用户名: 密码: 验证码:
竹粉增强聚丙烯发泡复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑发泡复合材料可以克服木塑复合材料密度大、成本高、韧性低等缺陷,而且具有比强度高、加工性能好、价格低廉等优点;在室内装潢、建筑装饰、包装运输、汽车制造业等领域存在广阔的发展前景。论文以竹粉为增强相,以聚丙烯(PP)和高熔体强度聚丙烯(HMSPP)共混塑料为基体、以自制改性AC为发泡剂,注塑法研发竹粉增强聚丙烯发泡复合材料。
     论文研究了PP/HMSPP不同配比对竹粉/PP发泡复合材料力学性能的影响,筛选出PP与HMSPP配比为80︰20的共混塑料基体。通过热重-差热分析,筛选出适合的发泡剂类型;并对AC发泡剂进行改性,比较了热平衡型及改性AC发泡剂对发泡复合材料力学性能、泡孔形态、加工性能和热稳定性的影响。采用1%改性AC发泡剂时,发泡复合材料的力学性能最佳,泡孔直径较小、泡孔形态分布较为均匀;加工性能和流变性能增强,发泡复合材料的表观黏度对剪切速率的依赖性变小,但粘温依赖性增大,粘流活化能为46.42KJ/mol,提高了8.9%;对发泡复合材料的热稳定性有一定不良影响。
     论文研究了MAPP、KH570、TL-4和DN301四种偶联剂对竹粉/PP发泡复合材料力学性能、吸水性能、表面润湿性、加工性能和流变性能以及热稳定性能的影响。经偶联剂改性后,发泡复合材料的吸水性能和表面润湿性均得到改善。当MAPP用量为9%时,发泡复合材料的综合性能最佳,比弯曲、比拉伸和比冲击强度分别提高了23.1%,9.9%和47.8%;熔体指数MI由未改性时的2.79g·10min~(-1)增大至3.61g·10min~(-1);但热稳定性略微下降。其次是KH570,其最佳用量为2%;此时,发泡复合材料的强度分别提高了7.1%、5.8%和24.9%;MI降至2.55g·10min~(-1);且热稳定性下降。再次是TL-4,其最佳用量为1%,发泡复合材料的比强度分别提高了11.7%、10.5%和16.9%;MI增至4.50g·10min~(-1)。最后是DN301,其最佳用量为2%,比强度分别提高了9.6%、6.8%和11.8%;MI增至3.97g·10min~(-1);热稳定性略微增强。
     本文研究了偶联剂类型及用量对竹粉/PP发泡复合材料动态流变性能的影响。通过计算低频区lgG′-lgf曲线的斜率,衡量改性前后发泡复合材料的均相性;采用Cross方程拟合复合材料黏度和频率之间的关系,利用频率水平平移因子α(wt%),实现不同固体粒子填充材料之间线性粘弹性的转换;结合Han曲线、Cole-Cole图侧面反应了改性前后发泡复合材料内部结构、松弛过程的变化;通过幂律方程计算非牛顿指数,探讨了偶联剂对发泡复合材料流体行为的影响。竹粉/PP发泡复合材料的模量和复数黏度随着偶联剂用量的增加均呈现先降低后增大的趋势,且总体下降;且均相性提高。9%MAPP、2%KH570、1%TL-4和2%DN301改性发泡复合材料的低频区lgG′-lgf曲线的斜率由未改性时的0.709分别增至0.782、0.758、0.842和0.811。添加偶联剂不会改变竹粉/PP发泡复合材料的非牛顿假塑性流体特征,随着MAPP用量的增加,发泡复合材料的牛顿性增强;随着KH570用量的增加,发泡复合材料的假塑性增强;随着TL-4用量的增加,发泡复合材料的非牛顿指数先增大后减小;而DN301对发泡复合材料非牛顿指数的影响很小。
     采用环境扫描电镜观察改性前后竹粉/PP发泡复合材料的断面形态;用傅里叶红外光谱分析改性前后竹粉的基团变化;用X-射线光谱分析改性前后发泡复合材料表面的元素和基团变化,用X-射线衍射分析改性前后发泡复合材料晶体形态和结晶度变化,较为深入地研究了界面改性及其化学键结合机理。MAPP中的马来酸酐可与竹粉中的羟基发生酯化反应;从而改善竹粉和PP的界面结合力;硅醇与竹粉在加热过程中可形成-Si-O-C键;TL-4可与竹粉反应引入羧基等有机官能团;从而对竹粉表面起到“修饰”作用。偶联剂不会影响基体的晶态结构,均为α-晶形PP;但发泡复合材料的结晶度增大,未改性时发泡复合材料的结晶度为21.05%;经MAPP改性,结晶度增至31.52%。
     论文采用单因素实验,优化注塑工艺为:注塑温度175℃~(-1)90℃、模具温度90℃;注塑压力4.5MPa-6.5MPa;注射速度40mm/s-70mm/s。同时,竹粉用量为50份时,发泡复合材料的综合性能最佳。采用9%MAPP、1%改性AC发泡剂、竹粉用量为50份时,发泡复合材料的平均泡孔直径为81.3μm,泡孔密度为2.66×107个/cm3;接近微孔发泡的要求;发泡复合材料的密度为0.845g·cm-3、弯曲模量为2813.31MPa、比弯曲强度、比拉伸强度和比冲击强度分别为47.59MPa、26.12MPa和7.22KJ·m-2;与未发泡复合材料相比,密度下降了16.1%、比强度提高了16.8%-40.2%,且耐热性能也略微提高。同时,建立了表征材料表面动态润湿性的数学模型,采用系数K评价了竹粉用量和偶联剂对发泡复合材料表面润湿性的影响,当竹粉用量为50份、添加9%MAPP时,蒸馏水和甘油中的初始接触角分别为88.5°和91.5°,接触角衰减速率K值分别为0.0071和0.0119,表面自由能为34.19mJ·m-2。
     论文采用旋转流变仪,研究了竹粉用量对竹粉/PP发泡复合材料流变性能的影响。发泡复合材料在低频区出现“似固体行为”;储能模量、损耗模量和复数黏度随着竹粉用量的增加逐渐增大;竹粉用量为10份和30份时,损耗角正切值tanδ略微增加,而随着竹粉用量的继续增加,tanδ不断降低。发泡复合材料的零剪切黏度随着竹粉用量增加不断增大,Cross特征松弛时间λ也逐渐增大,而Cross速率常数和非牛顿指数基本呈减少趋势。
