅结构微机械振动式陀螺[D].上海:中国科学院上海微系统与信息技术研究所,2001.
    [6]谢建兵.Z轴微机械陀螺的集成设计技术[D].西安:西北工业大学,2006.
    [7]Bernstein.J, Cho.S, King.A.T, Kourepenis.A, et al. A Micromachined Comb-drive Tuningfork Rate Gyroscope [C]. Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'93), Fort Lauderdale, FL, Feb.1993:143-148.
    [8]Weinberg. M, Bernstein. J, Cho. S, King. A. T, et al. A Micromachined Comb-drive Tuning Fork Gyroscope for Commercial Applications[M].Proc.Sensor Expo, Cleveland, OH, 1994:187-193.
    [9]施芹.提高硅微陀螺仪性能若干关键技术研究[D].南京:东南大学,2005:1-12.
    [10]罗跃生.硅微型陀螺仪的力学分析和数学模型[D].哈尔滨:哈尔滨工程大学,2003:1-8.
    [11]Boxenhom.B, Greiff.P.A Vibratory Micromachined Guroscope[C]. AIAA Guidance and control conference, Minnespolis, Mn, August 15-17,1988:1033-1039.
    [12]Greiff.P, Boxenhorn.B, T.king, et al. Silicon Monolithic Micromachined Gyroscope[C]. Tech. Dig.6th Int Conf. Solid-state Sensors and Actuators (Transducers'91), San Francisco, CA, June,1991:1033-1039.
    [13]Kuisma.H, Ryhanen.T, Lahdenpera. J, et al. A Bulk Micromachined Silicon Angular Rate Sensor[C]. Tech. Dig.v 9th Int. Conf. Solid-state Sensors and Actuators (Transducers'97), Chicago, IL, June 1997:875-878.
    [14]Tanaka.K, Mochida.Y, Sugimoto.M, et al. A Micromachined Vibrating Gyroscope[C]. Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'95), Amsterdam, Jan. 29-Feb.2,1995:278-281.
    [15]Tanaka.K, Mochida.Y, Sugimoto.M, et al. A Micromachined Vibrating Gyroscope [J]. Sensors and Actuators,1995, A(50):111-115.
    [16]Weinberg.M, Bemstein.J, Cho.S, et al. A Micro-machined Comb-drive Tuning Fork Gyroscope for Commercial Application [M]. Froc. Sensoe Expo, Cleveland, OH, 1994:187-193.
    [17]Oh.Y.S, Lee.B.L, Baek.S.S, et al. A Surface Micromachined Tunable Vibratory Gyroscope[C]. Froc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'97), Japan,1997:272-277.
    [18]Voss.R, Bauer.K, Ficker.W, et al. Silicon Angular Rate Sensor for Automotive Applications with Piezoelectric Drive and Piezoresistive Read-out[C]. Tech. Dig.9th Int. Conf. Solid-state Sensors and Actuators, Chicago, IL, June 1997:879-882.
    [19]Jan Soderkvist. Micromachined Gyroscope [J]. Sensors and Actuators,1994, A(43):65-71.
    [20]Bochobza-Degani Ofir, Seter.Dan J, Socher.E, et al. A Novel Micromachined Vibrating Rate-gyroscope with Optical Sensing and Electrostatic Actuation[J]. Sensors and Actuators A (83) 2000:54-60.
    [21]苏岩,杨拥军,王寿荣,等.微机械电子隧穿陀螺仪初步研究[J].传感技术学,1999,12(4):223-228.
    [22]韩天.解耦结构微机械陀螺特性研究[D].哈尔滨:哈尔滨工业大学:2-3.
    [23]Bernstein.J, Cho.S, king.A.T, et al. A Micromachined Comb-drive Tuning Fork Rate Gyroscope[C]. Frco. IEEE Micro Elentro Mechanical Systems Workshop (MEMS'93), Fort Lauderdale, FL, Feb.1993:143-148.
    [24]Maenaka.K, Fujita.T. Analysis of A Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass [J]. Sensors and Actuators,1996, A(54):568-573.
    [25]Wood.D, Cooper.G, Burdess.J, et al. A Silicon Membrane Gyroscope with Electrostatic Actuation and Sensing[C]. Proc. SPIE 1995 Symp.
    [26]Ayazi.F, Najafi.K. A HARPSS Polysilicon Vibrating Ring Gyroscope[J]. Micro-electromech. Syst.,2001, Vol.10(2):169-179.
