用户名: 密码: 验证码:
镧改性分子筛吸附剂对汽油馏分的吸附脱硫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料油中的有机硫化物燃烧后形成的S02是形成酸雨的主要原因,还会使处理汽车尾气的催化剂中毒。随着人们环境保护意识的提高,各国对燃料油中的硫含量进行了日益严格的限制。传统的加氢脱硫技术虽然可使汽油深度脱硫,但同时会导致辛烷值明显下降,增加氢耗及设备投资。吸附脱硫技术操作简单、方便、快速,且不会降低汽油的辛烷值。目前,多种分子筛都被用于吸附脱硫研究,但关于吸附质和吸附剂相互作用的机理研究还比较薄弱。本论文工作分为两部分:对微孔分子筛吸附剂,研究烯烃对噻吩吸附的影响规律及影响机理;对微介孔复合分子筛吸附剂,考察吸附剂的孔道结构对脱硫性能的影响。
     用液相离子交换法将La3+引入NaY分子筛中,制备La3+改性NaY分子筛吸附剂,并对其脱硫性能进行考察。在静态吸附脱硫实验中,液相离子交换法制备的吸附剂由于阳离子数目的减少,部分晶格结构遭到破坏等原因,对模型汽油中噻吩的脱除率降低。烯烃的加入使NaY分子筛的吸附脱硫能力持续降低,却在一定程度上提高了La3+改性分子筛吸附剂的噻吩脱除能力。红外光谱结果表明,噻吩分子以π络合的方式吸附在NaY分子筛上,而Y分子筛经La3+改性后,观察到S-M直接作用的新吸附方式。烯烃以其π电子与NaY分子筛表面的羟基相互作用,但在LaNaY上,却是以其烷基与吸附剂表面的羟基发生作用,特别是在LaNaY上,可观察到烯烃的碳正离子物种,结合吸附脱硫实验和GC-FPD检测,认为烯烃对LaNaY吸附脱硫的促进作用,可能是由于La3+改性后,吸附剂具有强酸性,促使烯烃和噻吩分子发生烷基化反应,生成尺寸较大的烷基噻吩,微孔填充效应增强,有利于吸附脱硫。这可能是La3+改性的NaY分子筛吸附剂对含烯烃的模型汽油表现出较高脱硫选择性的原因之一。
     在考虑吸附方式对脱硫选择性的影响时,吸附剂的孔道尺寸对脱硫性能的影响也不应忽视。本论文采用纳米组装法合成微-介孔复合分子筛NaY/MCM-41,采用液相离子交换法引入La3+。表征结果显示:合成的材料为微介孔复合结构,即介孔孔壁内含有微孔分子筛的初级和次级结构单元。La3+改性后,尽管其比表面积有所下降,但仍保持微介孔复合结构。静态脱硫实验结果表明,与微孔吸附剂]LaNaY相比,复合孔吸附剂LaNaY/MCM-41随着模型油中甲苯含量的增加,脱硫率的下降趋势明显减缓。对FCC汽油的吸附脱硫结果表明,复合孔吸附剂的脱硫性能明显高于纯微孔吸附剂LaNaY和纯介孔吸附剂!LaMCM-41,初步说明吸附剂的孔道尺寸是影响其脱硫性能的主要因素之一。
SO2 from the combustion of fuels containing organic sulfur compounds is the main reason for acid rain, and it can also poison the catalysts used in the engines'exhaust treatment. With the improvement of people's environmental protection, more stringent restrictions about the sulfur content in fuel oil have been mandated in many countries. Although traditional hydro-desulfurization (HDS) can desulfurize gasoline deeply, but it can also lead to octane reduction, more hydrogen consumption and equipment investment. Adsorption desulfurization technology is simple, easy, fast, and it can not reduce the octane number of gasoline. Now, a variety of molecular sieves have been studied for adsorption desulfurization, however, there is little research on the adsorption mechanism of organic sulfur compounds on adsorbents. This dissertation involves two parts:for microporous zeolite adsorbents, the effect of olefins on the desulfurization of model gasoline and the adsorption mechanism of thiophene and cyclohexene are studied; for micro-mesoporous zeolite adsorbents, the effect of pore structure on adsorption desulfurization are discussed.