     论文研究了滑石粉、聚烯烃弹性体POE和POE-g-MAH三种增韧填料对发泡复合材料力学性能、加工性能、流变性能和热稳定性能的影响。当竹粉用量为50份、MAPP为9%、改性AC为1%时,添加8%POE-g-MAH增韧的竹粉/PP发泡复合材料的综合性能最佳,其力学性能可满足代替PP塑料应用于汽车内饰件的要求。此时,发泡复合材料的密度为0.849g·cm-3,比弯曲强度为45.72MPa、弯曲模量为3019.91MPa、比拉伸强度为25.22MPa、比缺口冲击强度为10.07KJ m-2、维卡软化点温度为155.8℃;MI为3.69g·10min~(-1),能较好地注塑成型;且对发泡复合材料热稳定性基本没有影响;但表观黏度对剪切速率较为敏感。
     论文比较了人工加速老化和自然气候老化对添加及未添加老化剂的竹粉/PP发泡复合材料材色、尺寸、质量、弯曲性能、拉伸性能、冲击强度以及蠕变性能的影响,分别采用四元件和六元件模型模拟发泡复合材料在25%、50%和75%应力水平下的短期蠕变行为。通过添加抗氧化剂B225和抗紫外线剂UV770,可以改善发泡复合材料的耐老化性能;但是,加速老化和自然老化2160h后,其产生的色差仍分别为47和2.8,冲击强度分别下降25.3%和9.2%,拉伸强度略微增强了1.3%和6.0%;加速老化导致弯曲性能下降13%,自然老化对弯曲性能影响不大;历时5400s蠕变试验后,产生蠕变应变增大了约1.2倍;剩余抗弯性能保留率分别为91.97%-97.70%和92.66%-98.87%。
Foamed natural and wood fiber-plastic composite (WPC) with a fine cellular structurecan overcome some shortcomings such as high density and low toughness of non-foamedWPC and can achieve outstanding cost-to-performance ratio and has a favorablestrength-to-weight ratio compared to its non-foamed analogue. Due to these unique properties,foamed WPC has widely used in building materials, decoration, packaging, especially in theconstruction and automotive industries and etc. In this paper bamboo powder reinforcedpolypropylene (PP) foaming composites were developed with bamboo powder asreinforcement, PP and high melt strength polypropylene (HMSPP) blends as matrix, modifiedazodicarbonamide (AC) as foaming agent and the composites were prepared by injectionmoulding.
     In the first interest for this study, effects of different proportions of PP and HMSPP onthe physico-mechanical properties of foaming composites were investigated and theappropriate ratio of PP and HMSPP was fixed to80︰20. Thermo-decomposition behaviorsof three types of chemical foaming agents (CFA) such as endotherimic, exo-endothermic andexothermic CFA were carried out and the suitable type of CFA was selected. Then, effects ofexo-endothermic FA and modified AC (MAC) on the physico-mechanical properties, cellmorphology, processing performance and thermal stability of foamed composites werecomparative analyzed. The mechanical measurements and ESEM test results indicated thatthe foamed composite with1%MAC had better physico-mechanical properties and smallercell size and better cell distribution compared with endothermic FA. And the processing andrheological performance of foamed composite adding1%MAC improved; and thedependence of apparent viscosity and shear rate got smaller; but dependence of apparentviscosity and temperature got larger and the viscous activation energy of the foamedcomposite with1%MAC was46.41KJ mol~(~(-1)). This was an increase of8.9%compared withthat of the non-foamed analogue. In addition, the thermal stability of this foamed compositeslightly decreased.
