用户名: 密码: 验证码:
微熔模精铸过程微尺度成形及充型流动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微熔模精铸工艺可以低成本、大批量地高效制备三维复杂的微金属铸件,是近几年来问世的最具竞争力的微构件微细加工工艺之一。
     本文自主研发了超声场下制备纳米晶石膏铸型的新工艺,并利用离心力场下微熔模石膏型精铸工艺制备成形了直径小至100μm的微尺度铸件。并对微熔模石膏型精铸过程中涉及的超声细化形核规律、微尺度液态金属润湿规律、微充型流动规律及其停止流动机理、微圆丝的显微组织与力学性能等问题进行了深入系统研究,揭示了微尺度条件下,润湿、充型流动、形核、显微组织和力学性能等方面的微尺度效应及微观机理。
     研究了微尺度金属液滴在原子级平整的云母平面上的微润湿规律,发现微观尺度时,润湿角则随着金属液滴尺寸的减小而降低,表现出了显著的微尺度效应,微尺度与宏观尺度的临界分界点为rc=0.33 mm,只有在金属半径为大于此值的宏观尺度时,润湿角才不随半径变化而保持常数。在经典的Young方程基础上,改进并推导出了微尺度液滴在理想平面上的铺展动力学方程表达式,并借助此公式进行了铺展动力学的计算机数值模拟计算。依据霍尔兹曼自由能保持不变的热力学判据,推导出了微小液滴在测量微润湿角时重量可否被忽略的判据。
     借助超声空化理论和形核热力学理论,推导出了超声力场下石膏晶粒形核率的表达式。依据形核率公式得出了形核率与温度和压力的相互影响规律,研究发现,超声力场作用可以极其显著地改变石膏晶粒的形态和细化石膏晶粒尺寸,施加超声力场后,石膏晶粒由重力场下长径比高达十几倍的细针状,转变为超声力场作用后的近球形;而石膏晶粒尺寸由重力场下的15~30μm,显著细化至超声力场的500 nm。通过研究不同烧结温度以及铸型成份对微铸型表面粗糙度的影响,确立了微熔模精密铸造用铸型的最佳烧结温度和最佳铸型成份,并制备具有低表面粗糙度的纳米晶石膏微铸型,可完全满足成形微米尺度铸件对于低表面粗糙度铸型的严苛要求。
     在重力场条件下宏观尺度流动的传统Navier-Stokes微分方程以及微尺度下流动的新型Navier-Stokes微分方程的基础上,本文改进并建立了离心力场下的微尺度流动的Navier-Stokes全新微分方程。借助相似物理模拟理论,以及离心力场下的微尺度流动的Navier-Stokes微分方程,推导出了离心力场下流体在微尺度下离心流动的相似准则。以特殊成份的水溶液作为模拟流体,对Zn-4%Al合金熔体在石膏铸型流道内的微尺度流动规律进行了相似物理模拟研究。结果表明:离心力场下流体在横浇道内的微充型流动过程中,优先通过横截面积最大的流道;在充型流动过程中,流体的总能量保持不变,即位能、压力能、平动动能和离心转动动能的总和不变;在流体流动过程中,会发生动能和势能之间的相互转化,并以逐层方式平稳的充填流道;在整个充型流动过程中,流体的自由液面始终以转轴为圆心的规则圆弧面。
     在重力场下伯努利流动方程的基础上,附加考虑离心力的作用,推导出了离心力场中微尺度条件下流体总流流动的伯努利方程。并在此伯努利方程的基础上,推导出了离心力场下微尺度充型流动时浇注系统可否充满流动的判据表达式,以及离心力场下微尺度充型流动时阻流断面的水力学计算公式。
     借助自主研制的纳米晶石膏基铸型以及离心力场微熔模精密铸造工艺,实际铸造成形了不同直径的Zn-4%Al合金微尺度铸件。实验结果表明:液态金属在微流道中充型流动时,其充型长度随着微流道半径的减小而降低,随着旋转速度和铸型预热温度的增加而提高,并呈现出明显的微尺度效应。采用离心力场微熔模精密铸造工艺,可制备出的微圆丝最小直径细至100μm,充型长度可高达20mm,长径比高达200倍。当微圆丝的直径大于400μm时,液态金属在微流道中充型长度增加非常明显,从而确定出400μm为充型流动的宏观尺度与微尺度的临界分界点。研究发现微熔模石膏精密铸造过程中,离心力场下微尺度管道内液态金属的停止流动机理为“整体堵塞”的停止流动机理,明显不同于液态金属宏观尺度流动时的“端部堵塞”停止流动机理,呈现出显著的微尺度效应
     研究发现,微圆丝的显微组织和力学性能表现出了强烈的微尺度效应:
     预热温度显著影响微尺度条件下晶粒尺寸:随着铸型预热温度从130℃增加到270℃,微圆丝的晶粒尺寸增大约10倍,共晶组织平均片层间距也增加约5倍。
     当平均晶粒尺寸减小10倍时,微圆丝抗拉强度提高约1.7倍,拉伸强度与平均晶粒尺寸之间符合Hell-Petch公式;随着微圆丝直径从300μm到100μm,微圆丝的纳米硬度增大约1.1倍,与宏观尺度铸件的硬度0.72 Gpa相比,达到了宏观尺度铸件的4.9倍左右。
Micro precision casting based on gypsum can effectively prepare complex three dimensional micro-metal components with low cost and mass. It is one of the most competitive micro-component processing crafts in the last few years.