     LaNaY adsorbents are prepared by liquid ion-exchanging La(NO3)3 solution with NaY zeolite. For model gasoline without cyclohexene, the desulfurization capacity of LaNaY is lower than that of NaY, because of the decrease of the number of cations and the partly broken lattice structure. In static adsorption, NaY shows declined sulfur removal with the addition of cyclohexene, while LaNaY displays evident improvement in sulfur removal with the addition of a certain amount of cyclohexene. FT-IR results demonstrate that thiophene is adsorbed on NaY byπcomplexation, but a new adsorption mode, the direct S-La3+interaction, appears on LaNaY. Cyclohexene is adsorbed on NaY byπ-OH interation and is partly adsorbed on LaNaY by alkyl-OH. It is woth noting that carbenium is detected on LaNaY. Combined with GC-FPD analysis, it can be deduced that alkylation between thiophene and cyclohexene occurs on the acidic sites of LaNaY, the lager size of alkylated thiophene enhances the micropore-filling effect, and thus promotes adsorption desulfurization. This may be one of the reasons for LaNaY shows improved sulfur removal from model gasoline containing olefin.
     Besides the effect of adsorption mode on desulfurization selectivity, we should also consider the role of the adsorbent's pore size plays in desulfurization. In this dissertation, the micro-mesoporous molecular sieve NaY/MCM-41 is synthesized by the assembly of protozeolitic nanoclusters, and La3+is introduced into NaY/MCM-41 zeolite by liquid ion-exchange. The characterization results show that the systhesized NaY/MCM-41 contains the structure units of zeolite Y in its wall, and the micro-mesoporous structure of LaNaY/MCM-41 is maintained after the introduction of La3+, even though the surface area is decreased. Comparing the sulfur capacity of microporous LaNaY and composite LaNaY/MCM-41, both of them show decreased tendency with the addition of toluene, but the drop rate of the latter is lower than that of the former. The desulfurization of FCC gasoline by microporous LaNaY, mesoporous LaMCM-41 and composite LaNaY/MCM-41 also displays that the sulfur capacity of LaNaY/MCM-41 is superior to that of the other two adsorbents. These results show that the pore structure of the adsorbents is one of the key factors of the desulfurization capacity.
引文
[1]秦如意,张晓静,刘金龙,等[J].汽油脱硫技术研究进展.河南石油,2002,16(5):60-63.
    [2]杨洪云,赵德智,沈耀亚.油品脱硫工艺技术及其发展趋势[J].石油化工高等学校学报,2001,14(3):27-31.
    [3]王龙延,杜道林,陈大军,等.车用清洁汽油及其生产技术[J].河南石油,2002,16(1):55-60.
    [4]Song C S, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfuration and deep dearomatization [J]. Appl. Catal. B.,2003,41(1-2):207-238.
    [5]Bensabat LE. US fuels mix to change in the next 2 decades [J]Oil&Gas Journal,1999, 97(28):46+.
    [6]Brady A. Global refining margins look poor in short term. buoyant later next decade [J]. Oil&Gas Journal,1999,97(46):75+.
    [7]侯晓明,盛全福,乐利民,等.清洁汽油生产[J].炼油设计,1999,29(10):5-8.
    [8]张竹梅.生产低硫汽油的新技术[J].石油化工环境保护,2004,27(1):53-57.
    [9]段林海,范景新,宋丽娟,等.噻吩、苯和正辛烷在Y型分子筛上的选择性吸附[J].工业催化,2006,14(10):12-14.
    [10]杨玉辉,刘民,宋春山,等.改性Y分子筛的吸附脱硫性能[J].石油学报,2008,24(4):383-387.
    [11]Wang Y H, Yang R T, John M. Heinzel, et al. Desulfurization of Jet Fuel JP-5 Light Fraction by MCM-41 and SBA-15 Supported Cuprous Oxide for Fuel Cell Applications [J]Ind. Eng. Chem. Res,2009,48:142-147.
