用户名: 密码: 验证码:
水泥基材料用微胶囊自修复技术与原理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土开裂损伤部位的智能化感知和即实时自修复是水泥混凝土微裂纹修复的新技术和新方法,对于改善混凝土材料耐久性,提高混凝土构筑物服役寿命具有重要意义。
     本文运用混凝土材料科学、有机高分子化学和物理化学等相关理论与知识,创立了适用于水泥基材料的微胶囊自修复体系,分析了相关技术原理,提出了自修复效果的评价方法。
     采用原位聚合法合成了一种适用于水泥基材料裂缝修复的UF/E型微胶囊,它是以脲醛树脂为囊壁包裹以环氧树脂胶液组成的囊芯构成的直径为微米级的球形颗粒。通过正交试验,并基于微观分析和合成反应动力学,分析了表征UF/E微胶囊的粒径、囊壁厚度、表面形貌和包封率等技术参数的主要影响因素,得出了微胶囊最优合成工艺路线与参数,将尿素和甲醛摩尔比为1.5:1.0的溶液在70℃下反应1h合成脲醛树脂预聚体,环氧树脂胶液芯材/脲醛树脂预聚体壁材的质量比为(1.0~1.2):1.0,酸化阶段适宜温度为50℃,囊壁形成的pH值为2-3,囊壁固化增强阶段的适宜温度为60℃。
     研发了一种可在水泥基材料中发生固化反应并具有良好胶粘性的环氧树脂基裂缝修复剂,它由E-51环氧树脂、正丁基缩水甘油醚(BGE)稀释剂、咪唑类固化剂(MC120D)等组分构成。基于Kissinger和Arrhenius方程,分析了E-51/BGE/MC120D修复剂的固化反应动力学,当BGE为E-51质量的17.5%、MC120D为E-51质量的20%时,修复剂的固化反应活化能最低,有利于在水泥基材料中常温固化;借助差热和红外技术探讨了固化反应机理,MC120D掺量为10~30%时,修复体系固化分两步进行,而其掺量超过30%时,固化反应一步完成;运用毛细动力和虹吸原理,分析了水泥基材料中微胶囊破裂、环氧树脂胶液流出并渗入到裂缝处与固化剂发生固化反应修复裂缝的界面性能要求。由此得到了环氧树脂基修复剂的最优组成。
     设计并制备了一种基于微胶囊技术的自修复水泥基材料,试件由合成纤维、硅酸盐水泥、砂子、微胶囊和固化剂等组分构成。分析了含有微胶囊的水泥基材料的自修复机理,当水泥基材料开裂时,裂缝处的微胶囊破裂,环氧树脂胶液渗入裂缝内并与裂缝壁渗出的固化剂发生固化反应,形成具有强胶黏性的固化物,填塞缝隙,降低了孔隙率,阻断了连续孔缝,从而,修复了水泥基材料的强度和抗渗性,实现水泥基材料的自修复功能。
     建立了水泥基材料自修复性能评价方法,利用电化学阻抗谱法(EIS)、压汞法(MIP)和氮吸附法(BET),以渗流结构参数、孔结构参数和吸附-脱附曲线特征等指标,评价水泥基材料在不同荷载作用下损伤程度,并得出外加荷载达40~50%σmax时,水泥基材料开始出现明显裂缝—损伤;以损伤水泥基材料的强度、氯离子渗透性作为水泥基材料自修复率的评价指标,探讨了掺有微胶囊的水泥基材料自修复率的主要影响因素,其影响程度顺序为:微胶囊掺量>微胶囊直径>损伤程度>修复龄期。得出获得最大修复率的条件组合是6.0%微胶囊掺量、微胶囊直径为230μm、预压力为60%σmax时的损伤程度、修复龄期7d。
     通过上述研究,创立了一种水泥基材料自修复的UF/E型微胶囊技术,并试验验证了该技术可使水泥基材料具有一定的自修复功能,分析了微胶囊修复率的主要影响因素及其规律。但仍有一些问题需进一步研究,以实现该技术的工程化应用。
How to intelligently realize automatic percepts location of microcrack and damage in cement matrix and instantly self-heal is one of novel capacities of cement concrete repair, which is very important to improve durability of concrete and service life of concrete structure.
     Based on concrete material science, organic chemistry, physical chemistry and others relative theory, created microcapsule based technique for cementitious composites in the paper, and analysised relate theory, proposed evalution method of self-healing efficiency.
     Urea-formaldehyde/epoxy resin microcapsule synthesized for self-healing cementitious composite by in situ polymerization method, which is micro size spherical particle that urea formaldehyde resin as shell encapsulates core of epoxy resin glue solution, Through orthogonal test, and based on microscopic tests and kinetic, analized main effect factors of characterization parameters of UF/E microcapsule, such as particle size, shell thickness, surface morphology and envelopment rate, etc, and concluded optimal synthesis proce ss route and parameters, urea reacts with formaldehyde for1hour at70℃with molar ratio is1.5:1.0for obtaining pre-polymer, mass ratio of core material of epoxy resin glue solution/shell materal of urea-formaldehyde pre-polymer is (1.0~1.2):1.0, suitable temperature of acidification phase is50℃, and pH value of forming the wall material is2-3. The suitable temperature of enhanced stage of solidifying wall material is60℃.
     A kind of epoxy resin based crack repairing agent is developed that can be cured in cement based material with higher bonding capacitiy, which composited by epoxy resin E-51, Butyl Glycidyl Ether (BGE) and imidazole solidified agent (MC120D). Based on Kissinger equation and Arrhenius euquation, analized curing reaction kinetics of E-51/BGE/MC120D, when BGE is17.5%, MC120D is20%of E-51by mass, the activation energy of curing reaction of healing agent reach to lowst, which is favorable to curing at normal temperature in cement based material. By the differential ghermal analysis and FTIR analysis, explored mechanism of curing reaction, the test results show that when the content of MC120D is from10%to30%, the healing agent system is cured in two steps. However, when the content of MC120D exceeds30%, the curing reaction is completed in only one step. The capillary kinetics and siphon theory is used to analyze the performance requirements for microcapsule ruptured in the matrix, healing agent outflow from microcapsule and into microcrack for healing microcrack, and obtained the optimal composition of epoxy resin healing agent.