     With the aid of self-developed nano scale gypsum as mold materials and using the centrifugal micro precision casting craft based on gypsum, we actually prepare micro scale casting in the diameter of 100μm. The questions in this work including the refining grain law of nucleation in ultrasonic field, the wetting law of liquid metal in micro scale, the filling law and mechanism of cessation in micro scale and the microstructure and mechanical properties of micro castings were researched. The micro scale effects and microscopic mechanism on wetting, filling flow, nucleation, microstructure and mechanical properties have been found in the work.
     The micro wetting law of micro scale metal droplet on mica with atomically smooth was studied. The significant micro scale effects were found in micro scale that the contact angle decreases with reducing the size of metal droplet. The critical demarcation point is rc=0.33 mm between the macroscopic and the microscopic scale. The contact angle is not changed with varing the radius of contact line when r>rc.Spreading kinetics equation of micro scale liquid droplet on ideal surface was improved and derivated by classic Young equation, and with which the calculation of numerical simulation was completed. The criterion that gravity is ignored when contact angles are tested was derivated through thermodynamic criterion on the constant of Holzman free energy. The nucleation rate eqution of gypsum grain in ultrasonic field was derivated by
     cavitation theory and thermodynamic theory of nucleation, and the relationship between nucleation and temperature or pressure was acquired by the factors of nucleation rate. It is found that the grain shape and the grain size of gypsum were significantly changed and refined by ultrasonic field. The needle shape of gypsum grain was varied to nearly spherical in the ultrasonic field, and the grain size with 15~30μm was refined to the 500 nm in the ultrasonic field. We studied the influence of different sintering temperature and the mold component to the surface roughness of micro mould. As a result, the micro mould of gypsum with nano grain in high surface roughness were prepared, and which meet fully the needs of micro scale castings.
     Based on the macroscopic Navier-Stokes equation in the gravity field and the micro scale Navier-Stokes equation, micro scale Navier-Stokes equation was established and improved under the centrifugal field. The microscale similar criterion in centrifugal force was derivated by the theory of similar criterion and microscale Navier-Stokes equation in centrifugal force. Taken water solution of special ingredients as simulation fluid, the flow rule of Zn-4%Al alloy in micro scale mould prepared by gypsum was simulated. It is found that the liquid pass firstly through the runner with biggest cross section area during filling of fluid in centrifugal force. The total energy of fluid including potential energy, pressure energy and kinetic energy is an constant during filling, and transforms between kinetic and potential energy. The liquid fills smoothly channel in the way to successive step, and the fluid free head is regular circular arc surface which takes the revolution axis as the center of circle.
     The total flow Bernoulli’s equation under the condition of micro scale in the centrifugal force was acquired by adding centrifugal force into Bernoulli’s equation in the gravity. According to it, hydraulics equation of section and gating system been fall of liquid with micro scale in centrifugal force were deduced.
     With the aid of self-developed nano grain of gypsum as casting mould and using the micro precise centrifugal casting, different diameter parts of Zn-4%Al alloy with micro scale were perpared. It is found in the experiments that the flow length of micro round wires shows obviously micro scale effects, or the flow length decreased with decreasing diameter of micro round wires and incresed with increasing centrifugal speed and preheating temperature. The smallest diameter of micro round is 100μm, its flow length achieves 20 mm and the aspect ratio reaches up to 200. The flow length increased significantly when the diameter of micro round wire is more than 300μm. And it is determined in the research that the critical demarcation point of diameter is 300μm between macroscopic scale and microscopic scale. At the same time, the mechanism of cessation in the micro channel of liquid metal in centrifugal field is mechanism of the overall blockage. It shows micro scale effects and is sigificantly different from the cessation of end blockage in macro scale.
     It is found in the research that microstructure and mechanical properties of micro round wires appear obviously micro scale effects.
     The grain size also affected by preheating temperature under the micro scale condition. With increasing preheating temperature from 130℃to 270℃, the grain size increased about 10 times, and the interlamellar spacing of eutectic structure increased also approximately 5 times.
     The tensile strength of micro round wires increased approximately 1.7 times when the average grain size decreased 10 times. The relationship between them is in accordance with hell-petch equation; The nano hardness of micro round wires increased approximately 1.1 times with deducing the diameter from 300μm to 100 μm, and is approximately 4.9 times to the castings in macrosopic scale whose hardness is 0.72 GPa.
