用户名: 密码: 验证码:
微孔发泡注射成型制备三维多孔聚乳酸骨组织工程支架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔发泡注射成型采用超临界CO_2/N_2做为物理发泡剂,具有可显著减轻制品重量、缩短成型周期和极大改善制品翘曲变形和尺寸稳定性等特点,将微孔发泡注射成型技术应用于制备三维多孔连通结构的生物可降解骨组织工程支架,不涉及任何有机溶剂且批量生产显著降低成本,对人类骨组织重建和再生医学的发展具有重要的现实意义和科学研究价值。
     聚乳酸强度高、成本低廉、生物相容性好且可降解,目前在组织工程领域已得到广泛应用。然而将聚乳酸这种半结晶性聚合物应用微孔发泡注射成型制备真三维连通结构且具有高孔隙率的支架仍存在较多加工难题,因此研究聚乳酸的微孔发泡注射成型成核机理和加工特性,对于制备理想结构的生物骨组织工程支架具有重要的指导意义。据此,本文从结晶、流变特性和异相成核等角度着手,做了以下几方面的工作:
     首先,介绍了微孔发泡注射成型过程泡孔成核和长大的机理,研究了超临界流体作用下结晶对聚合物流变特性和发泡形态结构的影响。针对半结晶型聚合物气体溶解和扩散相对困难、溶解度低,发泡温度窗口窄,熔体强度对温度敏感等特点,以及超临界流体注入会降低聚合物熔体粘度的客观实际情况,研究了结晶对半结晶型聚合物泡孔成核和长大的影响机理。研究发现,结晶有助于提高聚合物熔体的储能模量和熔体弹性,对制备良好形态结构的发泡制品具有积极作用。结晶不仅可以增加成核点数目,而且作为一种异相成核剂存在能够促进泡孔成核使得泡孔密度增大,同时还可以有效阻止泡孔长大从而减小泡孔的平均尺寸。
     其次,为了克服气熔混合不足和纳米粒子在复合材料中分散不均带来的制品“皮芯”结构和力学性能下降的问题,将预发泡技术引入微孔发泡注射成型工艺中,开发了一种气熔混合效果好、可有效改善发泡结构和性能的方法。采用挤出发泡制备的含气发泡粒料,使得纳米复合材料在进入微孔发泡注射成型机之前已经基本充分形成了分散均匀的微纳结构,而且提高了超临界流体与聚合物熔体的配混效果。实验结果表明,采用预发泡颗粒制备的微孔注射成型纳米复合材料,皮芯层的均匀度明显改善,泡孔平均尺寸减小,泡孔密度增大,提高了发泡制品的力学性能。
     然后,根据理想骨组织工程支架的结构特征,利用共混法调控了聚乳酸共混体系的降解速率和力学性能,研究了它们的热性能、动态热机械性能和发泡形态结构。通过调整加工工艺参数,制备了具有双尺度模式泡孔结构的高孔隙率发泡制品。人类骨髓间质干细胞的培养实验结果表明,所制备的支架酸碱度适当,无毒性,细胞附着和生长繁殖良好,在PLA/PHBV(55:45)支架上培育14天的细胞呈现骨髓前体细胞典型树突结构。MTS分析测定结果表明,细胞在所制备的支架上繁殖速度较快,数目多,其中PLA/PHBV(55:45)试样尤为突出,验证了该种配方和工艺条件下制备的双尺度连通发泡结构的支架适合细胞培养,具有良好的载体作用。
     最后,从熔体粘弹特性、结晶和异相成核机理等三重角度研究了纳米粒子改善发泡制品泡孔形态结构的机理和方法,讨论了纳米粒子对泡孔成核和结晶成核的双重作用,分析了纳米粒子增强复合材料的流变特性的响应规律。对制备真三维多孔连通、可调控的力学性能和降解速率的纳米填充复合高分子骨组织工程支架具有重要的研究价值。实验结果表明:聚乳酸纳米复合材料在整个频率扫描范围内呈现非常明显的剪切变稀现象,这种pseudo solid like行为充分说明了纳米粘土与高分子之间形成很强的界面作用,这种类似于物理交联点的作用限制了高分子链的松弛和滑移,增强了熔体粘度。
Microcellular injection molding produces components with excellent dimensionalstability while using lower injection pressures, shorter cycle time, and less material. Duringthis process, supercritical fluid (SCF) CO_2or N_2was used as the physical blowing agent.The microcellular injection molding technology is being applied to the fabrication of the3Dinterconnected biodegradable bone tissue engineering scaffold, taking advantage of thecontrolled weight saving and significant reduction s in cycle time without chemical solventinvolved. Most notably, the process is being applied in the bone regeneration in thebio-medical area.
     Poly lactic acid is a compostable polymer that can be derived completely fromrenewable resources. It has been used for the medical and biodegradability. One of thecritical steps in the production of microcellular polymers is the dissolution of gas into apolymer matrix. For gas and semi-crystalline thermoplastic systems, the solution formationprocess is notably more complex. The crystallization results in a solution that is relativelydifficult to microcellular process requiring relatively high temperature compared toamorphous polymer/gas solutions. In addition, the crystallization of the solution results in alower solubility, increased matrix stiffness, and a lower diffusivity. This paper is to present asystematic study of the gas dissolution process in semi-crystalline polymers in an attempt toprovide further insight and engineering analysis into the roles of gas dissolution withinduced crystallization, viscoelastic behavior, and crystallniity in microcellular processing.
