用户名: 密码: 验证码:
微震事件检测及震相自动识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年我国数字地震观测台网迅速发展,特别是随着“十五”项目“中国数字地震观测网络项目”的完成,以及近年来经济发展迅猛,国家对于大型可能诱发水库地震的水库、受地震后可能引发次生灾害的油田、矿山、石油化工及大型煤矿等重要设施要求必须建设专用地震监测台网,地震台网规模越来越大,地震观测台站越来越多,数据每年以海量产出,人们对实时地震数据自动处理系统的要求越来越迫切,同时由于地震是自然灾害中破坏性最强的,近年来人们对于建立地震预警系统的呼声也越来越高,这些都是建立在深入研究地震事件和地震震相的自动识别基础之上。
     微小地震虽然破坏性不大,但却是研究大地震和整个地震带应力场的基础,本世纪初在经历了印尼大地震引发的海啸和“5.12”汶川大地震以后,我们清楚认识到当前对于地震预报这一世界性科学难题仍然没有更好的办法,但对于减轻地震灾害的渴望越来越大,因此国家努力加大台网观测密度,丰富了观测资料,提供了我们进一步认识地下精细结构的可能,小地震震相简单,在目前的技术前提下,比较容易实现自动识别,震相的自动识别处理不但能减轻人们处理资料的负担,而且能快速的获得更多的震相识别结果、便于人们了解地震时空发展动态过程具有深远的意义。
     地震的自动处理过程包括事件自动检测和震相自动识别两部分,目前没有一种方法可以把这两件事情做得很好,基于目前的情况,我们深入的研究了目前常用的SLT/LSA等检测算法。总结了人们对于地震事件的研究和震相识别的各种方法,国内的应用情况,具有征对性的进行了以下几方面的详细研究:
     1.对区域地震事件检测方法进行了总结,详细研究了STA/LTA这一应用最广泛的检测方法和偏振(极化)检测法,编写程序验证地震波的偏振对于检测微震事件和判断震相的可行性。基于协方差矩阵的特征值法和奇异值分解的方法可较清晰的反映宽频带记录中的小地震事件,而且是基于三分向记录进行的检测方法,实践表明,该方法可增强识别率降低误检率,可用该方法构造特征函数与别的方法综合进行微震事件检测。
     2.总结了震相自动识别的方法,以Akaike信息准则(AIC)为基础,用基于自回归的AR-AIC、基于样本方差的VAR-AIC、基于高阶统计量的TOC-AIC、和基于记录振幅(能量)的AOC-AIC方法对比进行自动检测了小地震中的PG、SG震相,自动识别的结果表明,较高的信噪比有较高的识别精度,低信噪比事件数据需要经过滤波处理后方能得到可靠的自动识别精度。各种AIC方法中,VAR-AIC、AOC-AIC方法计算量小,速度快,应用AIC方法识别震相到时必须保证计算的数据段便能保证识别的可靠性,AIC方法是基于单分向数据进行检测的。偏振特征法是基于三分向数据进行检测和震相分析的,具有较好的可信度,但是因检测识别计算过程中要取一定长的时间窗口构造协方差矩阵,因此在进行震相识别的时候所取数据长度窗口越小,震相起始点的精度越高。
     3.我们应用P波与S波的质点运动特征,以乌江水库地震台网的资料分析了P波段、S波段质点偏振主轴方向Z与其它两个正交方向Y与X的特征关系进行了分析统计,结果表明以P波段为偏振模型进行坐标旋转以后与S波三分向特征值特点差异明显,P波质点运动主轴方向Z与另两正交方向上的特征值的幅值比2×Z / ( X + Y)、Y与X的幅值比、Y与主轴方向Z的幅值比均有不同的分布特征,P波与S波主轴方向与两正交方向特征值的比值2×Z / ( X +Y)差异最大,P波主轴方向的方位角入射角信息与S波也有明确的分界,这些偏振特征可作为自动检测结果的判定标准模型。
With the rapid development of economic and seismic observation network, especially, after China Earthquake Administration finishes constructing the“China digital earthquake observation network project”of the“five year plan”of Chinese central government. There are about 800 professional seismologic observation and many of local and enterprise seismologic stations have been built up for monitoring the natural and man-made earthquake, because every station is real-time sending and recording the seismic data, there are a lot of record data accumulated. The analyzers always expecting the automatic processing come true and the method is credible. We all know about the huge earthquake happened in Indonesia in 2004 and the“5.12”big earthquake happened in Sichuan in 2008. Big earthquake can destroy everything and the scientist still can not forecast, so people have to pay more attention to build the earthquake warning system. No matter the real-time automatic processing system and early warning system, they are all base on the credible automatic seismic event detection and phase identification.