     The self-healing mechanism of cementitious materials with microcapsules is analyzed in this paper. When the cement-based materials cracked, the microcapsules next to the cracks ruptures, then the epoxy resin in the microcapsules react with the curing agent in the wall of cracks. The reacted materials form a kind of material with a strong plastic viscosity, filled in the cracks, which can decrease the porosity and block the continuous cracks, further repairing the strength and impermeability of cement-based materials, make the function of self-healing come true.
     Designed and prepared a microcapsule technique based self-healing cementitious composites, which constituted by PVA fiber, Portland cement, quratz sand, microcapsule and catalyst, etc. The evaluation method for self-healing of cementitious materials is also built in this paper. The percolation structure, pore structure and adsorption-desorption characteristics of crack controllable cementitious composites with different damage degree are investigated by the methods of electrochemical impedance spectroscopy (EIS), mercury intrusion poremetry (MIP) and nitrogen adsorption method (BET). The experimental results show that when the external load reaches to40-50%σmax, there is obvious cracks/damage in the matrix. The strength and Chloride ion permeability of damaged cementitious materials is considered as the evaluation index of self-healing. The factors influencing the self-healing rate of cementitious materials with microcapsules are also discussed. The sequence of influencing the self-healing rate is microcapsule dosage, followed by microcapsule diameter, damage degree and self-healing age. The condition for obtaining the maximum self-healing rate is that microcapsule dosage and diameter is6.0%and230μm, respectively, the damage degree is60%σmax, and the self-healing age is7days.
     Based on the above research, a kind of self-healing method is founded, named UF/E microcapsule technology. It is proved that the microcapsule technology makes cement-based material has certain self-healing function. Meanwhile, the main factors influencing self-healing rate of microcapsule is also analyzed. However, in order to achieve the technical engineering application, some problems are still needed further research.
引文
[1]Henk M. Jonkers. Self Healing Concrete:A Biological Approach [J]. Springer Series in Materials Science,2007,100:195-204.
    [2]Cady PD, Weyers RE. Chloride Penetration and the Deterioration of Concrete Bridge Decks. Cement [J], Concrete and Aggregates.1983,5(2):81-87.
    [3]Marsavina,L., Audenaert, K., De Schutter, G., et al. Experimental and Numerical Determination of the Chloride Penetration in Cracked Concrete [J]. Construction and Building Materials,2009,23(1):264-274.
    [4]Nishiwaki,J.P. de B. Leite and H. Mihashi. Enhancement in Durability of Concrete Structures with use of High-Performance Fibre Reinforced Cementitious Composites [J].2004.
    [5]Tomoya Nishiwaki, Hirozo Mihashi, Byung-Koog Jang, et al. Development of Self-Healing System for Concrete with Selective Heating around [J]. Crack. Journal of Advanced Concrete Technology,2006,4(2):267-275.
    [6]姚振巩,王洪江,王劫.注浆加固技术新进展[J].中国矿山工程,35(4):31-35.
    [7]Ming Zhang, Zhu Ding,Decheng Zhang. Highway Bridge Repair in Splash Zone and Tide Zone with Sulphoaluminate Based Concrete [C]. Proceedings of the Second International Conference on Transportation Engineering 2009, By China Communication and Transportation Association, Chengdu, China,2009,2:1365-1370.
    [8]Peter Andrew Mitchell. Freeze-Thaw and Sustained Load Durability of Near Surface Mounted FRP Strengthened Concrete [D]. Queen's University,2010.
    [9]Balaguru P, Kurtz S, Rudolph J. Geopolymer for Repair and Rehabilitation of Reinforced Concrete Beams [R]. Project:Geo-Structure Fire-Proof. Geopolymer Institute,1997.
    [10]Toutanji H, Deng Y, Zhang Y, et al. Static and Fatigure Performances of RC Beams Strengthened with Carbon Fiber Sheets Bonded by Inorganic Matrix [C]. Proceedings of 47th International SAMPE Symposium,2002:1354-1367.
    [11]王曼,冯鹏,叶列平,覃维祖.用于纤维片材加固混凝土结构的无机粘结材料—地聚物[C].第三届全国FRP及其工程应用学术交流会论文集,南京:工业建筑出版社,2004:16-20.
    [12]郑文忠,徐威,王英.用碱激发矿渣耐高温无机胶在混凝土表面粘贴碳纤维布试验研究[J].建筑结构学报,2009,30(4):138-144.
    [13]周本濂.复合材料的仿生研究[J].物理,1995,24(10):577-582.
    [14]刘颖.材料愈合途径[J].北京工业大学学报,1998,24(2):108-110.
    [15]匡亚川,欧进萍.混凝土裂纹的仿生自修复研究与进展[J].力学进展,2006,36(3):406-414.
    [16]TEC-QMC Materials Report Number:4476, Charpter 2.2006.
    [17]Abrams A. Autogenous Healing of Concrete [J]. Concrete,1925:10:50.
    [18]Nynke ter Heide. Crack healing in Hydrating concrete [D]. Netherlands:Delft University of Technology.2005:4-10.
    [19]C.K. Edvardsen. Wasserdurchlassigkeit und Selbstheilung von Trenrissen in Beton [D]. Rheinisch-Westfalische Technische Hochschule Aachen, Deutschland, 1996:152-174.
    [20]Carola Edvardsen. Water permeability and autogenous healing of cracks in concrete [J]. ACI Materials Journal,1999,96(4):448-454.
    [21]Cowie, J., Glasser, F.P.. The reaction between cement and natural waters containing dissolved carbon dioxide [J]. Adv. Cem. Res.,1991,4(15):119-134.
    [22]S. Granger, A. Loukili, G. Pijaudier Cabot. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis [J]. Cement and Concrete Research, 37(4):519-527.
    [23]N. ter Heide, Crack healing in hydrating concrete[D], Netherlands:Delft University of Technology.2005:4-6.
    [24]K.R. Lauer, Autogenous Healing of Cement Paste[J]. ACI Journal,1956,52(6:) 1065-1081.
    [25]袁慎芳.结构健康监控[M],北京:国防工业出版社,2007:241-315.
    [26]陶宝祺,熊克,袁慎芳,等.智能材料结构[M].北京:国防工业出版社,1997:44-67.
    [27]吴波,李惠,孙科学.形状记忆合金在土木工程中的应用[J].世界地震工程,1999,15(3):1-13.