     Firstly, the mechanism of the cell nucleation and growth theories were introduced tofurther investigate the effect of the crystallinity and rheological properties on the cellmorphology. To study the solution’s gas dissolution and crystallization characteristics, ouranalysis include an experimental characterization of the carbon dioxide-inducedcrystallization occurring during microcellular polymer processing indicating a critical gasconcentration is required for crystallization and an experimental estimation of theviscoelastic behavior of semi-crystalline solution, and an experimental investigation of the effects of crystallinity on microcellular processing and the resulting cell morphology.
     Secondly, the dispersion of the nano-particle in the nanocomposites is a knownproblem either in the conventional or microcellular injection molding process. To improvingthe morphology and structure of the nanocomposites, the pre-foam technology wasintroduced to the microcellular injection molding to produce a single polymer-gas solutionand uniform foaming parts with uniform properties. This method involves producing thepellets with gas laden by extrusion foaming to improve the dispersion of the nano-particle inthe microcellular injection molding specimens and also decrease the skin-core structureunder the shear flow.
     Thirdly, based on the requirements of3D interconnected bone tissue engineeringscaffold, the thermal, dynamic thermo-mechanical property, and the cell morphology of thePLA blend were studied to tune the mechanical properties and biodegradable rate to accessthe optimal processing condition. One kind of bio-model cell structure was produced withhigh porosity. The cell culture experiments were conducted on the PLA/PHBV scaffold, itwas found that the cell can attach on the scaffold very well, and the cell proliferation wassignificant, indicating the scaffold was suitable for the cell attachment and proliferation.
     Finally, the effect of the nanoclay on the nucleation of crystallinity and cell was studied.Based on the viscoelastic behavior characterization of polymer-gas solutions, this study hasfound that solutions of crystalline polymer and gas tend to have higher storage modulicompared with their amorphous counterparts. The crystallization and the resulting change inviscoelastic behavior tend to play a major role in microcellular processing. It was also foundthat crystallization influences microcellular processing through its effects on cell nucleationmechanisms resulting in larger cell densities and cell growth mechanisms resulting insmaller cell sizes.
引文
[1]Nerem Robert M, Sambanis Athanassios. Tissue engineering: from biology to biologicalsubstitutes[J]. Tissue engineering,1995,1(1):3-13
    [2]Reddi A H. Morphogenesis and tissue engineering of bone and cartilage: inductivesignals, stem cells, and biomimetic biomaterials[J]. Tissue engineering,2000,6(4):351-359
    [3]Hutmacher Dietmar W. Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529-2543
    [4]Meinel Lorenz, Karageorgiou Vassilis, Fajardo Robert, et al. Bone tissue engineeringusing human mesenchymal stem cells: effects of scaffold material and medium flow[J].Annals of biomedical engineering,2004,32(1):112-122
    [5]Sikavitsas Vassilios I, Bancroft Gregory N, Mikos Antonios G. Formation of three‐dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and arotating wall vessel bioreactor[J]. Journal of Biomedical Materials Research,2002,62(1):136-148
    [6]Liu Chaoxu, Abedian Reza, Meister Roland, et al. Influence of perfusion andcompression on the proliferation and differentiation of bone mesenchymal stromal cellsseeded on polyurethane scaffolds[J]. Biomaterials,2012,33(4):1052-1064
    [7]Guo XE. Mechanical properties of cortical bone and cancellous bone tissue[J]. Bonemechanics handbook,2001,10(1-23
    [8]Athanasiou KA, Zhu C-F, Lanctot DR, et al. Fundamentals of biomechanics in tissueengineering of bone[J]. Tissue engineering,2000,6(4):361-381
    [9]Frankel Victor H, Nordin Margareta. Biomechanics of bone[J]. Basic biomechanics ofthe musculoskeletal system,2001,3(26-59
    [10]O’Connell Grace D, Jacobs Nathan T, Sen Sounok, et al. Axial creep loading andunloaded recovery of the human intervertebral disc and the effect of degeneration[J].Journal of the mechanical behavior of biomedical materials,2011,4(7):933-942
    [11]Burg Karen JL, Porter Scott, Kellam James F. Biomaterial developments for bone tissueengineering[J]. Biomaterials,2000,21(23):2347-2359
    [12]Puppi D., Chiellini F., Piras A. M., et al. Polymeric materials for bone and cartilagerepair[J]. Progress in Polymer Science,2010,35(4):403-440