     Second focus of this work was to study the effects of maleic anhydride modifiedpolypropylene (MAPP), silane KH570; aluminum zirconium TL-4and titanate DN301coupling agents on the mechanical properties, water absorption, surface wettablity,processing performance and thermal stability of foamed composites. With addition of coupling agents, the mechanical properties, water resistance and surface wettability allenhanced. The optimal amounts of these coupling agents were9%MAPP,2%KH570,1%TL-4and2%DN301. And the foamed composite with9%MAPP showed best comprehensiveperformance; although its thermal stability had a slightly decrease but the specificbending,tensile and the notched impact strength increased by23.1%,9.9%and47.8%andthe melt index (MI) increased from2.79g·10min~(~(-1))to3.61g·10min~(~(-1)). Followed with1%TL-4,the corresponding specific strengths increased by23.1%,9.9%and47.8%respectively andthe MI increased to4.50g·10min~(~(-1))and the thermal stability kept fine. Next was2%KH570,its corresponding specific strengths improved by7.1%,5.8%and24.9%respectively; but MIdecreased to2.55g·10min~(~(-1))and the thermal stability reduced. Last was2%DN301,itscorresponding specific strengths only raised by9.6%,6.8%and11.8%respectively; but MIincreased to3.99g·10min~(~(-1))and the thermal stability had a little enhancement.
     Moreover, in this part the influences of the type and dosage of coupling agent onthe the rheological properties about the bamboo powder/PP foamed composites were alsocarried out. By calculating the lgG'-lgf curve slopes in the low frequency region of thefoamed composites, the homogeneous degrees of composites before and after modificationwere measured. The relationship between viscosity and frequency of the foamed compositecould be fiitted by using the Cross model and the linear viscoelastic conversion betweendifferent solid particle fillers could be achieved through translation factor α(wt%). And thechanges of the internal structure and relaxation process of foamed composites before andafter treatment were reflected by Han curve and the Cole-Cole diagram. Furthermore, thenon-Newtonian index of foamed composites was calculated using power law equation. Thestorage, loss modulus and complex viscosity all increased first and then decreasedwith the addition of coupling agents and in overall declined; and the homogeneous of foamedcomposites after modification increased. The lgG'-lgf slopes of nontreated composites was0.709and with addition of9%MAPP,2%KH570,1%TL-4and2%DN301the slopesincreased to0.782,0.758,0.842and0.811respectively. The coupling agents did notchange the non-Newtonian pseudoplastic characteristics of bamboo powder/PP foamedcomposite, but the Newton behavior enhanced with the increase of MAPP amount and thepseudoplastic behavior enhanced with the increase of KH570dosage and thenon-Newtonian index firstly increased and then decreased with the TL-4dosageincreased; while DN301had little effect on the non-Newtonian index of the foamedcomposite.
     The interface modification and chemical bonding mechanism of the foamed compositewas studied. Microscopic structures of foamed composites before and after modification wereanalyzed using environmental scanning electron microscopy (ESEM); and molecular groupsand molecular structure of the untreated and treated bamboo powder were analyzed usingfourier transform infrared spectroscopy (FTIR); and the surface element and chemicalbonding of foamed composites were investigated by X-ray photoelectron spectroscopyanalysis (XPS) and the crystal morphology of matrix and crystallinity of composites werecompared using X-ray diffraction analysis (XRD).
     The maleic anhydride in the MAPP can etherified with the hydroxyl of the bamboopowder and thus the interfacial bonding force of bamboo powder and PP enhanced. Thesilanol of KH570and bamboo powder can formed-Si-O-C bonds during heating and henceinterfacial strength between bamboo powder and PP improved. TL-4with the hydroxyl of thebamboo powder had the chemical reaction and produced carboxyl and other organicfunctional groups and thus played an effective role in modifying and coating the surface ofthe bamboo powder. XRD results indicated that coupling agents did not affect the crystallinestructure of the matrix and the matrix of composites was all the α-crystalline PP; but thecrystallinity index of composites increased. The crystallinity degree of foamed compositewithout modification was21.05%; and increase to31.52%when adding9%MAPP.
     The third aspect was to optimize the injection molding technology and the amount ofbamboo powder by using a single factor experiments. The optimal injection parameters werethat the injection temperature of175℃~(-1)90℃, mold temperatureof90℃, injection pressureof4.5MPa-6.5MPa, injection speed of40mm/s-70mm/s. The best amount of bamboopowder was50phr, which was33wt%, for its best comprehensive performance and lowermaterial price. When the bamboo powder was50phr, adding9%MAPP and1%MAC, theaverage cell diameter of the foamed composite was81.3μm and the cell density was2.66×107cell/cm3which was close to requirement of microcellular foaming. And the densitywas0.845g·cm-3, the bending modulus of2813.31MPa, the specific flexural, tensile andnotched impact strength of47.59MPa,26.12MPa and7.22KJ·m-2respectively. Comparingto its non-foamed composite, the density decreased by16.1%and the specific strengthsenhanced by16.8%-40.2%and the heat resistance also slightly improved. At the same time,the surface wettability of foamed composites was characterized by dynamic mathematicalmodel and the influences of coupling agents and bamboo powder amounts on the surfacewettability of foamed composites were investigated by using the coefficient K. When theamount of bamboo powder was50phr and with addition of9%MAPP, the initial contact angle of foamed composite in distilled water and glycerol were88.5°and91.5°respectivelyand the declining rate of contact angle that was K value of0.0071and0.0119respectively;and the surface free energy was34.19mJ·m-2.