    [28]Bo ZHOU, YanJu LIU, JinSong LENG,et al. A macro-mechanical constitutive model of shape memory alloys [J]. Science in China Series G:Physics, Mechanics& Astronomy,2009,52(9):1382-1391.
    [29]匡亚川,欧进萍.混凝土梁智能自修复试验与研究[J]大连理工大学学报,2009,49(3):408-413.
    [30]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社, 2003:411-450.
    [31]闰云聚,姜节胜,任礼行.智能材料结构及在振动控制中的应用研究评述和展望[J].西北工业大学学报,2000,(1):35-40.
    [32]曹照平,史庆轩,王社良.智能材料结构系统在土木工程中的应用研究[J].西北建筑工程学院学报:自然科学版,2000,17(3):1-4.
    [33]崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005,25(1):86-94.
    [34]崔迪.形状记忆合金及其智能混凝土结构研究[D].大连:大连理工大学,2007:10-21.
    [35]万鹏飞.基于空心光纤的智能结构自诊断、自修复系统研究[D].南京:南京航天航空大学,2004:1-12.
    [36]杨红,梁大开.空心光纤在复合材料断裂位置测量中的研究[J].复合材料学报,2001,19(1):122-125.
    [37]杨红,孙小菡,张明德.用于智能结构自诊断、自修复的新型光纤传感测试仪[J].仪器与仪表,2002,(9):13-15.
    [38]张妃二,姚立宁.光纤智能混凝土结构自修复的研究[J].功能材料与器件学报,2003,9(1):91-94.
    [39]万鹏飞,梁大开,郭明江,曾捷.Lab VIEW在空心光纤自修复系统中的应用[J].压电与声光,2004,26(2):95-97.
    [40]张志鹏,GAMBLING W A光纤传感器原理[M].北京:中国计量出版社,1991.
    [41]梁大开,杨红.采用空心光纤自诊断、自修复智能结构的研究[J].压电与声光,2002,24(4):261-263.等.
    [42]杨红,梁大开,陶宝祺,等.空心光纤在复合材料断裂位置测量中的研究[J].复合材料学报,2002,19(1):122-125.
    [43]杨红,陶宝祺,梁大开,等.空心光纤用于纸蜂窝结构自修复的研究[J].光纤与电缆及其应用技术,2000,(6):33-36.
    [44]杨红,陶宝棋,梁大开,等.光纤应用于结构自修复的研究[J].材料保护,2001,34(1):40-43.
    [45]C.J.乔可保罗斯.纤维光学与光隔离器[M].北京:宇航出版社,1990:1-19.
    [46]何颂华,曾凡江.仿生自愈合法修补楼板裂缝的探讨[J].广西城镇建设,2005,(11):51-52.
    [47]European Space Agency. Enabling Self-Healing Capabilities-a Small Step to Bio-Mimetic Materials [R]. Materials Report Number:4476, ESA Technical Note. 40-60.
    [48]孙凌,张福华,崔巍.自愈合水泥砂浆修复性能的研究[J].低温建筑技术,2008,(5):10-12.
    [49]Dry Carolyn,William. Three-Part Methylmethacrylate Adhesive System as an Internal Delivery System for Smart Responsie Concrete. Smart Materials and Structures,1996,5(3):297-300.
    [50]匡亚川,欧进萍.内置纤维胶液管钢筋混凝土梁裂缝自愈合行为试验和分析[J].土木工程学报,2005,38(4):53-60.
    [51]匡亚川.具有裂缝自愈合行为的两种混凝土材料及其构件[D].哈尔滨:哈尔滨工业大学,2002:58-66.
    [52]S.R.White, N.R.Sottos, P.H.Geubelle, J.S.Moore,et al. Autonomic healing of polymer composites[J].Nature.2001,409(1):794-817.
    [53]李岚,袁莉.微胶囊技术及其在复合材料中的应用[J].塑料工业,2006,34:287-290.
    [54]Ming Zhang, Feng Xing, Hongzhi Cui,etc. Study on Self-Healing Concrete with Pre-Embedded Healing Agent [J]. Advanced Materials Research,2011, Vols. 250-253:405-408.
    [55]Werner Stumm, James J. Morgan. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters (3rd edition) [M]. NY:Wiley-Interscience,1996.
    [56]Stocks-Fischer, S., Galinat, J.K., and Bang, S.S. Microbiological precipitation of CaCO3 [J]. Soil Biology and Biochemistry,1999, (31):1563-1571.
    [57]Jeremy L. Day, V. Ramakrishnan, and Sookie S. Bang. Microbiologically Induced Sealant for Concrete Crack Remediation [C]. Proceedings of the 16th ASCE Engineering Mechanics Conference, University of Washington, Seattle.2003, 93-111.
    [58]Jonkers H M. Self healing concrete:a biological approach [A]//vander ZWAAG S eds. Self Healing Materials, An Alternative Approach to 20 Centuries of Materials Science, Springer series in Materials Science 100 [C], Springer Netherlands,2007, 195-204.
    [59]袁雄洲,孙伟,陈惠苏.水泥基材料裂缝微生物修复技术的研究与进展[J].硅酸盐学报,2009,37(1):160-170.
    [60]Stefan Jacobsen, Jacques Marchand and Luc Boisvert. Effect of Cracking and Healing on Chloride Transport in OPC Conccrete [J]. Cement and Concrete Research,1996,26(6):869-881.
    [61]方永浩,安普斌,赵伟,岑奕侃.含裂缝水泥基材料的渗透溶蚀及其自愈[J].硅酸盐学报,2008,36(4):451-456.
    [62]Stefan Jacobsen, Erik J. Sellevold. Self Healing of High Strength Concrete after Deterioration[J]. Cement and Concrete Research,1996,26(1):55-62.
    [63]Wool RP, O'Connor KM. A Theory of Crack Healing in Polymers [J]. J Appl PHys, 1981,52 (10):5953-5963.
    [64]Brown EN, Sottos NR, White SR. Fracture testing of a self-healing polymer composite [J]. Experimental Mechanics,2002,42(4):372-379.
    [65]习志臻,张雄.仿生自愈合水泥砂浆的研究[J].建筑材料学报,2002,5(4):390-392.