    [13]Zhang Ruiyun, Ma Peter X. Poly (α-hydroxyl acids)/hydroxyapatite porous compositesfor bone-tissue engineering. I. Preparation and morphology[J].1999,
    [14]Ray S. S., Bousmina M., Okamoto K. Structure and properties of nanocomposites basedon poly(butylene succinate-co-adipate) and organically modified montmorillonite[J].Macromolecular Materials and Engineering,2005,290(8):759-768
    [15]Sabir M. I., Xu X. X., Li L. A review on biodegradable polymeric materials for bonetissue engineering applications[J]. Journal of Materials Science,2009,44(21):5713-5724
    [16]Wei Guobao, Ma Peter X. Structure and properties of nano-hydroxyapatite/polymercomposite scaffolds for bone tissue engineering[J]. Biomaterials,2004,25(19):4749-4757
    [17]Liu Xiaohua, Ma Peter X. Polymeric scaffolds for bone tissue engineering[J]. Annals ofbiomedical engineering,2004,32(3):477-486
    [18]Li Zhensheng, Ramay Hassna R, Hauch Kip D, et al. Chitosan–alginate hybridscaffolds for bone tissue engineering[J]. Biomaterials,2005,26(18):3919-3928
    [19]Sarazin Pierre, Roy Xavier, Favis Basil D. Controlled preparation and properties ofporous poly (L-lactide) obtained from a co-continuous blend of two biodegradablepolymers[J]. Biomaterials,2004,25(28):5965-5978
    [20]Estellés Jorge Más, Vidaurre Ana, Due as José M Meseguer, et al. Physicalcharacterization of polycaprolactone scaffolds[J]. Journal of Materials Science: Materials inMedicine,2008,19(1):189-195
    [21]Chiellini E., Solaro R. Biodegradable polymeric materials[J]. AdvancedMaterials,1996,8(4):305-313
    [22]Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradablemultiphase systems[J]. Polymer,2001,42(14):6209-6219
    [23]Rasal Rahul M, Janorkar Amol V, Hirt Douglas E. Poly (lactic acid) modifications[J].Progress in Polymer Science,2010,35(3):338-356
    [24]Gupta Bhuvanesh, Revagade Nilesh, Hilborn J ns. Poly (lactic acid) fiber: Anoverview[J]. Progress in Polymer Science,2007,32(4):455-482
    [25]Tong H. W., Wang M. Electrospinning of Poly(hydroxybutyrate-co-hydroxyvalerate)Fibrous Tissue Engineering Scaffolds in Two Different Electric Fields[J]. PolymerEngineering and Science,2011,51(7):1325-1338
    [26]Bledzki A. K., Jaszkiewicz A. Mechanical performance of biocomposites based on PLAand PHBV reinforced with natural fibres-A comparative study to PP[J]. CompositesScience and Technology,2010,70(12):1687-1696
    [27]Kose G. T., Korkusuz F., Korkusuz P., et al. Bone generation on PHBV matrices: an invitro study[J]. Biomaterials,2003,24(27):4999-5007
    [28]Chu C. C., Browning A. The Study of Thermal and Gross Morphologic Properties ofPolyglycolic Acid Upon Annealing and Degradation Treatments[J]. Journal of BiomedicalMaterials Research,1988,22(8):699-712
    [29]Cai Qing, Yang Jian, Bei Jianzhong, et al. A novel porous cells scaffold made ofpolylactide–dextran blend by combining phase-separation and particle-leachingtechniques[J]. Biomaterials,2002,23(23):4483-4492
    [30]Gomes ME, Godinho JS, Tchalamov D, et al. Alternative tissue engineering scaffoldsbased on starch: processing methodologies, morphology, degradation and mechanicalproperties[J]. Materials Science and Engineering: C,2002,20(1):19-26
    [31]Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porouspolymer/inorganic composite scaffolds for bone tissue engineering[J].Biomaterials,2006,27(18):3413-3431
    [32]Matuana L. M. Solid state microcellular foamed poly(lactic acid): Morphology andproperty characterization[J]. Bioresource Technology,2008,99(9):3643-3650
    [33]Agrawal C, Ray Robert B. Biodegradable polymeric scaffolds for musculoskeletaltissue engineering[J]. Journal of Biomedical Materials Research,2001,55(2):141-150
    [34]Kramschuster A., Turng L. S. An Injection Molding Process for Manufacturing HighlyPorous and Interconnected Biodegradable Polymer Matrices for Use as Tissue EngineeringScaffolds[J]. Journal of Biomedical Materials Research Part B-AppliedBiomaterials,2010,92B(2):366-376
    [35]Matuana L. M., Diaz C. A. Study of Cell Nucleation in Microcellular Poly(lactic acid)Foamed with Supercritical CO2through a Continuous-Extrusion Process[J]. Industrial&Engineering Chemistry Research,2010,49(5):2186-2193
    [36]Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold byelectrospinning and its potential for bone tissue engineering[J]. Biomaterials,2003,24(12):2077-2082
    [37]Marra Kacey G, Szem Jeffrey W, Kumta Prashant N, et al. In vitro analysis ofbiodegradable polymer blend/hydroxyapatite composites for bone tissue engineering[J].Journal of Biomedical Materials Research,1999,47(3):324-335