    [12]EPA-Gasoline RIA, Regulatory Impact Analysis-Control Air Pollution from New Motor Vehicles:Tier 2 Motor vehicle emissions standards and Gasoline sulfur control requirements, US environmental protection agency, Air and Radiation.
    [13]EPA-RFG-Ⅱ RFG Report on performance testing, US environmental protection agency, Air and Radiation, EPA420-R-99-025, April 1999.
    [14]侯芙生.创新炼油技术推动21世纪我国炼油工业的发展[J].石油炼制与工,2002,33(1):4-5.
    [15]Nag N K,Sapre A V,Broderick D H, et al [J]. J Catal 1979,57:509-513.
    [16]Knudsen K G, Cooper B H, Tops(?)e H. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General 1999,189(2):205-215.
    [17]Gates B C, Henrik Topsoeb. Reactibities in deep catalytic hydrodesulfurization challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene [J]. Polyhedron.1997,16(18):3213-3217.
    [18]Shih S S, Owens P J, Palit S. Mobil's octgain process:FCC gasoline desulfurization reaches a new performance level, NPRA, AM-99-30, San Antonio,1999.
    [19]Martinez N P,Salazar J A, Tejada J.Meet gasoline pool sulfur and octane targets with the ISAL process, NPRA, AM-00-52, Washington, D C,2000.
    [20]Rock K L, Foley R, Putman H M. Improvements in FCC gasoline desulfurization via catalytic distillation. NPRA, AM-98-37, San Francisco,1998.
    [21]Desai P H, A N Chemicals Inc. National Petrochemical and Refiners Association Annual Meeting, San Antonio, AM-99-40,1999.
    [22]Kaufmann T G, Kaldor A, Stuntz G.F, et al. Catalysis science and technology for cleaner transportation fuels [J]. Catalysis Today,2000,62(1):77-90.
    [23]Nocca J,Cosyns J,Debuisschert O, et al. National petrochemical and refiners association annual meeting [C]. Washington D. C., AM-00-61,2000.
    [24]安高军,周同娜,柴永明,等.轻质油品非加氢脱硫技术[J].化学进展,2007,19(9):1331-1344
    [25]刘志,董萍.燃料生物脱硫技术的研究进展[J].抚顺石油学院学报,2001,21(4):40-43.
    [26]杜长海,马智,贺岩峰.生物催化石油脱硫技术进展[J].化工进展,2002,21(8):569-571.
    [27]邱建辉,邸进申,李英杰.生物脱硫的研究进展[J].微生物学报,2001,41(5):650-653.
    [28]Monticello D J. Finnerty W R. Microbial desulfurization of fossil fuels [J]. Annual Review of Microbiology,1985,39(2):371-389.
    [29]Monticello D J. Biodesulfurization and the upgrading of petroleum distillates. [J]. Current Opinion in Biotechnology,2000,11(6):540-546.
    [30]黄蔚霞,李云龙,汪燮卿.离子液体在催化裂化汽油脱硫中的应用[J].化工进展,2004,23(3):297-299.
    [31]Aida T, Yamaoto D. Oxidative desulfurization of liquid fuels [J]. Absrtact of Papers of the American chemical soeiety.1994,207:120-FUEL Part 1
    [32]Palomeque J,Clacens J, Figueras F. Oxidation of dibenzothiophene by hydrogen peroxide catalyzed by solid bases [J]. Journal of Catalysis,2002,211:103-108.
    [33]Shujiro O, Takeshi N, Oxidative Desulfurization of Light Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy&fuels,2000,14(6):1232-1239.
    [34]Darian S T.Arabshahi S. H. Process for upgrading diesel oils. US Pat.4746420,1988.
    [35]Walter G. Method of desulfurization of hydrocarbons. US Pat.6160193,2000.