    [66]V.C. Li, Reflections on the research and development of ECC [C], Proceedings of the JCI Int'l Workshop on Ductile Fiber Reinforced Cementitious Composites Application and Evaluation (DRFCC' 2002), Takayama,Japan,2002:1-21.
    [67]陈婷,詹炳根.设计PVA纤维水泥基复合材料的研究进展[J].混凝土,2003:(11):3-10.
    [68]Yingzi Yang, MICHAEL D.Lepech, et al. Self-Healing of Engineered Cementitious Composites Under Cyclic Wetting and Drying [C].Proc. Int. Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads (CMCL), Qingdao,China,2005:231-242.
    [69]唐明,潘吉,巴恒静.水泥基粉体颗粒群分形几何密集效应[J].沈阳建筑大学学报(自然科学版).2005,21(5):515-518.
    [70]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993:52-59.
    [71]谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512-517.
    [72]郑鸿祥.调粒水泥的水化及其性能研究[D].哈尔滨:哈尔滨工业大学,2006:22-27.
    [73]中国建筑科学研究院.JGJ 55-2000,普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001.
    [74]NEN—EN 206—1, Concrete - part 1:Specification, Performance, Production and Conformity [S]. Malaysia:Department of Standards Malaysia,2000:23-25.
    [75]王劲.结构用砂浆配合比设计方法研究[J].同济大学学报,1998,26(4):466-470.
    [76]重庆建筑工程学院,南京工学院.混凝土学[M].北京:中国建筑工业出版社,1981.
    [77]V C Li, Fukuyama H, Mikame A. Development of Ductile Engineered Cementitious Composite Elements for Seismic Structural Applications [C].In:Proceedings, Paper T177-5, Structural Engineering World Congress (SEWC)[C]. San Francisco,1998.
    [78]J.O. Outwater, Mod. Plast. Age,1960,33(7):156.
    [79]G.S.Holister and C. Thomas, Fibre Reinforced Materials, Elsevier, Amsterdam, 1966.
    [80]V.R.Riley, J. Compos. Mater.1968,2(4):436.
    [81]V.R. Riley, J.L. Reddaway, J. Mater. Sci,1968,3(1):41.
    [82]V.S. Ramachandran, R.F. Feldman, J.J.Beaudoin.混凝土科学—有关近代研究的专论[M]黄士元,孙复强,王善拨,等译.北京:中国建筑工业出版社,1986,181-234.
    [83]Josef Kaufmann, Roman Loser, Andreas Leemann. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption [J]. Journal of Colloid and Interface Science,2009,336(2):730-737.
    [84]姜奉华,徐德龙.碱矿渣水泥硬化体孔结构的分数维特征[J].硅酸盐通报.2007,26(4):830-833.
    [85]廉慧珍,童良,陈恩义,等.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [86]丁楠,吕树申.化工原理实验(第1版)[M].广州:中山大学出版社,2008:108-109.
    [87]Sidney Mindess, J. Francis Young. David Darwin. Concrete. New Jersey:Prentice Hall,2003,235-300
    [88]I. Odler, M. RoBler. Investigations on the Relationship Between Porosity, Structure and Strength of Hydrated Portland Cement Pastes. Ⅱ. Effect of Pore Structure and of Degree of Hydration [J]. Cement and Concrete Research,1985,15(3):401-410.
    [89]吴中伟,廉惠珍.高性能混凝土[M].北京,中国铁道出版社,1999,14-20.
    [90]张帅.增稠剂在PVA超高韧性纤维增强水泥基复合材料中的应用[D].大连:大连理工大学,2007,35-36.
    [91]Aveston J, Cooper G A, Kelly A. Single and Multiple France. In:The Properties of Fiber Composites [M], Conference Proceedings of the Nation Physics Laboratory, Guildford, U. K., London:IPC Science and Techmokpgy Press,1971,15-26.
    [92]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004,49-83.
    [93]T. Kanda, V.C. Li, Interface Property and Apparent Strength of High Strength Hydrophilic Fiber in Cement Matrix [J], ASCE Journal of Materials in Civil Engineering,1998,10 (1):5-13.
    [94]Jin-Keun Kim, Jeong-Su Kim, Gee Joo Ha, et al. Tensile and Fiber Dispersion Performance of ECC (Engineered Cementitious Composites) Produced with Ground Granulated Blast Furnace Slag [J]. Cement and Concrete Research,2007, 37(7)1096-1105.
    [95]谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社.1990:114-120.
    [96]韦克宇.混凝土细观结构及损伤对渗透性的影响[D].桂林:广西大学,2009,86-90.
    [97]王礼立,蒋昭镳,陈江瑛.材料微损伤在高速变形过程中的演化及其对率型本构关系的影响[J].宁波大学学报,1996,9(3):47-55.
    [98]施绍裘,王永忠,王礼立.国产C30混凝土考虑率型微损伤演化的改进Johnson-Cook强度模型[J].岩石力学与工程学报,2006,25(增1):3250-3257.
    [99]翁其能,袁勇,王学军.渗透作用下开裂混凝土的材料损伤模型[J].材料导报,2008,22(5):104-110.
    [100]翁其能,袁勇,王学军.渗透作用下开裂混凝土的材料损伤模型[J].材料导报,2008,22(5):104-110.
    [101]王中平,吴科如,阮世光.单轴压缩作用对混凝土气体渗透性的影响[J].建筑材料学报,2001,4(2):127-131.
    [102]贺鸿珠,范立础,史美伦.长期载荷作用下混凝土的渗流结构[J].建筑材料学报,2005,8(5):572-576.
    [103]SCHEIDEGGER A E.多孔介质中的渗流物理[M].王鸿勋,张朝琛,孙书琛译.北京:石油出版社,1982,26-164.
    [104]张云莲,史美伦,陈志源.钢渣掺合料对水泥基材料渗流结构的影响[J].建筑材料学报,2005,8(3):316-320.
    [105]史美伦.混凝土阻抗谱[M].北京:中国铁道出版社,2003,109-115.
    [106]刘国飞,陈志源,史美伦.掺高钙粉煤灰水泥砂浆孔结构的交流阻抗研究[J].粉煤灰,1999,(3):24-25.
    [107]李国翠.水泥基材料水化过程基本特性的电化学阻抗谱研究[D].哈尔滨:哈尔滨工业大学,2010:14-64.
    [108]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001:36-37.