    [38]Shin Michael, Yoshimoto Hiroshi, Vacanti Joseph P. In vivo bone tissue engineeringusing mesenchymal stem cells on a novel electrospun nanofibrous scaffold[J]. Tissueengineering,2004,10(1-2):33-41
    [39]Deville Sylvain, Saiz Eduardo, Tomsia Antoni P. Freeze casting of hydroxyapatitescaffolds for bone tissue engineering[J]. Biomaterials,2006,27(32):5480-5489
    [40]Williams Jessica M, Adewunmi Adebisi, Schek Rachel M, et al. Bone tissueengineering using polycaprolactone scaffolds fabricated via selective laser sintering[J].Biomaterials,2005,26(23):4817-4827
    [41]Seitz Hermann, Rieder Wolfgang, Irsen Stephan, et al. Three‐dimensional printing ofporous ceramic scaffolds for bone tissue engineering[J]. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials,2005,74(2):782-788
    [42]Nalawade Sameer P., Picchioni Francesco, Janssen L. P. B. M. Supercritical carbondioxide as a green solvent for processing polymer melts: Processing aspects andapplications[J]. Progress in Polymer Science,2006,31(1):19-43
    [43]Hwang S. S., Hsu P. P., Yeh J. M., et al. The Mechanical/Thermal Properties ofMicrocellular Injection-Molded Poly-Lactic-Acid Nanocomposites[J]. PolymerComposites,2009,30(11):1625-1630
    [44]Kharbas H., Nelson P., Yuan M. J., et al. Effects of nano-fillers and process conditionson the microstructure and mechanical properties of microcellular injection moldedpolyamide nanocomposites[J]. Polymer Composites,2003,24(6):655-671
    [45]Xu Jingyi. Microcellular injection molding[M]. Wiley,2011:
    [46]Chow T. S. Molecular Interpretation of the Glass Transition Temperature ofPolymer-Diluent Systems[J]. Macromolecules,1980,13(2):362-364
    [47]Chiou J. S., Barlow J. W., Paul D. R. Plasticization of glassy polymers by CO2[J].Journal of Applied Polymer Science,1985,30(6):2633-2642
    [48]Porter Roger S., Johnson Julian F. The Entanglement Concept in Polymer Systems[J].Chemical Reviews,1966,66(1):1-27
    [49]Chapman Walter G., Gubbins Keith E., Jackson George, et al. New reference equationof state for associating liquids[J]. Industrial&Engineering Chemistry Research,1990,29(8):1709-1721
    [50]Durrill Preston L., Griskey Richard G. Diffusion and solution of gases in thermallysoftened or molten polymers: Part I. Development of technique and determination of data[J].AIChE Journal,1966,12(6):1147-1151
    [51]Durrill Preston L., Griskey Richard G. Diffusion and solution of gases into thermallysoftened or molten polymers: Part II. Relation of diffusivities and solubilities withtemperature pressure and structural characteristics[J]. AIChE Journal,1969,15(1):106-110
    [52]Sato Yoshiyuki, Fujiwara Koji, Takikawa Tadao, et al. Solubilities and diffusioncoefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene,and polystyrene under high pressures and temperatures[J]. Fluid PhaseEquilibria,1999,162(1–2):261-276
    [53]Park Chul B., Suh Nam P. Filamentary extrusion of microcellular polymers using arapid decompressive element[J]. Polymer Engineering&Science,1996,36(1):34-48
    [54]Wagner M. H. Analysis of time-dependent non-linear stress-growth data for shear andelongational flow of a low-density branched polyethylene melt[J]. RheologicaActa,1976,15(2):136-142
    [55]Taki K. Experimental and numerical studies on the effects of pressure release rate onnumber density of bubbles and bubble growth in a polymeric foaming process[J]. ChemicalEngineering Science,2008,63(14):3643-3653
    [56]Colton Jonathan S., Suh Nam P. Nucleation of microcellular foam: Theory andpractice[J]. Polymer Engineering&Science,1987,27(7):500-503
    [57]Colton J. S. THE NUCLEATION OF MICROCELLULAR FOAMS IN SEMICRYSTALLINE THERMOPLASTICS [J]. Materials and ManufacturingProcesses,1989,4(2):253-262
    [58]Colton J. S., Suh N. P. The nucleation of microcellular thermoplastic foam withadditives: Part I: Theoretical considerations[J]. Polymer Engineering&Science,1987,27(7):485-492
    [59]Colton J. S., Suh N. P. The nucleation of microcellular thermoplastic foam withadditives: Part II: Experimental results and discussion[J]. Polymer Engineering&Science,1987,27(7):493-499
    [60]Koopmans R. J., den Doelder J. C. F., Paquet A. N. Modeling Foam Growth inThermoplastics[J]. Advanced Materials,2000,12(23):1873-1880
    [61]Wagner M. H., Rubio P., Bastian H. The molecular stress function model forpolydisperse polymer melts with dissipative convective constraint release[J]. Journal ofRheology,2001,45(6):1387-1412
    [62]Leung Siu N., Wong Anson, Wang Lilac Cuiling, et al. Mechanism of extensionalstress-induced cell formation in polymeric foaming processes with the presence ofnucleating agents[J]. The Journal of Supercritical Fluids,2012,63(0):187-198