    [36]Otsuki S, Nonaka T, Qian W, et al. Oxidative desulfurization of middle distillate using ozone [J]. Journal of the Japanese Petroleum Institute,1999,42:315-321.
    [37]Vasllakos N P, Bone R L, Cotcoran W H. Oxidative chlorination of Dibenzothiophene. [J]. Industrial&Engineering Chemistry:Process Design and Development,1981,20(2): 376-379
    [38]陈兰菊,郭绍辉,赵地顺.催化裂化汽油脱硫技术[J].化学通,2006,69:1-7.
    [39]居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术[J].现代化工,2004,24(1):56-59.
    [40]田龙胜,唐文成.FCC汽油溶剂抽提脱硫的研究[J].石油炼制与化工,2001,32(9):7-9.
    [41]Ralph B. Purification of a hydrocarbon stream with Cr+ions in solution. US Pat.3666660,1972.
    [42]夏道宏,苏贻勋,钱家麟.汽油中硫醇的分离及结构、组成分析(1)——高效富集汽油中硫醇的分离方法[J].炼油设计,1995,25(1):46-49.
    [43]Joseph C G. National petrochemical and refiners association annual meeting, Washington D. C., AM-00-35,2000.
    [44]Shiraishi Y, Taki Y, T Hirai, et al.A novel desulfurization process for fuel oils based on the formation and subsequent precipitation of S-alkylsulfonium salts.2. catalytic-cracked gasoline [J]. Ind. Eng. Chem. Res.,2001,40:1225-1233.
    [45]田福平.汽油馏分的吸附脱硫及红外光谱研究[D].大连:大连理工大学,2005.
    [46]Gislason J. PhilliPs sulfur-rermoval Process nears commercialization [J]. Oil Gas. J.2001,99(47):72+
    [47]康善娇,窦涛,李强等.FCC汽油吸附脱硫技术研究进展[J].化工进展,2005,24(4):357-361.
    [48]Ma X L, Velu S, Kim J H, et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J].Appl. Catal. B:Environmental, 2005,56(1-2):137-147.
    [49]Velu S, Ma X L, Song C S, et al. Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cell [J]. Energy & Fuels,2005,19(3):1116-1125.
    [50]秦如意,张晓静,刘金龙.FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工,2003,34(3):24-28.
    [51]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺脱附剂的研究[J].石油炼制与化工,2004,35(4):5-8.
    [52]Gong Y J, Dou T, Kang S J, et al. Deep desulfurization of gasoline using ion-exchange zeolites:Cu(Ⅰ)-and Ag(Ⅰ)-beta [J].Fuel processing technology 2009,90:122-129.
    [53]Kang S J, Dou T, Li Q, et al. Preparation and application of zeolite beta with super-low SiO2/Al2O3 ratio [J].J Porous Mater,2008,15:159-162.
    [54]Velu S., Ma X., Song C. Selective Adsorption for removing sulfur from jet fuel over zeolite-based adsorbents [J]. Industrial&Engineering Chemistry Research, 2003,42(21):5293-5304.
    [55]罗国华,徐新,佟泽民等.沸石分子筛选择吸附焦化苯中的噻吩[J].燃料化学报1999,27(5):466-480.
    [56]Arturo J. Hernndez-Maldonado, Yang R T. Desulfurization of commercial liquid fuels by selective adsorption via-complexation with Cu(I)-Y Zeolite [J]. Ind. Eng. Chem. Res.,2003,42(13):3103-3110.
    [57]Arturo J. Hernndez-Maldonado, Yang R T. Desulfurization of Liquid Fuels by adsorption via complexation with Cu (I)-Y and Ag-Y Zeolites [J]. Ind. Eng. Chem. Res., 2003,42(1):123-129.
    [58]Tian F P, Jiang Z X, Liang C H. Deep Desulfurization of gasoline by adsorption on mesoporous MCM-41 [J].催化学报,2005,26(8):628-630.
    [59]Wang Y H, Yang R T,Heinzel J M. Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide forfFuel cell applicationsInd [J]. Eng. Chem. Res.,2009,48(1),142-147.