    [109]杨正宏,史美伦.混凝土冻融循环的交流阻抗研究[J].建筑材料学报,1999,2(4):365-368.
    [110]杨正宏,史美伦.水泥浆体/碎石界面性能的交流阻抗研究[J].重庆建筑大学学报,2000,22(1):124-128.
    [11 1]贺鸿珠,陈志源,史美伦,黄新.掺粉煤灰水泥基材料水化过程的交流阻抗研究[J].粉煤灰,2003,(2):7-9.
    [112]贺鸿珠,史美伦,陈志源.矿物掺合料对混凝土渗流结构的影响[J].建筑材料学报,2001,4(2):138-142.
    [113]杨正宏,史美伦.碱集料反应对混凝土渗流结构的影响[J],建筑材料学报.2001,4(3):255-258.
    [114]韦江雄,余其俊,曾小星,等.混凝土中孔结构的分形维数研究[J].华南理工大学学报:自然科学版,2007,135(2):121-124.
    [115]Pandey S P, Sharma R L. The influence ofmineral additives on strength and porosity of OPC mortar [J]. Cement and Concrete Research,2000,30(1):19-23.
    [116]W inslow D N. Fractal character in cement and concrete[J].Cement and Concrete Research,1985,15(10):817-824.
    [117]唐明.混凝土孔隙分形特征的研究[J].混凝土,2000,(8):3-5.
    [118]M. Arandigoyen, J. I. Alvarez. Pore structure and mechanical properties of cement-lime mortars. Cement and Concrete Research.2007 (37) 767-775.
    [119]谢和平.分形—岩石力学导论[M].北京:科学技术出版社,1996:27-95.
    [120]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,23(2):145-164.
    [121]周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述[J],西安矿业学院学报,1997,17(2):97-102.
    [122]李永鑫,陈益民,贺行洋.等.粉煤灰—水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):774-779.
    [123]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报(自然科学版),2001,17(4):272-275.
    [124]C.C. Yang. On the Relationship Between Pore Structure and Chloride Diffusivity from Accelerated Chloride Migration Test in Cement-Based Materials [J]. Cement and Concrete Research,2006,36(7):1304-1311.
    [125]R. Kumar, B. Bhattacharjee. Study on Some Factors Affecting the Results in the use of MIP Method in Concrete Research [J]. Cement and Concrete Research.2003, 33(3):417-424.
    [126]唐明,李晓.多种因素对混凝土孔结构分形特征的影响研究[J].沈阳建筑大学学报(自然科学版),2005,21(3):232-237.
    [127]李永鑫,陈益民,贺行洋,等.粉煤灰—水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):774-779.
    [128]Gregg,S.J., Sing, K.S.W..吸附、比表面与孔隙率[M].高敬宗,等.译.1989:3-5.
    [129]严继民,张启元,高敬琮.吸附与凝聚—固体的表面与孔(第二版)[M].北京:科学技术出版社,1986,98-124.
    [130]刘常洪,李德洋.煤低温氮吸附等温线的试验研究[J].煤矿安全,1992,(7):19-21.
    [131]Jeffrey J. Thomas, John Hsieh, and Hamlin M. Jennings. Effect of Carbonation on the Nitrogen BET Surface Area of Hardened Portland Cement Paste [J]. Advn Cem Bas Mat,1996,3(2):76-80.
    [132]张兴华.煤的原生孔结构对煤层渗透性的影响[J].煤矿安全,2005,36(11):4-7.
    [133]Maria C. Garci Juenger, Hamlin M. Jennings. The Use of Nitrogen Adsorption to Assess the Microstructure of Cement Paste [J]. Cement and Concrete Research, 2001,31(6):883-892.
    [134]杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].碳素,2006,1:17-22.
    [135]Robert L. Rarick, Jeffrey J. Thomas Bruce J. Christensen, and Hamlin M. Jennings. Deterioration of the Nitrogen BET Surface Area of Dried Cement Paste with Storage Time [J]. Advn Cem. Bas Mat.1996,3(2):72-75.
    [136]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [137]李岚,袁莉,梁国正,谢建强.工艺参数对聚脲甲醛包覆环氧树脂微胶囊物性的影响[J].复合材料学报.2006,23(15).51-57.
    [138]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999:1-2.
    [139]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [140]方雷,石光,李国明,等.环氧树脂微胶囊的制备研究[J],中国胶粘剂,2005,14(11):9-12.
    [141]付仁春,周菁,袁青梅,郑保忠.制备脲醛树脂阿维菌素微胶囊的研究[J],云南化工,2003,30(4):14-16.
    [142]罗艳,陈水林.原位聚合法制备微胶囊过程中的毛电位[J],印染助剂,2002,17(1):6-9.
    [143]罗艳,陈水林.分散燃料微胶囊的制备及其结构性能的关系[J].燃料助剂,2002,19(5):8-10.
    [144]徐年凤,熊建民,倪珏萍.农药微胶囊悬浮剂的研究[J].现在农药,2003,6(2)7-9.
    [145]许时婴,张晓鸣,夏书芹,等.微胶囊技术—原理与应用[M].北京:化学工业出版社,2006.
    [146]张兴祥.相变材料胶囊制备与应用[M].北京:化学工业出版社,2009,38-39.
    [147]Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materals [J]. Int J Pharmaceutics,2002,242:307.
    [148]冯薇,葛艳蕊,王申.脲甲醛预聚物对酞绿颜料微胶囊化的影响[J].颜料与染 色,2003,40(4):195-197.
    [149]冀林仙,石敏先,隆泉,等.脲醛树脂微胶囊的制备[J].材料导报,2005,19(5):109-110.
    [150]来水利,陈峰,王克玲.成囊工艺对环氧树脂微胶囊形成状态影响[J].应用化工,2009,38(8):1132-1135.
    [151]李岚.用于复合材料自修复的微胶囊的合成[D].西安:西北工业大学,2006:29-31.
    [152]李立,薛敏钊,王伟,等.原位聚合法制备分散染料微胶囊[J].精细化工,2004,1(21):76-80.
    [153]韩丙勇,张学军.水溶液中的表面活性剂和聚合物[M].北京:化学工业出版社,材料科学与工程出版中心,2005.350-352.
    [154]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.211-212.