    [63]Amon Moris, Denson Costel D. A study of the dynamics of foam growth: Analysis ofthe growth of closely spaced spherical bubbles[J]. Polymer Engineering&Science,1984,24(13):1026-1034
    [64]Ramesh N. S., Rasmussen Don H., Campbell Gregory A. Numerical and experimentalstudies of bubble growth during the microcellular foaming process[J]. Polymer Engineering&Science,1991,31(23):1657-1664
    [65]Joshi Kishore, Lee James G., Shafi Muhammad A., et al. Prediction of cellular structurein free expansion of viscoelastic media[J]. Journal of Applied Polymer Science,1998,67(8):1353-1368
    [66]Arefmanesh A., Advani S. G., Michaelides E. E. A numerical study of bubble growthduring low pressure structural foam molding process[J]. Polymer Engineering&Science,1990,30(20):1330-1337
    [67]Naguib Hani E., Park Chul B., Reichelt N. Fundamental foaming mechanismsgoverning the volume expansion of extruded polypropylene foams[J]. Journal of AppliedPolymer Science,2004,91(4):2661-2668
    [68]Naguib Hani E., Park Chul B., Song Seung-Won. Effect of Supercritical Gas onCrystallization of Linear and Branched Polypropylene Resins with Foaming Additives[J].Industrial&Engineering Chemistry Research,2005,44(17):6685-6691
    [69]Doroudiani Saeed, Park Chul B., Kortschot Mark T. Effect of the crystallinity andmorphology on the microcellular foam structure of semicrystalline polymers[J]. PolymerEngineering&Science,1996,36(21):2645-2662
    [70]Velasco J. I., De Saja J. A., Martínez A. B. Crystallization behavior of polypropylenefilled with surface-modified talc[J]. Journal of Applied Polymer Science,1996,61(1):125-132
    [71]Hobbs J. K., Humphris A. D. L., Miles M. J. In-Situ Atomic Force Microscopy ofPolyethylene Crystallization.1. Crystallization from an Oriented Backbone[J].Macromolecules,2001,34(16):5508-5519
    [72]Meerveld Jan, Peters GerritW M., Hütter Markus. Towards a rheological classificationof flow induced crystallization experiments of polymer melts[J]. RheologicaActa,2004,44(2):119-134
    [73]Corre Y. M., Maazouz A., Duchet J., et al. Batch foaming of chain extended PLA withsupercritical CO2: Influence of the rheological properties and the process parameters on thecellular structure[J]. Journal of Supercritical Fluids,2011,58(1):177-188
    [74]White L. J., Hutter V., Tai H. Y., et al. The effect of processing variables onmorphological and mechanical properties of supercritical CO2foamed scaffolds for tissueengineering[J]. Acta Biomaterialia,2012,8(1):61-71
    [75]Bledzki A. K., Faruk O. Effects of the chemical foaming agents, injection parameters,and melt-flow index on the microstructure and mechanical properties of microcellularinjection-molded wood-fiber/polypropylene composites[J]. Journal of Applied PolymerScience,2005,97(3):1090-1096
    [76]Ramkumar D. H. S., Bhattacharya M. Steady shear and dynamic properties ofbiodegradable polyesters[J]. Polymer Engineering and Science,1998,38(9):1426-1435
    [77]Tomasko David L., Li Hongbo, Liu Dehua, et al. A Review of CO2Applications in theProcessing of Polymers[J]. Industrial&Engineering Chemistry Research,2003,42(25):6431-6456
    [78]Di Maio E., Mensitieri G., Iannace S., et al. Structure optimization of polycaprolactonefoams by using mixtures of CO2and N2as blowing agents[J]. Polymer Engineering&Science,2005,45(3):432-441
    [79]Chandra A., Gong S. Q., Yuan M. J., et al. Microstructure and crystallography inmicrocellular injection-molded polyamide-6nanocomposite and neat resin[J]. PolymerEngineering and Science,2005,45(1):52-61
    [80]Nampoothiri K. M., Nair N. R., John R. P. An overview of the recent developments inpolylactide (PLA) research[J]. Bioresource Technology,2010,101(22):8493-8501
    [81]Baldwin D. F., Shimbo M., Suh N. P. The Role of Gas Dissolution and InducedCrystallization during Microcellular Polymer Processing-a Study ofPoly(Ethylene-Terephthalate) and Carbon-Dioxide Systems[J]. Journal of EngineeringMaterials and Technology-Transactions of the Asme,1995,117(1):62-74
    [82]Liao Xia, Nawaby Arghavan Victoria, Whitfield Pamela S. Carbon dioxide‐inducedcrystallization in poly (L‐lactic acid) and its effect on foam morphologies[J]. Polymerinternational,2010,59(12):1709-1718
    [83]Itoh Masayasu, Kabumoto Akira. Effects of crystallization on cell morphology inmicrocellular polyphenylene sulfide[J]. Fu—rukawa Rev,2005,28(32-38
    [84]Taki Kentaro, Kitano Daisaku, Ohshima Masahiro. Effect of growing crystalline phaseon bubble nucleation in poly (L-lactide)/CO2batch foaming[J]. Industrial&EngineeringChemistry Research,2011,50(6):3247-3252
    [85]Cai Hua, Dave Vipul, Gross Richard A, et al. Effects of physical aging, crystallinity, andorientation on the enzymatic degradation of poly (lactic acid)[J]. Journal of PolymerScience Part B: Polymer Physics,1996,34(16):2701-2708