     In the third part also research the impact of the bamboo powder content on therheological behavior of bamboo powder/PP foamed composite using a rotational rheometer.The foamed composite in the low frequency exhibited “solid-like behavior” and the storagemodulus, loss modulus and complex viscosity increased significantly with the bamboopowder content increased. The loss tangent (tanδ) slightly increased when thebamboo powder amount was10phr and30phr and following gradually increased with theincrease of the bamboo powder content. Both the zero shear viscosity and theCross characteristic relaxation time (λ) of the foamed composites increased with theincrease of bamboo powder content;while the Cross rate constant and non-Newtonianindex basically showed a decreasing trend.
     The forth aspect was to research on the influences of three different toughening fillerssuch as talc, POE and POE-g-MAH on the physico-mechanical properties, processingperformance, rheological properties and thermal stability of foamed composites. Whenadding8%POE-g-MAH, the33wt%bamboo powder/PP foamed composite showed the bestperformance and could replace PP in the field of automotive interior parts. At this point, thedensity of toughened foaming composite was0.849g·cm-3and the specific bending strengthof45.72MPa, flexural modulus of3019.91MPa, the specific tensile strength of25.22MPaand the specific notched impact strength of10.07KJ m-2and the vicat softening pointtemperature of155.8℃; and the MI was3.69g·10min~(-1)and the apparent viscosity was moresensitive to the shear rate; and had no effect on the thermal stability of foamed composite.
     The last aspect was to analyze the effects of the artificial accelerated aging and exteriornatural weathering on the bamboo powder/PP foamed composites with and without agingagents in view of color, thickeness, weight, flexural properties, tensile properties, notchedimpact strength and creep performance. And the short-term creep behavior of foamedcomposites before and after aging at25%,50%and75%stress levers was simulated withfour-component model and six-component model. By adding anti-oxidant B225and anti-UVagent UV770, the aging resistance of the foamed composite improved. However, afteraccelerated aging and natural aging for2160h, the color change△E*still were47and2.8;and the impact strength decreased by25.3%and9.2%, and the tensile strength slightlyenhanced by1.3%and6.0%respectively. The bending properties decreased by around13% after accelerated aging for2160h, and natural aging had little effect on the flexuralproperties. And after5400s creep test, the creep strain increased by1.2times; and theresidual retention of flexural performance were91.97%-97.70%and92.66%-98.87%,respectively.
引文
[1]国家林业局[EB/OL]. http://www.forestry.gov.cn,2010-01-28.
    [2] Shyh-shin Hwang, Pe-ming P Hsub, Jui-ming Yehc. Effect of clay and compatibilizer onthe mechanical/thermal properties of microcellular injection molded low densitypolyethylene nanocomposites [J].International communications in heat and mass transfer,2009,36(5):471-479.
    [3] Herman J C Voorwald, Maria Odila H Cioffi, Maria Lúcia C P da Silva,et al.Sugarcanebagasse cellulose/HDPE composites obtained by extrusion[J].Composites Science andTechnology,2009,69(2):214-219.
    [4]沈凡成,贾润礼.木塑复合材料的研究进展与发展前景[J].塑料助剂,2010,1:5-9.
    [5] Clemons, C. Wood-plastic composites in the United States-the interfacing of twoindustries[J]. Forest Prod. J.2002,52:10-18.
    [6]温安华,薛平,贾明印.微发泡木塑复合材料的研究进展[J]塑料工业,2006,34(6):1-4。
    [7] Lee Y H. Foaming of wood flour/polyolefin/layered silicate composites[D]. PH.D thesis,University of Toronto,2008.
    [8] Ashori A. Wood-plastic composites as promising green composites for automotiveindustries [J]. Bioresour Techn,2008,99(1):4661.
    [9] Rizvi G M, Park C B and Matuana L M. Foaming of PS/wood fiber composites usingmoisture as a blowing agent[J].Polymer Engineering Science,2000,40(10):2124-2132.
    [10] Matuana L M, Park, C B and Balatinecz J J. Processing and cell morphologyrelationships for microcellular foamed PVC/wood-fiber composites[J]. Poly EngSci,1997,37(7):1137-1147.
    [11] Matuana L M, Park C B and Balatinecz J J. Cell morphology, and property relationshipsof microcellular foamed PVC-wood fiber composites[J].Poly Eng Sci,1998,38(11):1862-1872.
    [12] Nawadon P, Sirijutaratana C. Influences of particle sizes and contents of chemicalblowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) andrice hull[J].Materials and Design,2011,32:2844-2850.
    [13]王澜,董洁,卜雅萍.聚氯乙烯/稻壳粉木塑发泡制品的研究[J].塑料,2005,34(5):1-7.