引文
1林辉.マィクロメヵニズムの现状と今后の课题.精密工学会志. 1990, (4): 445~451
    2 R. P. Feynman. There's Plenty of Room at the Bottom. Journal of Microelectromechanical Systems. 1992,1(1):60~66
    3 S. C. Terry. A Miniature Silicon Accelerometer with Builtin Damping. Digest IEEE Solid-State Sensor and Actuator Workshop. 1988:114~116
    4邵培革,王立鼎,任延同.微机械元件和仪器新进展.光学精密工程. 1999,7(1):10~15
    5周兆英,王晓浩,叶雄英.微型机电系统.中国机械工程. 2000,11(2):163~168
    6温诗铸,丁建宁.微型机械设计基础研究.机械工程学报. 2000,36(7):39~42
    7 K. Wise and K. Najafi. Microfabrication Techniques for Integrated Sensor and Microsystems. Sciences. 1991,1254:1335~1342
    8 O. Kromer, O. Fromhein and H. Gemmeke . High-precision Readout Circuit for LIGA Acceleration Sensors. Sensors and Actuators A: Physical. 1995, A46: 196~200
    9 I. Bolshakova. Magnetic microsensors: Technology, Properties, Application. Sensors and Actuators A: Physical. 1998,A68:282~285
    10 S. Middelhoek. Celebration of the Tenth Transducers Conference: the past, Present and Future Research and Development. Sensors and Actuators. 2000, A82:2~23
    11张凤田,唐祯安.加热式气压微传感器与电路集成技术.中国集成电路. 2006,1:23~25
    12张霞.微机电系统与微加速度计.物理与工程. 2004,14(1):18~25
    13 S. Patrick, O. G. Jens and M. K. Lars. Piezoelectric Triaxial Accelerometer. Journal of Micromechanical and Microengineering. 1996,6(1):131~133
    14 F. Mailly, A. Giani and A. Martinez. Micromachined Thernal Accelerometer. Sensors and Actuators. 2003, A103:359~363
    15 J. J. Yao. MEMS from a Device Perspective. Journal of Micromechanical andMicroengineering. 2000,10:9~38
    16谌贵辉,张万里,彭斌. MEMS微致动器的研究.微纳电子技术. 2004,9:32~36
    17 E. K. Chan and R. W. Dutton. Electrostatic Micromechanical Actuator with Extended Range of Travel. Journal of Microelectromechanical Systems. 2000,9(3):321~328
    18 S. Tadokoro, S. Yamagami and M. Ozawa . Soft Micromanipulation Device with Multiple Degrees of Freedom Consisting of High Polymer gel Actuators. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). 1999: 37~42
    19 K. Bandyopadhyay. Smart Materials and Aerospace Structures. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3903:312~324
    20王宏.微电子机械系统发展研究.微处理机. 2002, 3:4~7
    21孙大涌.先进制造技术.机械工业出版社. 2000:484
    22 M. Lemkin and B. E. Boser. A Three-axis Micromachined Accelerometer with a CMOS Position-sense Interface and Digital Offset Trim Electronics. IEEE JSSC. 1999,4:456~468
    23 R. Rajeshuni. Fabrication of Diamond Microstructures for Microelectromechanical Systems (MEMS) by a Surface Micromachining Process. Thin Solid Films. 1999,340(1-6):1~6
    24 W. A. Clark, R. T. Howe and R. Horowitz. Surface Micromachined z-axis Vibratory Rate Gyroscope. Proc.of Solid-State Sensor and Actuator Workshop. Hilton Head(USA). 1996,6:283~286
    25 M. James, R. T. Bustillo and S. Richard. Surface Micromachining for Microelectromechanical Systems. Proceedings of The IEEE. 1998,86(8):552~1574
    26袁明权.硅基微机械加工技术.半导体技术. 2001,26(8):6~10
    27郝一龙,张立宪,张大成.硅基MEMS技术.机械强度. 2001,23(4):523~526
    28 W. H. Juan and S. W. Pang. A Novel Etch Diffusion Process for Fabrication High Aspect Ratio Microstructures. Transducers‘95. 1995:560~563
    29 W. H. Juan and S. W. Pang. High-aspect-ratio Si Etching for Microsensor Fabrication. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1995,13(3):834~838
    30 G. T. A. Kovacs, N. I. Maluf and K. E. Petersen. Bulk Micromachining of Silicon. Proceedings of The IEEE. 1998,86(8):1536~1551
    31 S. Lee, S. Park and D. Cho. The Surface/Bulk Micromachining (SBM) Process:A New Method for Fabricating Released MEMS in Single Crystal Silicon. Journal of Microelectromechanical Systems. 1999.8(4):409~416.