    [86]Li Hongbo, Huneault Michel A. Effect of nucleation and plasticization on thecrystallization of poly (lactic acid)[J]. Polymer,2007,48(23):6855-6866
    [87]Mihai M., Huneault M. A., Favis B. D. Crystallinity Development in CellularPoly(lactic acid) in the Presence of Supercritical Carbon Dioxide[J]. Journal of AppliedPolymer Science,2009,113(5):2920-2932
    [88]La Mantia FP, Acierno D. Influence of the molecular structure on the melt strength andextensibility of polyethylenes[J]. Polymer Engineering&Science,1985,25(5):279-283
    [89]He Chunxia, Costeux Stéphane, Wood-Adams Paula, et al. Molecular structure of highmelt strength polypropylene and its application to polymer design[J]. Polymer,2003,44(23):7181-7188
    [90]Pop‐Iliev Remon, Liu Fangyi, Liu Guobin, et al. Rotational foam molding ofpolypropylene with control of melt strength[J]. Advances in PolymerTechnology,2003,22(4):280-296
    [91]Bhattacharya Subhendu, Gupta Rahul K, Jollands Margaret, et al. Foaming behavior ofhigh‐melt strength polypropylene/clay nanocomposites[J]. Polymer Engineering&Science,2009,49(10):2070-2084
    [92]Kumar Vipin. Polyethylene terephthalate foams with integral crystalline skins [M].Google Patents.1993
    [93]Baldwin Daniel F, Suh Nam P, Shimbo Minoru. Gas dissolution and crystallization inmicrocellular thermoplastic polyesters[J]. Cellular Polymers,1992,38(109-128
    [94]Reignier Jo l, Tatibou t Jacques, Gendron Richard. Batch foaming of poly(ε-caprolactone) using carbon dioxide: Impact of crystallization on cell nucleation as probedby ultrasonic measurements[J]. Polymer,2006,47(14):5012-5024
    [95]Koga Yoshiaki, Saito Hiromu. Porous structure of crystalline polymers by exclusioneffect of carbon dioxide[J]. Polymer,2006,47(21):7564-7571
    [96]Durning Christopher J, Russel William B. A mathematical model for diffusion withinduced crystallization:1[J]. Polymer,1985,26(1):119-130
    [97]Durning Christopher J, Russel William B. A mathematical model for diffusion withinduced crystallization:2[J]. Polymer,1985,26(1):131-140
    [98]Mehta Rajeev, Kumar Vineet, Bhunia Haripada, et al. Synthesis of poly (lactic acid): areview[J]. Journal of Macromolecular Science, Part C: Polymer Reviews,2005,45(4):325-349
    [99]Lim L. T., Auras R., Rubino M. Processing technologies for poly(lactic acid)[J].Progress in Polymer Science,2008,33(8):820-852
    [100]Pilla S., Kramschuster A., Yang L. Q., et al. Microcellular injection-molding ofpolylactide with chain-extender[J]. Materials Science&Engineering C-Biomimetic andSupramolecular Systems,2009,29(4):1258-1265
    [101]Pilla S., Kim S. G., Auer G. K., et al. Microcellular Extrusion-Foaming of Polylactidewith Chain-Extender[J]. Polymer Engineering and Science,2009,49(8):1653-1660
    [102]Li K., Peng J., Turng L. S., et al. Dynamic Rheological Behavior and Morphology ofPolylactide/Poly(butylenes adipate-co-terephthalate) Blends with Various CompositionRatios[J]. Advances in Polymer Technology,2011,30(2):150-157
    [103]Bourbigot S., Fontaine G., Bellayer S., et al. Processing and nanodispersion: Aquantitative approach for polylactide nanocomposite[J]. Polymer Testing,2008,27(1):2-10
    [104]Lee J. J., Turng L. S., Dougherty E., et al. A novel method for improving the surfacequality of microcellular injection molded parts[J]. Polymer,2011,52(6):1436-1446
    [105]Lee J., Turng L. S. Improving Surface Quality of Microcellular Injection Molded PartsThrough Mold Surface Temperature Manipulation With Thin Film Insulation[J]. PolymerEngineering and Science,2010,50(7):1281-1289
    [106]Iannace Salvatore, Di Maio Ernesto. Timescales in Bubble Nucleation Events for theFormation of Microcellular Biodegradable Foams[A].AIP Conference Proceedings[C].3
    [107]Kim S. G., Lee J. W. S., Park C. B., et al. Enhancing Cell Nucleation of ThermoplasticPolyolefin Foam Blown with Nitrogen[J]. Journal of Applied Polymer Science,2010,118(3):1691-1703
    [108]Field Graham J, Micic Predrag, Bhattacharya Sati N. Melt strength and film bubbleinstability of LLDPE/LDPE blends[J]. Polymer international,1999,48(6):461-466
    [109]Ho Kam, Kale Larry, Montgomery Scott. Melt strength of linear low‐densitypolyethylene/low‐density polyethylene blends[J]. Journal of Applied PolymerScience,2002,85(7):1408-1418
    [110]Harris A. M., Lee E. C. Improving mechanical performance of injection molded PLAby controlling crystallinity[J]. Journal of Applied Polymer Science,2008,107(4):2246-2255
    [111]Zhang X. Q., Schneider K., Liu G. M., et al. Structure variation of tensile-deformedamorphous poly(L-lactic acid): Effects of deformation rate and strain[J].Polymer,2011,52(18):4141-4149