    [60]Jiang Z X, Liu Y, Sun X P, et al. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of-the pollutants from waste water and dibenzothiophene from fuel oil [J]. Langmuiu.2003,19(3):731-736
    [61]Velu S, Watanabe S, Ma X L, et al. Development of seleetive absorbent for removing sulfur from gasoline for fuel applieation [J]. Am. Chem. Soe., Fuel Chem. Div. Prepr. 2003,48:526-528.
    [62]Ma X L, Michael S, Sun Lu,et al.Deep desulfurization of liquid hydrocarbons by selective adsorption for fuel cell applications. Abstracts of paper of the [J]. American chemical society,2002,223:C4-C5.
    [63]Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Appl. Catal.B,2003,41:207-238.
    [64]Tian F P,Wu W C, Jiang Z.X,et al. The study of thiophene adsorption onto La(III)-exchanged zeolite NaY by FT-IR spectroscopy [J]. Journal of Colloid and Interface Science 2006,301:395-401.
    [65]Yang R. T., Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science,2003,301:79-81.
    [66]Fitch A, Jobic H, Renouprez A. Location of benzene in sodium-Y Zeolite by powder neutron diffraction [J]. J. Phys. Chem.,1986,90:1311-1318.
    [67]Howard S. Sherry. The ion exchange properties of zeolitesⅢ. Rare earth ion exchange of synthetic faujasites. J. Colloid and Interface [J]. Science.1968,28:288-292.
    [68]Edward F, Lee T, Lovat V. Effect of calcinations on location and valency of lanthanum ion in zeolite Y [J]. Zeolites 1987,7:143-147.
    [69]韩春玉,刘道胜,宋丽娟,等.噻吩在CeY分子筛上的吸附行为[J]工业催化,2008,16:27-30.
    [70]Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids [J].Pure& Appl. Chem.,1994,66(8):1739-1758.
    [71]徐如人,庞文琴.分子筛与多孔材料化学[M]北京:科学出版社,2004.
    [72]Sievers C, Liebert J S, Stratmann M M, et al. Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation [J]. Applied Catalysis A:General 2008, 336:89-100.
    [73]Zheng X D, Dong H J, Wang X, et al. Study on olefin alkylation of thiophenic sulfur in FCC gasoline using La203-modif ied HY zeolite [J]. Catal Lett 2009,127:70-74.
    [74]Teresa L Tarbuck, Keith R, et al. Bussell. Identification of the adsorption mode of thiophene on sulfided mo catalysts [J]. J. Phys. Chem. B,1998,102:7845-7857.
    [75]Cristina L. Garcia, Johannes A. Adsorption and surface reactions of thiophene on ZSM-5 zeolite [J].J Phys. Chem.1992,96:2669-2675.
    [76]Yang S W, Junko N, Kondo, Kazunari Domen, Formation of alkenyl carbenium ions by adsorption of cyclic precursors on zeolites, [J]. Catalysis Today 2002,73:113-125.
    [77]近藤精一,石川达雄,安部郁夫.吸附科学.李国希译.[M]北京:化学工业出版社,2006.
    [78]Li W L, Liu Q F, Xing J M, et al. High-Efficiency Desulfurization by Adsorption with Mesoporous Aluminosilicates [J].Aiche J,2007,53(17):3263-3268.
    [79]李倩,宋春敏,王云芳,等.新型复合分子筛的制备及其吸附脱硫性能研究[J].石化技术与应用,2009,27(5):395-399.
    [80]郭文珪,辛勤,张慧,等.阳离子型沸石骨架振动的红外光谱研究[J].催化学报,1980,1(3):187-194.
    [81]Zhang Z T,Han Y, Xiao F S. Mesoporous aluminosilicates with ordered hexagonal structure,strong acidity, and extraordinary hydrothermal stability at high temperatures [J]J Am Chem Soc,2001,123:5014-5021.
    [82]樊春玲,刘文明.甲苯选择氧化制苯甲醛的研究进展[J].化工时刊,2008,22(9):61-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700