    32欧益宏.硅的深槽刻蚀技术研究.微电子学. 2004,34(1):45~47
    33 S. Tanaka, M. Hara and M. Esashi. Air-turbine-driven Micro-polarization Modulator for Fourier Transform Infrared Spectroscopy. Technical Digest of the 17th Sensor Symposium. 2000:29~32
    34 E. W. Becher, W. Ehrfeld and P. Hagmann. Fabrication of Microstructures with High Aspect Ratios and Great Structural Geights by Synchrotron Radiation Lithography, Galvanoforming and Plastic Moulding (LIGA process). Microelectronic Engineering. 1986,4:35~56
    35 W. Menz. The LIGA Technique in Microsystem Technology. Materials Scinence and Technology News. 1989:1~2
    36张光照,王香文.微机械加工技术-LIGA技术.传感器技术. 1997,16(2):57~60
    37 W. Ehrfeld and H. Lehr. Deep X-ray Lithography for the Production of Three-dimensional Microstructures from Metals, Polymers and Ceramic. Radiation Physics and Chemistry. 1995,45(3):349~365
    38 H. Guckel, T. R. Christenson and K. J. Skrobis. Deep X-ray and UV Lithographies for Micromechanics. Solide-State Sensor and Actuator Workshop. Hilton Head, SC, USA, IEEE. 1990:118~122.
    39 T. R. Ohnstein, J. D. Zook and J. A. Cox. Tunable IR Filters using Flexible Metallic Microstructures. Proceedings of Micro Electro Mechanical System (MEMS’95), Amsterdam the Netherlands, IEEE. 1995:170~174
    40 O. Tabata, N. Matsuzuka, T. Yamaji, S. Uemura and K. Yamamoto. 3D Fabrication by Moving Mask Deep X-ray Lithography with Multiple Stages. Proceedings of Micro Electro Mechanical System(MEMS’2002). Las Vegas, NV, USA, IEEE. 2002,:180~183
    41赵万生,王振龙,郭东明.国外特种加工技术的最新进展.电加工. 1999,(5): 12~19
    42东京大学マィクロマシソ研究体.超技术マィクロマシソ. 1993:5.
    43宋小中,刘正埙.电火花微细加工的工艺研究.电加工. 1995,2:14~18
    44王振龙,赵万生,迟关心.微三维结构型腔的微细电火花加工.微细加工技术. 2000,1:71~78
    45 K. P. Rajurkar and Z. Y. Yu. 3D micro-EDM using CAD/CAM. Annuals of the CIRP. 2000,49(1):127~130
    46刘晋春,赵家齐.特种加工.机械工业出版社. 1995:135
    47 T. Masuzawa, M. Fujino and K. Kobayashi. Wire Electro-discharge Grinding for Micro-machining. Annauls of the CIRP. 1985,34(1):431~434
    48陈迪,张大成,赵旭. DEM技术研究.微细加工技术. 1998,4:1~6
    49赵旭,陈迪,张大成.三维微加工新技术—DEM技术研究.高技术通讯. 2000,5:107~109
    50陈迪,雷蔚,李昌敏,张卫平,郑炳初. DEM技术中微复制工艺研究.微细加工技术. 2000,1:61~65
    51刘立兵,赵毅,李明辉,潘伟.基于RP技术的激光诱导选择性化学沉积微细加工技术.机械工程学报. 2003,39(1):137~142
    52李宝明,邱复生,李涤尘等.激光烧结金属粉末制造微型机械的研究.中国机械工程. 2000,12:1391-1393
    53王平,克智,唐一平.微型机械零件的机械加工与SL法快速制造. RP技术与快速模具制造. 1998年全国快速成形与模具快速制造会议.西安, 1998:62~65
    54于殿泓,劳奇成,卢秉恒.微型制造中的掩模快速成形技术.机械设计与制造工程. 2000,29(4):27~29
    55沈连官,王翔,邓益民.激光光刻成形法在微型机械研究中的应用.光学精密工程. 1995,3(2):11~15
    56章维一,侯丽雅.光成型技术在微小机械加工中的应用.高技术通讯. 2000,10(3):65~69
    57任明星.微米尺度构件金属型微铸造成形规律及组织性能研究.哈尔滨工业大学博士论文. 2008:9
    58 B. S. Li, M. X. Ren, C. Yang and H. Z. Fu. Microstructure of Zn-Al4 alloy microcastings by micro precision casting based on metal mold. Transactions of Nonferrous Metals Society of China. 2008,18(2):327~332
    59 C. H. Amon and J. L. Beuth. Shape Deposition Manufacturing with Microcasting; processing, thermal and mechanical issues. Journal ofManufacturing Science an Engineering. 1998,(120):656~665
    60 L. J. Zarzalejo, K. S. Schmaltz and C. H. Amon. Molten Droplet Solidification and Substrate Remelting in Microcasting PartⅠ: Numerical Modeling and Experimental Verificatioin. Heat and Mass Transfer, 1999,34(6):477~485
    61高玉来,邹长东,杨斌,翟启杰.单个微米级SnAgCu金属微滴的大冷速热分析研究.中国科学E辑:技术科学. 2009,39(2):224~228
    62 G. Bumeister, K. Mueller, R. Ruprech and J. Haussel. Production of Metallic High Aspect Ratio Microstructures by Microcasting. Microsystem Technologies. 2002,8:105~108
    63 G. Bumeister, R. Ruprech and J. Haussel. Microcasting of Parts Made of Metal Alloys. Microsystem Technologies. 2004,10:261~264.