    [155]L. Yuan, G. Z. Liang, J. Q. Xie et al. Preparation and characterization of poly (urea-formaldehyde) microcapsules filled with epoxy resins [J]. Polymer,2006, 47(15):5338-5349.
    [156]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2001,1-100.
    [157]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001:3-6.
    [158]俞庆森,周效贤.大学化学新实验[M].杭州市:浙江大学出版社,1990:172-173.
    [159]冯薇,葛艳蕊,王申.脲甲醛预聚合对酞菁绿G颜料微胶囊化的影响[J].燃料与染色,2003,40(4):195-197.
    [160]Min X., Wenheng J., Weihong X.. Effect of interfacial tension in preparation of PS microsphere [J]. Journal of Nanjing University of Technology (Natural Science Edition),2007,29(5):1-4.
    [161]崔波,曹长青,张青瑞.尿素和甲醛合成眼醛树脂粘合剂的动力学研究[J].中国胶粘剂,1996,6(4):4-7.
    [162]倪卓,杜学晓,王帅,等.UF微胶囊合成反应的动力学研究[J].深圳大学学报理工版,2011,28(3):248-254.
    [163]潘祖仁.高分子化学[M].北京:化学工业出版社,2002,40-41.
    [164]赵临五,王春鹏.脲醛树脂胶粘剂—制备、配方、分析与应用[M].北京:化学工业出版社,2009,80-82,52-53.
    [165]赵德,刘峰,慕卫,等.毒死蜱微胶囊制备中表面形貌和包封率的影响因素[J].应用化学,24(5):589-592.
    [166]李岚,袁莉,梁国正,等.工艺参数对聚脲甲醛包覆环氧树脂微胶囊物性的影响[J].复合材料学报,2006,23(5):51-57.
    [167]E. N. Brown, M. R. Kesslers, N. T. Sottost, et al. In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene [J].Journal of Microencapsulation,2003, 20(6):719-730.
    [168]童晓梅,张敏,张婷,等.自修复聚脲甲醛微胶囊的制备及成囊机理研究[J].塑料科技,37(1).2009:64-67.
    [169]P. Narayanm, M. A. Wheatley, Preparation and characterization of hollow microcapsules for use as ultrasound contrast agent [J].polymer engineering Science, 1999,39(11):2242-2255.
    [170]许建明.微胶囊技术对无机盐的改性研究[D].南京:南京理工大学.2002:15-18.
    [171]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001:30-32.
    [172]方一,李路海,莫黎听,等.不同分散手段和反应条件对合成酚醛环氧树脂微胶囊的影响[J].包装工程,29(10),2008:33-36.
    [173]宋正红,张志英,董知之,等.用差示扫描量热法求微胶囊的壁材厚度[J].天津工业大学学报,2006,25(3):5-8.
    [174]T. Yin, M. Z. Rong, M. Q. Zhang, et al. Self-healing epoxy composites Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent [J]. Composites Science and Technology,2007,67(2):201-212.
    [175]李岚.用于复合材料自修复的微胶囊的合成[D].西安:西北工业大学,2006:57-58.
    [176]刘振海.聚合物量热测定[M],北京:化学工业出版社,2002.
    [177]许虹霞.环氧树脂固化剂的微胶囊化及其对环氧树脂固化行为的影响[D].杭州:浙江大学,2007:29-36.
    [178]杜小弟.苯基双弧衍生物的合成机理及其固化环氧树脂的动力学研究[D].武汉:武汉理工大学,2007:32-53.
    [179]H. E. Kssinger.Reaction Kinetics in Differential Thermal Analysis [J]. Anal Chem. 1957,29:1702-1706
    [180]L. W. Crane, P. J. Dynes, D. H. Kaelble. Analysis of Curing Kinetics in Polymer composites [J]. J. Polym. Sci.,1973,11:533.
    [181]E-Joon Choi,Jung-Chul Seo,Hong-Ki Bae,Jong Keun Lee. Synthesis and curing of new aromatic azomethine epoxies with alkoxy side groups [J]. European Polymer Journal 2004, (40):259-265.
    [182]T. Ozawa. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886.
    [183]朱兴松,刘丽丽,程子霞,等.环氧树脂与氰酸酯共固化反应的研究[J].纤维复合材 料,2002,(2):6-9.
    [184]Adalbert Farkas, Paul F. Strohm. Imidazole catalysis in the curing of epoxy resins [J]. Journal of Applied Polymer Science,1968,12(1):159-168.
    [185]杨衍绪,邓光琪,庞瑶华,田兴和.应用FT-IR研究环氧树脂的固化过程*E51/2,4EMI体系的固化反应特性及动力学[J].西安交通大学学报,23(5):1989.
    [186]F Ricciardi, W A Romanchick, M M Joullie. Mechanism of imidazole catalysis in the curing of epoxy resins[J]. Polymer Science.1983,21:1475-1481.
    [187]张银生,尤瑜升,冀克俭,等.红外光谱法测定环氧树脂的环氧值[J].化学计量.1995,4(1):18-21.
    [188]甘乐民.红外光谱吸收比法测定双酚A型环氧树脂的环氧值[J].涂料工业,1984,(4):47-48.
    [189]袁骏.红外光谱分析在环氧树脂与胶固化剂反应申的一些简单应用[J].上海涂料,2003,41(2):30-34.
    [190]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1999:6-212.
    [191]张庆思,陈惠荣.红外光谱技术在环氧树脂涂料研究中的应用[J1.山东轻工业学院学报,1994,8(4):15-18.
    [192]Junwei Gu, Qiuyu Zhang, Jing Dang, et al. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites[J]. Polymer Bulletin,2009,62(5):689-697
    [193]Abdelkader, AF, White, JR. Curing characteristics and internal stresses in epoxy coatings:Effect of crosslinking agent[J]. Journal of Materials Science,2005,40(8): 1843-1854.
    [194]翁诗甫.傅里叶变换红外光谱分析[M].第2版.北京:化学工业出版社,2010,389.
    [195]李子帙.红外光谱分析用于双酚A型环氧树脂的实验教学[J].光谱实验室,29(3):1649-1651.
    [196]S. K. Ooi, W. D. Cook, et al. DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents [J]. Polymer,2000,44(10):3639-3649.
    [197]杜学晓.自修复微胶囊及其聚合物复合料材[D].深圳:深圳大学,2009,20-50.
    [198]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993,107-108.