     This paper sums up the general seismic event detection and phase identification methods. Focusing on the STA/LTA check arithmetic, earthquake polarization character and base on Akaike information criterion for application on small earthquake detection and PG and SG phase identification. What I have done is:
     1. Briefly summarized some seismic event detection methods, analyzed the STA/LTA detection method and polarization character. The research results indicates: the eigvalue method which is based on the covariance of the three channel record data can distinguish the noise and seismic clearly, SVD (singularity value decompose) method can also show this character and can show cleaner when the small earthquake recorded by broadband seismometer.
     2. In this paper, I summarized the phase identification method used by researchers, and continue research the AR-AIC(automatic regressive)、VAR-AIC(based on the variance)、TOC(High)-AIC(tall or high order statistics)、AOC-TOC(based on Amplitude or Power), compared the different AIC method detect result. The VAR-AIC and AOC-AIC method need the least time and calculate fastest. When the SNR is high, every method can get the satisfying PG and SG start time. The polarization method is based on three channel seismic record, the detection result is credible, but when use the method to identify the phase the result is lie on the data window you chosen. the window is small the result is higher.
     3. We use the P wave data window and S wave data window of three components record get the principal axes of the polarization ellipsoid respectively, Using 175 three channel events records of WuJiang reservoir telemetering seismic network we get the Vertical/Horizontal, (2*Z/(Y+X))、Vertical/Radial(Z/Y)、Radial /Transverse(Y/X) ratio statistics distributing characterics of P wave and S wave on their polarization axes, the results show Z/H ratios has the most difference, the V/R and R/T ratio also have obvious difference, We still take the P wave’s polarization axes as the model standard, rotate the subsequent data of Pg phase, then detect the phase using AIC method automatically. We hope this will help us identify the automatic phase detection result.
引文
1.庄灿涛,阴朝民,吴忠良2003.数字地震观测技术[M].北京:地震出版社.
    2.刘瑞丰,蔡晋安,彭克银等. 2007.地震科学数据共享工程.地震[J].(02).
    3.刘瑞丰,高景春,陈运泰等. 2008.中国数字地震台网的建设与发展.地震学报[J].(05).
    4.刘希强,周蕙兰,郑治真等. 1998.基于小波包变换的弱震相识别方法.地震学报[J].(04).
    5.刘希强,周蕙兰2001.调频高斯小波及其在地震震相识别中的应用[M],中国地球物理学会第十七届年会.
    6.王洪体,贾淑侠2003.筑减灾基业----首都圈防震减灾示范区系统工程[M].北京:地震出版社.
    7.崔庆谷,王俊,蔡绍平2006.数字及模拟地震观测中的台基噪声评价指标.地震地磁观测与研究[J].(04).
    8.张少泉,棣子君,何建树1998.地震波分析与应用[M].北京:地震出版社.
    9. Bormann P 2002. New Manual of Seismological Observatory Practice (NMSOP).
    10.彼得.鲍曼2006.新地震观测与实践[M].北京:地震出版社.
    11.周彦文,刘希强2008.地震事件自动检测新方法.西北地震学报[J].(02).
    12. Stevenson Peter R. 1976. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bulletin of the Seismological Society of America [J].66(1): 61-80.
    13. Allen Rex V. 1978. Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America [J].68(5): 1521-1532.
    14. Allen Rex 1982. Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America [J].72(6B): S225-242.
    15. Baer M.,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America [J].77(4): 1437-1445.
    16. Earle Paul S.,Shearer Peter M. 1994. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America [J].84(2): 366-376.
    17.王洪体,庄灿涛,薛兵等. 2006.数字地震观测网络通讯与记录系统.地震学报[J].(05).