    [14]孔展,张卫勤,芦成,等.PVC/木粉复合材料的发泡研究[J].塑料,2006,35(6):31-35.
    [15]薛盘芳.PVC/秸秆复合发泡材料成型工艺初探[J].工程塑料应用,2007,35(8):36-38.
    [16]胡圣飞,陈文,刘维华,等.表面改性对PVC/稻糠发泡复合材料的影响[J].化工新型材料,2006,34(5):49-51.
    [17]白晓艳.低发泡木粉/PVC复合材料研究[D].东北林业大学博士论文,2010
    [18]李兵,石宝山,周南桥,等.木粉和发泡剂对PVC基木塑复合发泡材料性能的影响[J].塑料科技,2009,37(5):62-65.
    [19] Rachtanapun P, Selke S E M, Matuana L M.Microcellular foam of polymer blends ofHDPE/PP and their composites with wood fiber [J]. Journal of Appl Polym Sci,2003,88(12):2842-2850.
    [20] ZHANG J, Rizvi, G. M, and Park C B.Effects of wood fiber content on the rheologicalProperties, crystallization properties and cell Morphology of extruded HDPE/wood Fibercomposites foams[J].BioResources,2011,6(4):4979-4989.
    [21]高振棠,柏雪源,蔡红珍,等.HDPE/麦秸粉微孔发泡复合材料挤出工艺的研究[J].工程塑料应用,2008,36(3):40-43.
    [22]涂芳,孙可伟,李如燕.甘蔗渣/LDPE发泡木塑复合材料的研究[J].塑料工业,2007,35(5):16-19.
    [23] ZHANG S W, Denis Rodrigue. Preparation and morphology of polypropylene/woodflour composite foams via extrusion [J]. Polymer Composites,2005:731-738.
    [24] Bledzki A K, ZHANG W Y and Omar F. Microfoaming of flax and wood fibrereinforced polypropylene composites [J].European Journal of Wood and WoodProducts,2005,63(1):30-37.
    [25] Bledzki A K and Omar F. Microcellular injection molded wood fiber-PP composites:part I-Effect of chemical foaming agent content on cell morphology and physico-mechanicalproperties [J]. Journal of Cellular Plastics,2006,42(1):63-76.
    [26] Bledzki A K and Omar F. Microcellular injection molded wood fiber-PP composites:part II-Effect of wood fiber length and content on cell morphology and physico-mechanicalproperties[J].Journal of Cellular Plastics,2006,42(1):77-88.
    [27] Bledzki, A K and Omar, F. Effects of the chemical foaming agents, injection, parameters,and melt-flow index on the microstructure and mechanical properties of microcellularinjection-molded wood-fiber/polypropylene composites[J].Journal of Applied PolymerScience2005,97:1092-1094.
    [28]朱敏,杨炳训,龙耀辉.木粉/PP发泡复合材料的性能研究[J].塑料制造,2010,5:49-51.
    [29]吴正心,庞燕,李正军.绿色物流包装材料的开发前景物流技术[J].包装工程,2006,(7):68-69.
    [30]郑丹丹,刘玉环,林向阳,等.竹废料开发利用探讨[J].福建林业科技,2005,32(2):153-154.
    [31]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报,2005,6:7-12.
    [32]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社,第2版.1999:48-60.
    [33]李义,柳承德,梁继才,等.微孔发泡注射成型机理[J].2009,39(1):72-77.
    [34]陈佰全,戴文利,汤红霞.聚丙烯发泡材料的研究进展[J].塑料制造,2006,12:55-56.
    [35] B Krause, M Stephan, S Volkland, et al. Long-chain branching of polypropylene byelectron-beam irradiation in the molten state[J]. Journal of Applied Polymer Science,2006,99(1):260-265.
    [36] Masoud Frounchi. Polypropylene foaming in a reactive process [J]. Journal of CellularPlastics2007;43;445-456.
    [37]黎勇,刘春盛,胡福增,等.聚丙烯接枝改性及其挤出发泡研究[J].功能高分子学报,2004,17(3):429-435.
    [38]张平,周南桥,卜宪华.聚丙烯发泡成型的改性方法及发展概况[J].塑料,200635(3):34-39.
    [39]杨淑静.反应挤出法制备发泡用高熔体强度聚丙烯的研究[D]北京化工大学博士论文,2006.
    [40]王清,曹存军,谭晶莹.高熔体强度聚丙烯材料研制的试验分析[J].湖南理工学院学报(自然科学版),2010,23(1):59-61.
    [41]李兵.以水蒸气为发泡剂制备高熔体强度PP发泡塑料研究[D].华南理工大学硕士论文,2010.
    [42]邬素华.用于发泡成型的高熔体强度聚丙烯的研究[J].橡塑资源利用,2008,2:9-12
    [43] Rachtanapun P, Selke S E M, Matuana L M. Relationship between cell morphology andimpact strength of microcellular foamed high-density polyethlene/polypropyfeneBlends[J].Polym.Eng.Sci,2004,44:1551-1560.