    64 G. Bumeister, R. Ruprech and J. Haussel. Replication of LIGA Structures using Microcasting. Microsystem Technologies. 2004, 10: 484~488.
    65 G. Baumeister, S. Rath and J. Hausselt. Microcasting of Al Bronze and a Gold Base Alloy Improved by Plaster-bonded Investment. Microsystem Technologies. 2006, 12(8):773~777
    66 R. Ruprecht, T. Benzler, T. Hanemann, K. Muller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Wollmer and J. Hauβelt. Various Replication Techniques for Manufacturing Three-dimensional Metal Microstructures. Microsysterm Technologies, 1997,4:28~31
    67 S. Chung, S. Park, L. Lee, H. Jeong and D. Cho. Replication Techniques for a Metal Microcomponent Having Real 3D Shape by Microcasting Process. Microsustem Technologies. 2005,11:424~428
    68 C. M. Ho. and Y. C. Tao. Micro-electro-mechanical-system(MEMS)and Fluid Flows. Annuals Review of Fluid Mechanics. 1998,30:579~612
    69 Gad el Hak. The Fluid Mechanics of Microdevices-the Freeman Scholar Lecture. Journal of Fluids Engineering, 1999,121:5~33
    70 M. Knudsen. Die Gesetze der Molekularstr?mung and der Inneren riebungsstr?mung der Gase Durch Rohnen. Annalen der Physik. 1909,28: 75~130
    71 S. Schaaf and P. Chambre. Flow of Rarefied Gases. Princeton: Princeton University Press. 1961:66
    72 E. M. K. George, B. Ali.多相复杂系统与多尺度方法课题组译. micro flows——Fundamentals and Simulation.化学工业出版社. 2006:14
    73 J. Poiseuille. Experimental Investigations upon the Flow of Liquids in Tubes of very Small Diameters. Sciences Mathematiques et Physiques. 1846,9:433~545
    74 X. N. Jiang,Z. Y. Zhou,J. Yao,Y. Li and X. Y. Ye. Micro-fluid Flow in Microchannel. In: Transducers’95, Eurosensors IX, Sweden. 1995:317~320
    75 M. Makihara, K. Sasakura and A. Nagayama. Flow of Liquids in Micro-capillary Tube Consideration to Application of the Navier-Stokes Equations. Journal of the Japan Society of Precesion Engineering/Seimitsu Kogaku Kaishi. 1993,59(3):399~404
    76 S. M. Flockhart and R. S. Dhariwal. Experimental and Numerical Investment into the Flow Characteristics of Channels Etched in <100> Silicon. ASME, Jouranl of Fluids Engineering. 1998, 120: 291~295
    77 G. M. Mala and D. Li. Flow Characteristics of Water in Microtubes. International Journal of Heat and Fluid Flow. 1999,20:142~148
    78 J. Pfahler, J. Harley, H. Bau and J. Zemel. Gas and Liquid Fflow in Small Channels. DSC. 1991,32:49~59
    79李勇,江小宁,周兆英.微管道流体的流动特性.中国机械工程. 1994,5(3):24~25
    80江小宁,周兆英,李勇.微流体流动的试验研究.光学精密工程. 1995,3(3):51~55
    81江小宁,周兆英,李勇.微流量测量系统及其在微流体运动研究中的应用.仪器仪表学报. 1995, 6(1):346~351
    82丁英涛,姚朝晖,郝鹏飞.变截面微管道的制作与气体流动特性分析.机械强度. 2003, 25(2):144~147
    83王补宣,彭晓峰,胡抗英. V形微槽内沸腾液体的流动阻力特性.工程热物理学报. 1998,19(3):345~349
    84李站华,周兴贝,朱善农.非极性小分子有机液体在微管道中的流量特性.力学学报. 2002,34(3):432~438
    85 T. M. Adams, S. I. Abdel-Khalik and S. M. Jeter. Applicability of Traditional Turbulent Single Phase Forced Convection Correlations to Non-Circular Microchannels. International Journal of Heat Mass Transfer. 1999,42(23):4411~4415
    86 P. Wu and W. A. Little. Measurement of The Heat Transfer Characteristics ofGas Flow in Fine Channel Heat Exchanger Used for Microministure Refrigerators. Cryogenics. 1984,24:415~421
    87 E. W. Washburn, The Dynamics of Capillary Flow. Physics Review. 1921,17 (3):273~283
    88 A. Marmur, In: M. E. Schrader, E. B. Loeb, (Eds.), Modern Approach to Wettability: Theory and Applications, Plenum: New York. 1992:327
    89 Y. Xiao, F. Yang and R. Pitchumani. A Generalized Analysis of Capillary Flows in Channels. Journal of Colloid and Interface Science. 2006,298(2):880~888
    90 W. R. Jong, T. H. Kuo, S. W. Ho, H. H. Chiu and S. H. Peng, Flows in Rectangular Microchannels Driven by Capillary Force and Gravity. International Communications in Heat and Mass Transfer. 2007,34(19):186~196