    [199]赵海龙,刘大顺,陈效鹏.一种基于数字图像的表面张力测量方法—悬滴法[J].实验力学,2010,25(1):100-105.
    [200]贾晶晶,李敏,顾轶卓,等.E51环氧树脂固化过程表面张力测试方法与变化规律[C].第十五届全国复合材料学术会议论文集(上册),北京:国防工业出版社, 2008:506-510.
    [201]郑冬梅.微液滴的表面张力驱动及其自运动行为研究[D].青岛:青岛理工大学,2010:20-40.
    [202]张际先.接触角和固体表面自由能[J].江苏工学院学报,(4):91-99.
    [203]张世举,程延海,邢方方.接触角与表面自由能的研究现状与展望[J].煤矿机械,2011,32(10):8-10.
    [204]高世桥,刘海鹏.毛细力学[M].科学出版社,2010:60-170.
    [205]李海燕,王荣国,刘文博,等.微胶囊自修复复合材料的研究进展[J].玻璃钢/复合材料,2007,(4):48-52.
    [206]谢英,侯文萍,王向东.差热分析在水泥水化研究中的应用[J].水泥,1997,(5):44-48.
    [207]彭春元,赵辉.利用红外光谱技术分析水泥性能[J].水泥技术,2001,(4):63-65.
    [208]江虹.红外分析在水泥化学中的应用[J].贵州化工,2001,26(4):30-32.
    [209]石开勇.有机微胶囊在建筑材料中的应用研究[D].深圳:深圳大学,2010:93-96.
    [210]Luping Tang. A study of the quantitative relationship between strength and pore-size distribution of porous materials [J], Cement and Concrete Research,1986, 16(1):87-96.
    [211]A.M. Neville混凝土的性能(原著第四版)[M].刘数华,冷发光,李新宇,等译.北京:中国建筑工业出版社.2011,199-225.
    [212]Riccardo Sersale, Raffaele CioffiGiuseppe, Frigione Fortunato Zenone. Relationship Between Gypsum Content, Porosity and Strength in Cement. I. Effect of SO3 on the Physical Microstructure of Portland Cement Mortars [J]. Cement and Concrete Research,1991,21(1):120-126.
    [213]Balshin, M.Y.. Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous metal-ceramic materials [J]. Dokl Akad SSSR,1949,67(5):831-834.
    [214]A. Grudemo. Development of Strength Properties of Hydration Cement Pastes and Their Relation to Structural Features [C]. Proc. Symp. on Some Recent Research on Cement Hydration,1975,8.
    [215]Yong-Xin Li, Yi-Min Chen, Jiang-Xiong Wei,et al. A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste [J]. Cement and Concrete Research,2006,36 (9):1740-1743.
    [216]EUGENE RYSHKEWITCH. Compression Strength of Porous Sintered Alumina and Zirconia.9th Communication to Ceramography [J]. Journal of the American Ceramic Society,1953,36(2):65-68.
    [217]K.K. Schiller, Strength of porous materials [J]. Cement and Concrete Research, 1971,1(4):419-422.
    [218]D. P. H. HASSELMAN. On the Porosity Dependence of the Elastic Moduli of Polycrystalline Refractory Materials [J]. Journal of the American Ceramic Society, 1962,45(9):452-453.
    [219]D. P. H. HASSELMAN. Relation Between Effects of Porosity on Strength and on Young's Modulus of Elasticity of Polycrystalline Materials [J]. Journal of the American Ceramic Society,1963,46(11):564-565.
    [220]S. Baozhen, S. Erda. Relation between properties of aerated concrete and its porosity and hydrates. Pore structure and materials properties [C], Proc. Int. RILEM Congress,1987,232-237.
    [221]E.P. Kearsley, P.J. Wainwright. The effect of porosity on the strength of foamed concrete [J]. Cement and Concrete Research,2002,32 (2):233-239.
    [222]V.S.Ramachandran, R.F.Feldman, J.J.Beaudoin.混凝土科学—有关近代研究的专论[M].黄士元,孙复强,王善拨,等译.北京:中国建筑工业出版社.1986,30-57.
    [223]E. P. Kearsley, P.J Wainwright. The effect of porosity on the strength of foamed concrete [J]. Cement and Concrete Research,2002,32 (2):233-239.
    [224]史美伦,张雄,李平江,等.胶凝材料的组成、力学性能与交流阻抗谱的关系[J],硅酸盐通报,1999,(4):14-18.
    [225]GB/T 50082-2009,普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2010:32-39.
    [226]Larbi. J.A. Microstructure of the Interfacial Zone Around Aggregate Particles in Concrete [M]. Netherlands:Stevin-Laboratory of the Fac. of Civil Engineering, 1993:1-69.
    [227]P.K. Mahta, D. Manmohan. Pore Size Distribution and Permeability of Hardened Cement Paste [C].7th International Symposium of the Chemistry of Cement, Paris, Ⅲ,Ⅶ. Paris:International Congress on the Chemistry of Cement,1980:1-5.
    [228]A. Abbas, M.Carcasses, J.P.Ollivier. The importance of gas permeability in addition to the compressive strength of concrete [J]. Magazine of Concrete Research,2000, 52(1):1-6.
    [229]T. C. POWERS. Structure and Physical Properties of Hardened Portland Cement Paste [J]. Journal of the American Ceramic Society,1958,41(1):1-6.
    [230]张奕.氯离子在混凝土中的输运机理研究[D].杭州:浙江大学,2008,17-31.
    [231]A. Abbas, M. Carcasses, J. P. Ollivier. The Importance of Gas Permeability in Addition to the Compressive Strength of Concrete [J]. Magazine of Concrete Research,2000,52(1):1-6.
    [232]P.K. Mehta, C. Manmohan. Pore size distribution and permeability of hardened cement pastes [C].7th International Congress on the Chemistry of Cement, Paris, 1980, Vol.Ⅲ,1-5.
    [233]赵铁军.混凝土渗透性[M].北京:科学出版社.2-10.
    [234]赵铁军,李淑进.混凝土的强度与渗透性[J].建筑技术,2002,33(1):20-20.
    [235]C.C. Yang. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials [J]. Cement and Concrete Research,2006,36(7):1304-1311.