    [112]Mikos A. G., Thorsen A. J., Czerwonka L. A., et al. Preparation and Characterizationof Poly(L-Lactic Acid) Foams[J]. Polymer,1994,35(5):1068-1077
    [113]Modi S., Koelling K., Vodovotz Y. Miscibility ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid)blends determined by thermal analysis[J]. Journal of Applied Polymer Science,2012,124(4):3074-3081
    [114]Zhao Q., Wang S. F., Kong M. M., et al. Phase morphology, physical properties, andbiodegradation behavior of novel PLA/PHBHHx blends[J]. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials,2012,100B(1):23-31
    [115]Javadi A., Srithep Y., Pilla S., et al. Processing and characterization of solid andmicrocellular PHBV/coir fiber composites[J]. Materials Science&Engineering C-Materialsfor Biological Applications,2010,30(5):749-757
    [116]Javadi A., Srithep Y., Lee J., et al. Processing and characterization of solid andmicrocellular PHBV/PBAT blend and its RWF/nanoclay composites[J]. Composites Parta-Applied Science and Manufacturing,2010,41(8):982-990
    [117]Nanda M. R., Misra M., Mohanty A. K. The Effects of Process Engineering on thePerformance of PLA and PHBV Blends[J]. Macromolecular Materials andEngineering,2011,296(8):719-728
    [118]Zhang M., Thomas N. L. Blending Polylactic Acid with Polyhydroxybutyrate: TheEffect on Thermal, Mechanical, and Biodegradation Properties[J]. Advances in PolymerTechnology,2011,30(2):67-79
    [119]Richards E., Rizvi R., Chow A., et al. Biodegradable Composite Foams of PLA andPHBV Using Subcritical CO(2)[J]. Journal of Polymers and the Environment,2008,16(4):258-266
    [120]Singh Satpal, Ghosh Anup K, Maiti Saurindra N, et al. Morphology and rheologicalbehavior of polylactic acid/clay nanocomposites[J]. Polymer Engineering&Science,2012,52(1):225-232
    [121]Sinha Ray Suprakas, Yamada Kazunobu, Okamoto Masami, et al. Newpolylactide-layered silicate nanocomposites.2. Concurrent improvements of materialproperties, biodegradability and melt rheology[J]. Polymer,2003,44(3):857-866
    [122]Yu Long, Dean Katherine, Li Lin. Polymer blends and composites from renewableresources[J]. Progress in Polymer Science,2006,31(6):576-602
    [123]Preechawong D., Peesan M., Supaphol P., et al. Preparation and characterization ofstarch/poly(L-lactic acid) hybrid foams[J]. Carbohydrate Polymers,2005,59(3):329-337
    [124]Jack K. S., Velayudhan S., Luckman P., et al. The fabrication and characterization ofbiodegradable HA/PHBV nanoparticle-polymer composite scaffolds[J]. ActaBiomaterialia,2009,5(7):2657-2667
    [125]Sultana N., Wang M. Fabrication of HA/PHBV composite scaffolds through theemulsion freezing/freeze-drying process and characterisation of the scaffolds[J]. Journal ofMaterials Science-Materials in Medicine,2008,19(7):2555-2561
    [126]Duan B., Wang M., Zhou W. Y., et al. Nonisothermal Melt-Crystallization Behavior ofCalcium Phosphate/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) NanocompositeMicrospheres[J]. Polymer Engineering and Science,2011,51(8):1580-1591
    [127]Javadi A., Kramschuster A. J., Pilla S., et al. Processing and Characterization ofMicrocellular PHBV/PBAT Blends[J]. Polymer Engineering and Science,2010,50(7):1440-1448
    [128]Berthod P., Heil C., Aranda L. Influence of the morphologic evolution of the eutecticcarbides at high temperature on the thermal expansion behavior of refractory cast alloys[J].Journal of Alloys and Compounds,2010,504(1):243-250
    [129]Wu Defeng, Zhang Yisheng, Zhang Ming, et al. Phase behavior and its viscoelasticresponse of polylactide/poly (ε-caprolactone) blend[J]. European PolymerJournal,2008,44(7):2171-2183
    [130]Bao J. B., Liu T., Zhao L., et al. A two-step depressurization batch process for theformation of bi-modal cell structure polystyrene foams using scCO(2)[J]. Journal ofSupercritical Fluids,2011,55(3):1104-1114
    [131]Di Y. W., Iannace S., Di Maio E., et al. Reactively modified poly(lactic acid):Properties and foam processing[J]. Macromolecular Materials andEngineering,2005,290(11):1083-1090
    [132]Bigg D. M. Polylactide copolymers: Effect of copolymer ratio and end capping ontheir properties[J]. Advances in Polymer Technology,2005,24(2):69-82
    [133]Pilla S., Kim S. G., Auer G. K., et al. Microcellular extrusion foaming ofpoly(lactide)/poly(butylene adipate-co-terephthalate) blends[J]. Materials Science&Engineering C-Materials for Biological Applications,2010,30(2):255-262
    [134]Pilla S., Kramschuster A., Lee J., et al. Microcellular and Solid Polylactide-Flax FiberComposites[J]. Composite Interfaces,2009,16(7-9):869-890