    18. Gledhill K. R. 1985. An earthquake detector employing frequency domain techniques. Bulletin of the Seismological Society of America [J].75(6): 1827-1835.
    19. Evans John R.,Allen Stephen S. 1983. A teleseism-specific detection algorithm for single short-period traces. Bulletin of the Seismological Society of America [J].73(4): 1173-1186.
    20. Trifunac Mihailo D.,Brune James N. 1970. Complexity of energy release during the Imperial Valley, California, earthquake of 1940. Bulletin of the Seismological Society of America [J].60(1): 137-160.
    21. Wyss Max,Brune James N. 1971. Regional variations of source properties in southern California estimated from the ratio of short- to long-period amplitudes. Bulletin of the Seismological Society of America [J].61(5): 1153-1167.
    22. Hanks Thomas C. 1982. Reply to "comments on 'the corner frequency shift, earthquake source models, and Q'". Bulletin of the Seismological Society of America [J].72(4): 1433-1444.
    23.张即祥等2001.现代模式识别[M].国防科技大学出版社.
    24.刘启元,沈立人,李志明1992.地震事件实时检测的模式识别算法[M].国家地震局地质研究所: 22-29.
    25. Wang Jin,Teng Ta-Liang 1997. Identification and picking of S phase using an artificial neural network. Bulletin of the Seismological Society of America [J].87(5): 1140-1149.
    26.王继2005.地震事件和震相检测处理系统[M],中国地震局地质研究所.
    27. Jurkevics Andy 1988. Polarization analysis of three-component array data. Bulletin of the Seismological Society of America [J].78(5): 1725-1743.
    28.刘建华,刘福田,胥頤 2006.三分量地震资料的偏振分析.地球物理学进展[J].(01).
    29.赵荣国1999.震相分析是地震科学的心脏.地震地磁观测与研究[J].20(5): 1-5.
    30.朱元清,佟玉霞,于海英等. 2002.数字化台网的近震震相自动识别.西北地震学报[J].(01).
    31.武东坡2004.震相识别的实时方法研究[M],中国地震局工程力学研究所.
    32. Mandelbrot B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science [J].156(3775): 636.
    33.陈颙 1994.分形几何与地球科学.华南地震[J].
    34. Boschetti F., Dentith M. D.,List R. D. 1996. A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics [J].61(4): 1095-1102.
    35. Su Z.,Coppens P. 1985. Minimizing Free Energy as a Direct Method for Phase Determination. Foundations of Crystallography [J].16226-229.
    36. Gelchinsky B.,Shtivelman V. 1983. AUTOMATIC PICKING OF FIRST ARRIVALS AND PARAMETERIZATION OF TRAVELTIME CURVES*. Geophysical Prospecting [J].31(6):
    915-928.
    37. Ervin C. P., Mcginnis L. D., Otis R. M.et al. 1983. Automated analysis of marine refraction data: a computer algorithm. Geophysics [J].48582.
    38.常旭,刘伊克2002.地震记录的广义分维及其应用.地球物理学报[J].(06).
    39.曾富英,李敏锋,申维2002.地震波初至拾取的分形研究.现代地质[J].(02).
    40.高原,冯德益1995.唐山地区近震S波分裂的观测与研究.地震[J].(03).
    41. Crampin S.,Booth D. C. 1985. Shear-wave polarizations near the North Anatolian Fault-II. Interpretation in terms of crack-induced anisotropy. Geophysical Journal International [J].83(1): 75-92.
    42. Crampin S., Booth D. C., Evans R.et al. 1990. Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake. J. geophys. Res [J].95(11): 197-111.
    43. Crampin S.,Gao Y. 2006. A review of techniques for measuring shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors [J].159(1): 1-14.
    44. Shih X. R., Meyer R. P.,Schneider J. F. 1989. An automated, analytical method to determine shear-wave splitting. Tectonophysics [J].165(1-4): 271-278.