    [236]P. Halamickova, R.J. Detwiler, D.P. Bentz, et al. Water permeability and chloride ion diffusion in Portland cement mortars:relationship to sand content and critical pore diameter [J], Cem. Concr. Res,1995,25 (4):790-802.
    [237]Dale P. Bentz and Edward J. Garbocz. Percolation of phases in a three-dimensional cement paste microstructural model [J]. Cement and Concrete Research,1991, 21(2-3):325-344.
    [238]E. J. Garboczi, D. P. Bentz. Computer simulation of the diffusivity of cement-based materials [J]. Journal of Materials Science 1992,27(8):2083-2092.
    [239]Robert C. Weast. Handbook of chemistry and physics Handbook of chemistry and physics [M].57th edition, Cleveland:CRC Press,1976.
    [240]Powers, T.C., Brownyard, T.L.. Studies of the physical properties of hardened cement paste [J]. Journal of the American Concrete Institute.1947,18(1):43,101, 249,469,549,669,845,993.
    [241]J. Francis Youngal, Will Hansen. Volume Relationships for C-S-H Formation Based on Hydration Stoichiometries [C]. Materials Research Society Symposium Proceedings,1986,85:313.
    [242]Edward J. Garboczi, Dale P. Bentz. Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete [J]. Advanced Cement Based Materials,1998,8(2):77-88.
    [243]文俊强,张文生,张建波.自密实混凝土最大连续孔径及孔连通度的研究[J].中国建材科技,2010,(S2):138-142.
    [244]C.C. Yang, S.W. Cho, L.C. Wang. The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials [J]. Materials Chemistry and Physics,2006,100(2-3):203-210.
    [245]A. J. KATZ, A. H. THOMPSON. Prediction of Rock Electrical Conductivity From Mercury Injection Measurements [J]. Journal of Geophysical Research,1987, 92(B1):599-607.
    [246]D. Berman, B. G. Orr, H. M. Jaeger, et al. Conductances of filled two-dimensional networks [J]. Physical Review. B,1986,33(6):4301-4302.
    [247]Pavla Halamickova, Rachel J. Detwiler. Water permeability and chloride ion diffusion in portland cement mortars:relationship to sand content and critical pore diameter [J]. Cement and Concrete Research,1995,25(4):790-802.
    [248]Yongxin Li,, Yimin Chen, Jiangxiong Wei, et al. A Study on the Relationship Between Porosity of the Cement Paste with Mineral Additives and Compressive Strength of Mortar Based on this Paste [J]. Cement and Concrete Research.2006, 36(9):1740-1743.
    [249]Halamickova P., Detwiler R.J., Bentz D.P., Garboczi E.J. Water permeability and chloride ion diffusion in portland cement mortars:relationship to sand content and critical pore diameter [J]. Cement and Concrete Research,1995,25(4):790-802.
    [250]K Wang, Jansen D, Shah S, Karr A. Permeability Study of Cracked Concrete [J]. Cement Concr Res 1997,27(3):381-93.
    [251]Aldea C-M, Shah S, Karr A. Permeability of Cracked Concrete [J]. Mater Struct 1999,32 (3):370-376.
    [252]Chen J, Lin K, Young S. Effects of Crack Width and Permeability on Moisture Induced Damage of Pavements [J]. ASCE J Mater Civil Eng,2004,16(3):276-82.
    [253]Song H, Kwon S, Byun K, Park C. Predicting Carbonation in Early aged Cracked Concrete [J]. Cement Concr Res 2006,36(5):979-89.
    [254]L. Marsavina, K. Audenaert b, G. De Schutte, et al. Experimental and Numerical Determination of the Chloride Penetration in Cracked Concrete [J]. Construction and Building Materials,2009,23 (1):264-274.
    [255]A. Djerbi, S. Bonnet, A. Khelidj, V. Baroghel-bouny. Influence of Traversing Crack on Chloride Diffusion into Concrete [J]. Cement and Concrete Research,2008, 38(6):877-883.
    [256]张武满,孙伟.侵蚀介质侵入水泥基材料中孔径与裂宽的临界值[J].硅酸盐学报, 2008,36(10):1417-1422.
    [257]C. Tognazzi, J.P. Ollivier, M. Carcassess, J. M. Torrenti, Couplage fissuration degradation chimique des materiaux cimentaires:Premiers resultats sur les proprietes de transfert, in:Ch. Petit, G. Pijaudier-Cabot, J.M. Reynouard (Eds.), Ouvrages, geomateriaux et interactions, Hermes, Paris,1998,69-84, (in French).
    [258]W. Wittke. Rock mechanics:theory and applications with case histories, Springer, Berlin,1990.
    [259]Seung Yup Jang, Bo Sung Kimb, Byung Hwan Oh. Effect of Crack Width on Chloride Diffusion Coefficients of Concrete by Steady-state Migration Tests [J]. Cement and Concrete Research.2011,41(1):9-19.
    [260]Kejin. Wang, Daniel. C. Jansen, Surendra P. Shah. Permeability Study of Cracked Concrete [J]. Cement and Concrete Research.1997,27 (3):381-393.
    [261]R. Gagne;R. Francois;P. Masse. Chloride penetration testing of cracked mortar samples [C]. Third International Conference on Concrete Under Severe Conditions CONSECO1, Vancouver, BC, Canada,2001:198-205.
    [262]C. M. Aldea, S. P. Shah and A. Karr. Permeability of Cracked Concrete [J]. Materials and Structures,1999,32(5):370-376
    [263]Corina-Maria Aldea;Surendra P. Shah;Alan Karr. Effect of Cracking on Water and Chloride Permeability of Concrete [J]. Materials and Structures.1999,11(3): 181-187.
    [264]Edward J. Garboczi. Permeability, diffusivity, and microstructural parameters:A critical review [J]. Cement and Concrete Research,1990,20(4):591-601.
    [265]B. Gerard, H.W. Reinhardt, D. Breysse, Measured transport in cracked concrete, in: H.W. Reinhardt (Ed.), Penetration and Permeability of Concrete:Barriers to Organic and Contaminating Liquids, E&FN SPON, U.K.,1997,265-324.
    [266]Handbook of Chemistry and Physics [M].81th ed.CRC Press, Washington, D.C., 2000.
    [267]Seung Yup Jang, Bo Sung Kim, Byung Hwan Oh. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests [J]. Cement and Concrete Research,2011,41(1):9-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700