    91范英俊.特种铸造.浙江大学出版社. 1995:193~194
    92 K. Watanabe, O. Miyakawa, Y. Takada, O. Okuno and T. Okabe. Casting Behavior of Titanium Alloys in a Centrifugal Casting Machine. Biomaterials. 2003,24(10):1737~1743
    93盛文斌. TiAl基合金排气阀金属型离心铸造过程研究.哈尔滨工业大学博士学位论文. 2000,7:20~94
    94苏彦庆,郭景杰,贾均. TiAl基合金涡轮熔模型壳离心精密铸造.稀有金属材料与工程. 2002,31(4):295~298
    95曾兴旺,陈立亮,刘瑞祥.离心铸造数值模拟技术的研究与开发.铸造. 2004,53(4):310~313
    96 C. Y. Li, S. P. Wu, J. J. Guo, Y. Q. Su, W. S. Bi and H. Z. Fu. Model Experiment of Mold Filling Process in Vertical Centrifugal Casting. Journal of Materials Processing Technology. 2006,176:268~272
    97 S. P. Wu, C. Y. Li, J.J. Guo, Y. Q. Su, X. Q. Lei and H. Z. Fu. Numerical Simulation and Experimental Investigation of Two Filling Methods in Vertical Centifugal Casting. Transactiouns of Nonferrous Metals Society of China. 2006,16:1035~1040
    98 D. M. Xu, H. L. Ma and J. J. Guo. Numerical Simulation for Mold-filling and Coupled Heat Transfer Processes of Titanium Shaped Castings under Centrifugal Forces. TMS 2007 Annual Meeting & Exhibition. Orlando, 2007:151~158
    99 D. M. Xu, L. M. Jia and H. Z. Fu. Effects of Centrifugal and Coriolis Forces on the Mold-filling Behavior of Titanium Melts in Vertically Rotating Molds. China Foundry. 2008,5(4):249~257
    100袁芳.钛合金离心铸造充型流动与缺陷规律研究.哈尔滨工业大学硕士论文. 2006:14~44
    101隋艳伟.钛合金立式离心铸造缺陷形成与演化规律.哈尔滨工业大学博士学位论文. 2009:23~60
    102 T. Young. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London. 1805,95:65~87
    103 D. Q. Li. Drop Size Dependence of Contact Angles and Line Tension of Solid-Liquid Systems. Colloids and Surface A: Physicochemical and Engineering Aspects. 1996,116(2):1~23
    104 L. Boruvka and A. W. Neumann. Generalization of the Classical Theory of Capillarity. The Journal of Chemical Physics. 1977,66(12):5464~5476
    105 W. D. Harkins. Linear or Edge Energy and Tension as Related to the Energy of Surface Formation and of Vaporization. The Journal of Chemical Physics. 1937,5(2):135~140
    106 F. P. Buff, H. J. Saltsburg. Curved Fluid Interfaces. II. The Generalized Neumann Formula. The Journal of Chemical Physics. 1957,26(1):23~31
    107 J. A. De Feijter and A. Vrij. I. Transition regions,Line Tensions and Contact Angles in Soap Films. The Journal of Electroanalytical Chemistry. 1972,37(1):9~22
    108 J. S. Rowlinson and B. Widow. Molecular Theory of Capillarity. New York : Oxford Scinece Publications. 1984:256
    109 J. Langmuir. Oil Lenses on Water and the Nature of Monomolecular Expanded Films. The Journal of Chemical Physics. 1933,1(11):756~776
    110 N. L. Gershfeld and R. J. Good. Line Tension and the Penetration of a Cell Membrane by an Oil Drop. The Journal of Theory Biol. 1967,17(2):246~251
    111 J. A. Wallace and S. Schürch. Line Tension of a Sessile Drop on a Fluid—Fluid Interface Modified by a Phospholipid Monolayer. Journal Colloid and Interface Science. 1988,124(2):452~461
    112 A .B. Ponter and A. P. Boyes. The Relation between Contact Angle and Drop Size for Water at its Boiling Point for a Pressure Range 50–760 Torr. CanadianJournal of Chemistry. 1972,50(15):2419~2422
    113 A. P. Boyes and A. B. Ponter. The Influence of Condensate Drop Size on the Dropwise Filmwise Transitioin for Pure Vapors. Journal of Chemical Engineering Japan. 1974,7(4):314~316
    114 A. B. Ponter and M. Yekta-Fard. The Influence of Environment on the Drop Size-Contact Angle Relationship. Colloid and Polymer Science. 1985,263(8):673~681
    115 M. Yekta-Fard and A. B. Ponter. The Influences of Vapor Environment and Temperature on the Contact Angle-drop Size Relationship. Journal Colloid and Interface Science. 1988,126(1):134~140
    116 R. J. Good and M. N. Koo. The Effect of Drop Size on Contact Angle. Journal Colloid and Interface Science. 1979,71(2):283~292