    [44]张平,周南桥,文生平.剪切对PP/HDPE共混材料微孔发泡成型的影响[J].工程塑料应用,2007(9):21-25.
    [45]王建康,黄汉雄,林登辉.聚丙烯/聚乙烯共混物超临界流体微孔发泡中黏弹性对泡孔结构的影响[J].塑料,2007,36(3):58-62.
    [46] Ghaus Rizli, Matuana L M, Park C B. Foaming of PS/wood fiber composites usingmoisture as a blowing agent [J].polymer engineering and science,2000,40,(10):2124-2132.
    [47] Rizvi G, Matuana L M, Park C B. Foaming of PS/wood fiber composites using moistureas a blowing agent [J]. Polymer Engineering&Science,2004,4(10):2121-2132.
    [48] Lee Y H. Foaming of wood flour/polyolefin/layered silicate composites[D].University ofToronto,2008.
    [49] Jose Antonio Reglero Ruiz, Jean Marc-Tallonb, Matthieu Pedros, et al.Two-step microcellular foaming of amorphous polymers in supercritical CO2[J]. J of Supercritical Fluids,2011(57):87-94.
    [50] R. Benker. Blowing Agents and Foaming Processes[A].2003, May19-20, Munich,Germany.
    [51] Rizvi G M, Park C B, Guo G, et al. Strategies for processing Wood Plastic Compositeswith chemical blowing agents[J].Journal of Cellular Plastics,2008,44,(2):125-137.
    [52] Matuana L M, Faruk O, Diaz C A. Cell morphology of extrusion foamed poly(lactic acid)using endothermic chemical foaming agent [J].Bioresource Technology100(2009)5947–5954
    [53]周琼,于涛,郑鸿,等.典型放热型、吸热型和吸-放热型发泡剂热分解特性的研究[J].高分子材料科学与工程,2000,16(5):137-139.
    [54] LI Q X. Extrusion foaming of polyolefin/wood-flour composites [D]. PH.D thesis,MichiganTechnological University,2002.
    [55] Mengeloglu F, Matuana L M. Mechanical properties of extrusion-foamed rigidPVC/wood-flour composites [J].Journal of Vinyl and Additive Technology,2003,9(1):26-31.
    [56] A K Bledzki, Omar Faruk. Injection moulded microcellular wood fibre–polypropylenecomposites [J]. Composites: Part A,2006(37):1358-1367.
    [57]陈立军,陈焕钦.活性物质对AC发泡剂性能的影响研究及其活化机理[J]绝缘材料,2005,1:31-32.
    [58] Nawadon Petchwattana, Sirijutaratana Covavisaruch. Influences of particle sizes andcontents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull [J]. Materials and Design,2011(32):2844-2850.
    [59]敖欢,刘廷华.木塑复合材料发泡成型技术研究进展[J].塑料工业,2005,33(9):1-4.
    [60]徐志娟,何继敏,薛平,等.工艺参数对PP挤出发泡泡孔结构的影响[J].塑料工业,2004,32(11):25-27.
    [61]王向东,刘本刚,陈士宏,等.聚丙烯挤出发泡中的关键技术—加工设备和成型工艺研究[J].中国塑料2006,20(4):20-24.
    [62] Matuana L, LI Q. A factorial design applied to the extrusion foaming ofpolypropylene/wood-flour composites[J].Cellular Polymers,2001,20(2):115-130.
    [63] LI Q, Matuana L. Foam extrusion of HDPE/wood flour composites using chem icalfoaming agents [J]. J Appl Poly Sci,2003,88(14):3139-3145.
    [64] Matuana L M, LI Q. Statistical Modeling and Response Surface Optimization ofExtruded HDPE/Wood-Flour Composite Foams [J]. Journal of Thermoplastic CompositeMaterials,2004,17(2):185-199.
    [65]陶剑,王美珍,吴智华.聚烯烃/木粉微孔复合材料结构与性能研究[J].塑料科技,2008,36(9):32-35.
    [66] T. Nakjayama, Mitsuko Takada. Foam processing and cellular structure ofpolypropylene/clay nanocomposites [J]. Polymer Engineering and Science,2002,42(9):1907.
    [67] Turng L S, YUAN M, Kharbas H. Seventh International Conference on woodfiber-plastic composites, May19-20, Madison, Wisconsin, USA2003:217.
    [68] Kentaro Taki,Tatsunori Yanagimoto,Eita Funami, et al.Visual observation of CO2foaming of polypropylene-clay nanocomposites[J].Polymer Engineering andScience,2004,44(6):1004-1011.
    [69] Young-Wook Chang, Dongsuk Lee and Seong-Youl Bae. Preparation ofpolyethylene-octene elastomer/clay nanocomposite and microcellular foam processed insupercritical carbon dioxide [J].Polymer International,2006,55:184-189.
    [70] Lee Y H, Kuboki T, Park, C B et al. The Effects of nanoclay on the extrusion foaming ofwood fiber/polyethylene nanocomposites [J].Polymer Engineering and Science,2011,51(5):1014-1022.