    [135]Pilla S., Kramschuster A., Lee J., et al. Microcellular processing ofpolylactide-hyperbranched polyester-nanoclay composites[J]. Journal of MaterialsScience,2010,45(10):2732-2746
    [136]Carli L. N., Crespo J. S., Mauler R. S. PHBV nanocomposites based onorganomodified montmorillonite and halloysite: The effect of clay type on the morphologyand thermal and mechanical properties[J]. Composites Part a-Applied Science andManufacturing,2011,42(11):1601-1608
    [137]Gogolewski S, Jovanovic M, Perren SM, et al. Tissue response and in vivodegradation of selected polyhydroxyacids: Polylactides (PLA), poly (3‐hydroxybutyrate)(PHB), and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)(PHB/VA)[J]. Journal of Biomedical Materials Research,1993,27(9):1135-1148
    [138]Yuan M. J., Turng L. S. Studies of microcellular nanocomposites with supercriticalfluid assisted injection moulding process[J]. Plastics Rubber and Composites,2006,35(3):129-138
    [139]Ray S. S., Maiti P., Okamoto M., et al. New polylactide/layered silicatenanocomposites.1. Preparation, characterization, and properties[J].Macromolecules,2002,35(8):3104-3110
    [140]Krishnamachari P., Zhang J., Lou J. Z., et al. Biodegradable Poly(Lactic Acid)/ClayNanocomposites by Melt Intercalation: A Study of Morphological, Thermal, andMechanical Properties[J]. International Journal of Polymer Analysis andCharacterization,2009,14(4):336-350
    [141]Yuan M. J., Winardi A., Gong S. Q., et al. Effects of nano-and micro-fillers andprocessing parameters on injection-molded microcellular composites[J]. PolymerEngineering and Science,2005,45(6):773-788
    [142]Alzina C., Sbirrazzuoli N., Mija A. Epoxy-Amine Based Nanocomposites Reinforcedby Silica Nanoparticles. Relationships between Morphologic Aspects, Cure Kinetics, andThermal Properties[J]. Journal of Physical Chemistry C,2011,115(46):22789-22795
    [143]Pluta M., Jeszka J. K., Boiteux G. Polylactide/montmorillonite nanocomposites:Structure, dielectric, viscoelastic and thermal properties[J]. European PolymerJournal,2007,43(7):2819-2835
    [144]Bordes P., Pollet E., Averous L. Nano-biocomposites: Biodegradablepolyester/nanoclay systems[J]. Progress in Polymer Science,2009,34(2):125-155
    [145]Lee S. Y., Hanna M. A. Preparation and Characterization of Tapioca Starch-Poly(lacticacid)-Cloisite NA(+) Nanocomposite Foams[J]. Journal of Applied PolymerScience,2008,110(4):2337-2344
    [146]Pluta M. Melt compounding of polylactide/organoclay: Structure and properties ofnanocomposites[J]. Journal of Polymer Science Part B-Polymer Physics,2006,44(23):3392-3405
    [147]Yuan M. J., Turng L. S. Microstructure and mechanical properties of microcellularinjection molded polyamide-6nanocomposites[J]. Polymer,2005,46(18):7273-7292
    [148]Yuan M. J., Turng L. S., Caulfield D. F. Crystallization and thermal behavior ofmicrocellular infection-molded polyamide-6nanocomposites[J]. Polymer Engineering andScience,2006,46(7):904-918
    [149]Yuan M. J., Turng L. S., Gong S. Q., et al. Study of injection molded microcellularpolyamide-6nanocomposites[J]. Polymer Engineering and Science,2004,44(4):673-686
    [150]Ahmed J., Varshney S. K., Auras R., et al. Thermal and Rheological Properties ofL-Polylactide/Polyethylene Glycol/Silicate Nanocomposites Films[J]. Journal of FoodScience,2010,75(8): N97-N108
    [151]Ahmed J., Varshney S. K., Auras R. Rheological and Thermal Properties ofPolylactide/Silicate Nanocomposites Films[J]. Journal of Food Science,2010,75(2):N17-N24
    [152]Wang B. A., Wan T., Zeng W. Dynamic Rheology and Morphology ofPolylactide/Organic Montmorillonite Nanocomposites[J]. Journal of Applied PolymerScience,2011,121(2):1032-1039
    [153]Sarvestani Alireza S, Jabbari Esmaiel. Modeling and experimental investigation ofrheological properties of injectable poly (lactide ethylene oxide fumarate)/hydroxyapatitenanocomposites[J]. Biomacromolecules,2006,7(5):1573-1580
    [154]Homminga Douwe, Goderis Bart, Dolbnya Igor, et al. Crystallization behavior ofpolymer/montmorillonite nanocomposites. Part I. Intercalated poly (ethyleneoxide)/montmorillonite nanocomposites[J]. Polymer,2005,46(25):11359-11365
    [155]Homminga Douwe, Goderis Bart, Dolbnya Igor, et al. Crystallization behavior ofpolymer/montmorillonite nanocomposites. Part II. Intercalated poly(ε-caprolactone)/montmorillonite nanocomposites[J]. Polymer,2006,47(5):1620-1629
    [156]Ren Jie, Yu Tao, Li Hang, et al. Studies on morphologies and thermal properties ofpoly (lactic acid)/polycaprolactone/organic‐modified montmorillonite nanocomposites[J].Polymer Composites,2008,29(10):1145-1151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700