    117 J. Drelich and J. Miller. The Effect of Surface Heterogeneity on Pseudo-line Tension and the Flotation Limit of Fine Particles. Colloids and Surfaces. 1992,69(1):35~43
    118 J. Drelich, J.Miller and J. Hupka. The Effect of Drop Size on Contact Angle over a Wide Range of Drop Volumes. Journal Colloid and Interface Science. 1993,155(2):379~385
    119 J. Drelich and J. Miller. The Effect of Solid Surface Heterogeneity and Roughness on the Contact Angle/Drop (Bubble) Size Relationship. Journal Colloid and Interface Scinece. 1994,164(1):252~259
    120 J. Gaydos and A. W. Neumann. The Dependence of Contact Angles on Drop Size and Line Tension. Journal Colloid and Interface Science. 1987,120(1):76~86
    121 D. Q. Li and A. W. Neumann. Determination of Line Tension from the Drop Size Dependence of Contact Angles. Colloids and Surfaces. 1990,43(2):195~206
    122 D. Duncan, D. Q. Li, J. Gaydos and A. W. Neumann. Correlation of Line Tension and Solid-Liquid Interfacial Tension from the Measurement of Drop Size Dependence of Contact Angles. Journal Colloid and Interface Scinece. 1995,169(2):256~261
    123 H. Schonhrn, H. L. Frisch and T. K. Kwei. Kinetics of Wetting of Sufaces by Polymer Melts. Journal of Applied Physics. 1966,37(13):4967~4973
    124 S. Newman. Kinetics of Wetting of Surfaces by Polymers: Capillary Flow. Journal of Colloid and Interface Science. 1968,26(10):209~213
    125 T. P. Yin. The Kinetics of Spreading. The Journal of Physical Chemistry. 1969,73(7):2413~2417
    126 B. W. Cherry and C. M. Holmes. Letters to the Editors: Kinetics of Wetting of Surfaces by Polymers. 1969,29(1):174~176
    127 E. Ruckenstein. Dynamics of Partial Wetting. Langmuir. 1992,8(6):3038~3039
    128 Y. Gu and D. Q. Li. A Moder for a Liquid Drop Spreading on a Solid Surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998,142(2):243~256
    129 G. Mchale, N. J. Shirtcliffe, S. Aqil, C. C. Perry and M. I. Newton. Topography Driven Spreading. Physical Review Letters. 2004,93(3):036102-1~036102-4
    130 M. J. de Ruijter and J. De Coninck. Contact Angle Relaxatioin during the Spreading of Partially Wetting Drops. Langmuir. 1997,13(10):7293~7298
    131 H. H. Schulz. Modelling and Anatomy of Tooth Crowns. Dental Labor. 1976,24(1):51~54
    132 G. Baumeister, J. Hausselt, S. Roth and R. Ruprecht. Microcasting. In: D L?he J.Haubelt(eds) Advanced Micro and Nanosystems:Micro-engineering in Metals and Ceramics. Wiley-VCH. Weinheim.2005,357~393
    133 S. Rath, G. Baumeister and J. Hausselt. Investments for Casting Micro Parts with Base Alloys. Microsystem Technologies. 2006,12(3):258~266
    134高以熹.石膏型熔模精铸工艺及理论.西北工业大学出版社. 1992:145
    135 N. B. Singh and B. Middendorf. Calcium Sulphate Hemihydrate Hydration Leading to Gypsum Crystallization. Progress in Crystal Growth and Characterization of Materials. 2007,53(1):57~77
    136罗启全.铝合金石膏型精密铸造.广东科技出版社. 2005:234
    137袁润章.胶凝材料学.武汉工业大学出版社. 1996:115
    138牟国栋.半水石膏水化过程中的物相变化研究.硅酸盐学报. 2002,30(4):532~536
    139 C. L. Chew, M. F. Land, C. C. Thomas and R. D. Norman. Investment Strength as a Function of Time and Temperature. Journal of Dentistry. 1999,27(8):297~302
    140 S. Matsuya and M. Yamane. Decomposition of Gypsum Bonded Investments.Journal of Dental Research. 1981,60(8):1418~1423
    141 W. J. O’Brien and J. P. Nielsen. Decmposition of Gypsum Investment in the Presence of Carbon. Jouranl of Dental Research. 1959,38(3):541~547
    142 L. Herforth and H. M. Winter.超声的基本原理与应用.同济大学“超声的基本原理与应用”译校工作组译.上海科学技术出版社. 1961:3
    143刘海梅.超声波对金属凝固特性及组织影响的研究.上海大学博士论文. 2007:2~7
    144 D. Kashchiev. On the Relation between Nucleation Work, Nucleus Size and Nucleation Rate. Journal of Chemical Physics. 1982,76(10):5098~5102
    145 M. Patrick, R. Blindt and J. Janssen. The Effect of Ultrasonic Intensity on the Crystal Structure of Palm Oil. Ultrasonics Sonochemistry. 2004,11(4):251~255