    45. Liu Y., Teng T. L.,Ben-Zion Y. 2004. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations. Bulletin of the Seismological Society of America [J].94(6): 2330-2347.
    46. Vinnik L. P., Makeyeva L. I., Milev A.et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International [J].111(3): 433-447.
    47. Farra V.,Vinnik L. 1994. Shear-wave splitting in the mantle of the Pacific. Geophysical Journal International [J].119(1): 195-218.
    48.刘希强1992.剪切波分裂中的快,慢波识别方法.西北地震学报[J].14(004): 17-24.
    49.高原,郑斯华1994.唐山地区剪切波分裂研究(Ⅱ)—相关函数分析法.中国地震[J].(A00): 22-32.
    50.刘希强,郑治真1997.定量识别分裂剪切波震相的方法——线性变换法.地震研究[J].20(002): 199-205.
    51.郑治真,刘元壮1994.提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究.中国地震[J].(A00): 1-8.
    52.张范民1993.用最大似然法进行波场分解和震相识别.西北地震学报[J].15(003): 1-10.
    53. Christoffersson A., Husebye E. S.,Ingate S. F. 1988. Wavefield decomposition using ML-probabilities in modelling single-site 3-component records. Geophysical Journal International [J].93(2): 197-213.
    54.赵鸿儒,孙进忠1990.全波震相分析的应用.地球物理学报[J].33(001): 54-63.
    55. Devaney A. J.,Oristaglio M. L. 1986. A plane‐wave decomposition for elastic wave fields applied to the separation of P‐waves and S‐waves in vector seismic data. Geophysics [J].51419.
    56. Samson J. C.,Olson J. V. 1980. Some comments on the descriptions of the polarization states of waves. Geophysical Journal International [J].61(1): 115-129.
    57.李慧婷,黄文辉2000.三分向数据震相的自动识别.华南地震[J].20(004): 46-53.
    58. Bai C.,Kennett B. L. N. 2000. Automatic phase-detection and identification by full use of a single three-component broadband seismogram. Bulletin of the Seismological Society of America [J].90(1): 187-198.
    59.张军华,赵爱国2002.用小波变换与能量比方法联合拾取初至波.物探化探计算技术[J].24(004): 309-312.
    60. Burnham K. P.,Anderson D. R. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research [J].33(2): 261.
    61. Mcquarrie A. D. R.,Tsai C. L. 1998. Regression and time series model selection [M]. World Scientific.
    62. Sleeman R.,Van Eck T. 1999. Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors [J].113(1): 265-275.
    63. Haykin S. 1999. Adaptive filters. Signal Processing Magazine. IEEE Computer Society [J].
    64. Haykin S. 2000. Adaptive Filter Theory. 1996. telecommunication systems, radio resource management,(adhoc) multihop relay system, sensor network and particularly their applicable issues to 4G mobile communication systems and cognitive radio systems. Bath in [J].12-13.
    65.范军1998.成都遥测地震台网地震波实时处理系统.内陆地震[J].12(002): 174-177.
    66. Maeda N. 1985. A method for reading and checking phase times in autoprocessing system of seismic wave data. J. Seismol. Soc. Jpn [J].38365-379.
    67.尹成,伍志明,邓怀群2003.高阶统计量方法在地震勘探中的应用.地球物理学进展[J].(03).
    68.谢红梅,赵健,齐华等. 2001.基于高阶统计量的非高斯噪声中的信号检测方法研究.西北工业学院学报[J].
    69. Hinich Mj,Wilson Gr 1990. Detection of non-Gaussian signals in non-Gaussian noise using thebispectrum. IEEE Transactions on Acoustics, Speech and Signal Processing [J].38(7): 1126-1131.
    70.张贤达1996.时间序列分析[M].清华大学出版社;北京.
    71.刘希强,周彦文,曲均浩等. 2009.应用单台垂向记录进行区域地震事件实时检测和直达P波初动自动识别.地震学报[J].
    72. Zhang Haijiang, Thurber Clifford,Rowe Charlotte 2003. Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bulletin of the Seismological Society of America [J].93(5): 1904-1912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700