    [71]郭喆,揣成智.模压法制备发泡聚丙烯的研究[J].现代塑料加工应用,2009,21(1):9-12.
    [72]涂芳,孙可伟,李如燕.甘蔗渣/LDPE发泡木塑复合材料的研究[J].塑料工业,2007,35(5):16-19
    [73] Bledzki A K and Faruk O. Microcellular Wood fiber reinforced polypropylenecomposites: A comparative sudy between injection molding and extrusion process [C]. SPEANTEC Technical Papers,2004:2665-2669.
    [74] Bledzki A K and Faruk O. Microcellular Wood-PP Composites in extrusion, injectionand compression moulding process, in: Blowing agents and foaming processes[C].Paper20, Stuttgart, Germany,2005:1-10.
    [75] Bledzki, A K and Faruk O. Cell Morphology, surface roughness, impact and odor ofmicrocellular injection molded Wood-PP Composites [C]. ANTEC Tech.Papers,20052:1316-1320.
    [76] O Faruk, A K. Bledzki, L M. Matuana. Microcellular foamed Wood-Plastic Compositesby different processes: a review [J].Macromolecular Materials andEngineering,2007,292(2):113-127.
    [77]敖欢,刘廷华.木塑复合材料发泡成型技术研究进展[J].塑料工业,2005,33(9):1-4.
    [78]张军.聚丙烯(PP)/木粉复合材料注塑发泡成型的研究[D].北京化工大学,2010.
    [79] Bledzki A K and Faruk O. Injection moulded microcellular wood fibre-polypropylenecomposites[J]. Composite part A: Applied Science and Manufacturing,2006,37(9):1358-1367.
    [80]杨晓雄.玻璃纤维增强聚丙烯/木粉复合发泡材料的机构和性能研究[D].苏州大学硕士论文,2006.
    [81]高巧春,柏雪源,蔡红珍.PP/LDPE共混微孔发泡木塑复合材料的研究[J].塑料科技,2009,37(9):36-39.
    [82]金翠霞,高俊强,谢普,等.木纤维/PP复合微孔发泡材料的研究[J].新型建筑材料,2010,7:78-81.
    [83]王君.木塑复合材料的界面化学及材料性能研究[D].北京林业大学硕士学位论文,2007:8.
    [84]钟鑫,薛平,丁筠.木塑复合材料性能研究的关键问题[J].工程材料应用,2003,31(1):67-70.
    [85]王清文,王伟宏,郭垂根,等.木塑复合材料与制品[M].北京:化学工业出版社,2007:73-75.
    [86]滕国敏,张勇,万超瑛,等.木塑复合材料的界面改性方法[J].化工新型材料,2005,33(5):7-8.
    [87]崔会旺,杜官本.木材等离子体改性研究进展[J].世界林业研究,2008,21(1):51-55.
    [88] XIE Y J, Callum A.S. Hill, XIAO Z F, et al. Silane coupling agents used for naturalfiber/polymer composites: A review [J]. Composites: Part A,2010(41):806–819.
    [89]孔萍,吴清鹤,吴健文,等.稀土偶联剂在再生PP/木粉复合材料中的应用研究[J].工程塑料应用,2008,36(3):20-23.
    [90]赵敏.聚丙烯-木粉复合材料界面相容性研究[D].湖北工业大学硕士论文,2011.
    [91] Balasuriya P W, Ye L, MAI, Y-W. et al. Mechanical properties of woodflake–polyethylene composites. II. Interface modification[J]. Appl polym Sci,2002,83(12):2505-2521.
    [92] Demir H, U Atiklera, D Balk o&&sea, et al. The effect of fiber surface treatments on thetensile and water sorption properties of polypropylene-luffa fiber composites [J]. Composites:Part A,2006(37):447-456.
    [93] Hristov V, Krumova M, Miehler G. The influence of excess coupling agent on themicrodeformation process and mechanical properties of Poly(Propylene)/wood flourcomposites[J].Macromolecular materials and engineering,2006,291:677-683.
    [94] Lívia Dányádi, T u&&nde Janecska, Zoltán Szabó,et al. Wood flour filled PP composites:compatibilization and adhesion [J]. Composites Science and Technology,2007(67):2838-2846.
    [95] Zita Dominkovics, Lívia Dányádi, Béla Pukánszky.Surface modification of wood flourand its effect on the properties of PP/wood composites [J].Composites: Part A,2007(38):1893-1901.
    [96] LIU H, WU Q, Han G, et al. Compatibilizing and toughening bamboo flour-filled HDPEcomposites: mechanical properties and morphologies [J].Composites: Part A,2008(39):1891-1900.
    [97] Lívia Dányádi, János Móczó, Béla Pukánszky. Effect of various surface modifications ofwood flour on the properties of PP/wood composites [J].Composites: Part A,2010(41):199-206.
    [98] Jae Gyoung Gwon, Sun Young Lee, Sang Jin Chun, et al. Effects of chemical treatmentsof hybrid fillers on the physical and thermal properties of wood plastic composites[J].Composites: Part A,2010(41):1491-1497.