    [27]Cimoo Song, Byeoungju Ha, Sukhan Lee. Micromachined Inertial Sensors[C]. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,1999.
    [28]NAVID YAZDI, Farrokh Ayazi, Khalil Najafi. Micromachined Inertial Sensors [J]. Proceedings of the IEEE, August 1998,86 (8):1640-1659.
    [29]Geen.J. A. A Path to Low Cost Gyroscopy [C]. Tech. Dig. Solid-state Sensors and Actuators, Hilton Head, SC,1998:51-54.
    [30]Khalil Najafi. Low-Power Micromachined Microsystems[C].Proceedings of the 2000 International Symposium on Low Power Electronics and Design,2000:1-8.
    [31]Neil Barbour, George Schmidt. Inertial Sensor Technology Trends [J]. IEEE Sensors Journal,2001,1 (4):332-339.
    [32]姜璐,于远治.陀螺仪在导航中的应用及其比较[J].船舶工程,2004,2:10-14.
    [33]谢明媚.Z轴硅微陀螺仪残余应力分析及结构优化研究[D].南京:东南大学:1-4.
    [34]Choi Jae-oon, Toda Risalu, Minami Kazuyuki, et al. Silicon Angular Resonance Gyroscope by Deep ICPRIE and XeF2gas Etching[C]. MEMS'98, Feb.1998:322-327.
    [35]Tanaka.K, Mochida.Y, Sugimoto.M, et al. A Micromachined Vibrating Gyroscope [J]. Sensoes and Actuators,1995, A(50):111-115.
    [36]Legtencerg.R, Tilmans.HSC. Electrostatically Driven Vacuum-encapsulated Polysilicon Resonators PartⅠ:Design and fabrication [J]. Sensors and Actuators,1994, A(45):57-66.
    [37]孙家庆.硅微振动陀螺制造误差电补偿方法研究[D].南京:南京理工大学:12-13.
    [38]郭秀中,阮爱武.微机械梳状驱动陀螺仪的理论分析[J].传感器技术,1997,16(3):23-26.
    [39]Oh.Y.S, Lee.B.L., Baek.S.S, et al. A Tunable Microgyroscope [J]. Sensors and Actuators, 1998,A(64):51-56.
    [40]Elwenspoek.M. Mechanical Microsenors [M].北京:中国宇航出版社,2003:69-78.
    [41]赵江铭,沈雪谨,张海霞.弓型悬臂梁微静电谐振器力学建模[J].微纳电子技术.2003,7(8):22-26.
    [42]袁磊,沈雪谨,赵江铭.之字型支掉梁硅微谐振器机械性能分析[J].中国机械工程,2005,16(10):892-895.
    [43]丁晓红,陈晓阳,沈雪谨.静电梳微谐振子直脚型结构的振动特性[J].机械设计与制造工程,2005,29(4):6-8.
    [44]Yun W. Surface Micromachined Digitally Force Balanced Accelerometer with Integrated CMOS Detect ion Circuitry[C]. Transducers'93, June,1993:126-131.
    [45]Drieenhuizen BP. Force Balanced Accelerometer with G Resolution Fabricated Using Silicon Fusion Bonding and Deep Reactive Ion Etching[C].Transducers'97,June, 1997:1229-1230.
    [46]K MI C, SEOK S. Inertial-grade Out-of-plane and In-plane Differential Resonant Silicon Accelerometers (DRXLs) [C]. The 13th Internat Ional Conference on Solid State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9,2005.
    [47]王喆垚.微系统设计与制造[M].北京:清华大学出版社,2008:30-31.
    [48]周吴,何晓平,苏伟.折叠梁刚度的误差灵敏度分析[J].机械设计,2010,27(2):80-83.
    [49]Said Emre Alper, Kanber Mithat Silay, Tayfun Akin. A Low-cost Rate-grade Nickel Microgyroscope [J]. Sensors and Actuators,2006, A(132):171-181.
    [50]邸荻.振动式微机械陀螺的设计与仿真[D].长沙:国防科技大学:11-14.
    [51]钱劲,刘程,张大成,等.微电子机械系统中的残余应力问题[J].机械强度,2001,23(4):393-401.
    [52]朱二辉.微机械陀螺的动力学特性研究[D].西安:西安理工大学:45-48.
    [53]刘军洁.硅微陀螺的设计与仿真[D].西安:西安工业大学:2-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700