    146 I. Nishida. Precipitation of Calcium Carbonate by Ultrasonic Irradiation. Ultrasonics Sonochemistry. 2004,11(6):423~428
    147 E. Dalas. The Ultrasonic Field on Calcium Carbonate Scale Formation. Journal of Crystal Growth. 2001,222(2):289~292
    148 J. Lee, N. Kim and B. Park. Effect of Ultrasound on Crystallization Behavior and Ferroelectric Properities of Sol-gel-derived Pb(Zr, Ti)O3 Thin Film. Journal of Crystal Growth. 2003,249(3):531~537
    149 N. Amara, B. Ratsimba, A. Wilhelm and H Delmas. Crystallization of Potash Alum: Effect of Power Ultrasound. Ultrasonics Sonochemistry. 2001,8(3):265~270
    150 H. Li, J. Wang, Y. Bao, Z. Guo and M. Zhang. Rapid Sonocrystallization in the Salting-out Process. Journal of Crystal Growth. 2003,247(2):192~198
    151 Z. Guo, M. Zhang, H. Li, J. Wang and E. Kougoulos. Effect of Ultrasound on Anti-solvent Crystallization Process. Journal of Crystal Growth. 2005,273(4):555~563
    152 N. Enomoto, S. Maruyama and Z. Nakagawa. Sonochemical Power Processing of Iron Hydroxides. Ultrasonics Sonochemistry. 1996,32:s97~s103
    153 N. Lycako, F. Espotalier, O. Louisnard and J. Schwartzentruber. Effect of Ultrasound on the Induction Time and the Metastable Zone Widths of Potassium Sulphate. Chemical Engineering Journal. 2002,86(3):233~241
    154 R. Chow, R. Buildt, R. Chivers and M. Povey. The Sonocrystallization of Ice in Sucrose Solutions: Primary and Secondary Nucleation. UltrasonicsSonochemistry.2003,41(8):595~604
    155 R. Chow, R. Buildt, A. Kamp, P. Grocutt and R. Chivers. The Microscopic Visualisation of the Sonocrystallization of Ice Using a Novel Ultrasonic Cold Stage. Ultrasonics Sonochemistry. 2004,11(4):245~250
    156 Z. Guo, A. G. Jones and N. Li. The Effect of Ultrasound on the Homogeneous Nucleation of BaSO4 during Reactive Crystallization. Chemical Engineering Science. 2006,61(5):1617~1626
    157 D. Li, F. Y. H. Lin and A. W. Neumann. Effect of Corrugations of the Three-phase Line on the Drop Size Dependence of Contact Angles. Journal of Colloid and Interface Sciecne. 1991,142(1):224~231
    158 V. A. Ogarev, T. N. Timonina, V. V. Arslanov and A. A. Trapeznikov. Spreading of Polydimethylsiloxane Drops on Solid Horizontal Surfaces. Journal of Adhesion. 1974,6:337~355
    159 E. Rulon and J. R. Johnson. Conflicts between Gibbsian Thermodynamics and Recent Treatments of Interfacial Energies in Solid-Liquid-Vapor Systems. Journal of Physics Chemical. 1959,63(10):1655~1658
    160 H. Schonhrn, H. L. Frisch and T. K. Kwei. Kinetics of Wetting of Sufaces by Polymer Melts. Journal of Applied Physics. 1966, 37(13): 4967~4973
    161 W. Wayne, Y. Lau and M. B. Charles. Kinetics of Spreading, Polystyrene Melts on Plane Glass Surfaces. Journal of Colloid and Interface Science. 1973,45(2):295~302
    162 ?. ?ikalo, C. Tropea and E. N. Gani?. Dynamic Wetting Angle of a Spreading Droplet. Experimental Thermal and Fluid Science. 2005,29(6):752~802
    163 H. Ohno, S. Nakano, O. Miyakawa, K. Watanabe and N. J. Shiokawa. Effects of Phase Transformations of Silicas and Calcium Sulfates on the Compressive Strength of Gypsum-bonded Investments at High Temperatures. Journal of Dental Research. 1982,61(9):1077~1082
    164 T. Mori. Thermal Behavior of the Gypsum Binder in Dental Casting Investments. Journal of Dental Research. 1986,65(6):877~884
    165 W. K. Luk and B. W. Darvell. Effect of Burnout Temperature on Strength of Gypsum-bonded Investments. Dental Materials. 2003,19(6):552~557
    166 X. J. Zhang, K. K. Tong, R. Chan and M. Tan. Gold Jewellery Casting: Technology Design and Defects Elimination. Journal of Materials ProcessingTechnology. 1995,48(2):603~609
    167中国机械工程学会铸造专业学会编.铸造手册卷3—铸造非铁合金.机械工业出版社. 1993:402~417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700