    [99] Md. Saiful Islam, Sinin Hamdan, I. Jusoh, et al.The effect of alkali pretreatment onmechanical and morphological properties of tropical wood polymer composites [J].J MaterDesign,2011, doi:10.1016/j.matdes.2011.04.044
    [100] E. Franco-Marquès, J.A. Méndez, M A Pèlach, et al. Influence of coupling agents inthe preparation of polypropylene composites reinforced with recycled fibers [J]. ChemicalEngineering Journal,2011(166):1170-1178.
    [101] H. Moghadamzadeh, H.Rahimi, M.Asadollahzadeh, et al. Surface treatment of woodpolymer composites for adhesive bonding [J]. International Journal of Adhesion&Adhesives,2011(31):816-821.
    [102] QIN T F, HUANG L H, LI G Y. Effect of chemical modification on the properties ofwood/polypropylene composites [J]. Journal of Forestry Research,2005,16(3):241-244.
    [103]刘文鹏,李炳海.不同相容剂对PP/木粉复合材料力学性能的影响[J].塑料,2005,34(5):21-25.
    [104]李嘉俊,汪济奎.聚丙烯竹塑复合材料的研究[J].塑料工业,2008,36(11):17-19.
    [105]吕希林,俞成丙,赵秀兰,等.PP-g-(MAH-St)对PP/木粉复合材料力学性能的影响[J].中国塑料,2009,23(1):64-67.
    [106]姜洪丽,刘欣,王晓鹏,等.木塑复合材料表面性能对力学性能的影响[J].泰山医学院学报,2008,29(4):241-244.
    [107]刘晓玲.竹粉聚丙烯复合材料性能及其界面特征[D].福建农林大学硕士论文,2009.
    [108] LI X F, CHEN Q H, LIN J H, et al. Acetylation of Chinese bamboo flour andthermoplasticity [J].Journal of Forestry Research,2008,19(1):69-71
    [109] TANG L X,QU B J,SHEN X F. Mechanical Properties, morphological structure, andthermal behavior of dynamically photocrosslinked PP/EPDM blends [J]. J Appl Polym Sci,2004,92(5):337l-3380.
    [110]张志洪.聚丙烯/弹性体复合材料的性能研究[J].塑料制造,2007(9):100-102.
    [111] Hristov V, Lach R, Krumova M, et al.Fracture toughness of modifiedpolypropylene/poly(styrene-ran-butadiene)blends[J]. Polymer International,2005,54(12):1632-1640.
    [112]王延伟,杨军忠,刘软群.超细丁苯粉末橡胶增韧聚丙烯的研究[J].塑料工业,2005,33:92-95.
    [113] WANG W Z,MOU Z,QU B J.Mechnical properties and structural characteristics ofPP/PP-g-SBR nano-composites prepared by dynamical photografling[J].Polymers forAdvanced Technologies,2004,15(8):467-471.
    [114]邬润德,童筱莉.SBS包覆交联聚苯乙烯刚性粒子增韧聚烯研究[J].高分子材料科学与工程,2005,21(3):298-299.
    [115] JIANG F and Qin T F. Toughening wood/polypropylene composites with polyethyleneoctane elastomer (POE)[J].Journal of Forestry Research,2006, l7(4):312-314.
    [116]祝景云,杜建强,赵和英.POE改性PP的性能研究[J].合成树脂及塑料,2007,24(1):14-17.
    [117]郑强,冯金茂,俞月初,等.聚合物增韧机理研究进展[J].高分子材料科学与工程,1998,14(4):12-15.
    [118]李跃文,罗承友.聚丙烯增韧改性的方法及机理[J].工程塑料应用,2007,35(10):69-73.
    [119]周琦,王勇,邱桂学,等. POE与EPDM对聚丙烯增韧改性研究[J].弹性体,2007,l7(4):44-47.
    [120]王芬.不同弹性体增韧聚丙烯的性能研究[J].四川文理学院学报,2010,20(2):53-55.
    [121]张凌燕,王芳,洪礼,等.PP/硅灰石/POE复合材料的性能研究[J].非金属矿,2009,32(3):14-17.
    [122] Hong Wu and Shao yun Gao. Improved properties of metallocenecatalyzed linearlow-density polythlene/polrpropylene blends during ultrasonic extrusion[J].Chinese Journalof Polymer Science,2007,25(4):357-364.
    [123]李炳海,陈舅,安峰.PP/UHMWPE共混物力学性能的研究[J].中国塑料,2002,16(12):32-36.
    [124] LIANG D, ZHANG Q, DU RN,et a1. Morphology and mechanical properties ofpolypropylene with in situ formed polyamide-6fibrils [J].Chinese Journal of PolymerScience,2007,25(6):599-607.
    [125] LIU H Z, XIE T X, HOU L L. Toughening and compatibilization ofpolypropylene/polyamide-6blends with a maleated-grafted ethylene-co vinyl acetate[J]. JAppl Polym Sci,2006,99(6):3300-3307.
    [126] Wahit M U, Hassan A, Mohd Ishak Z A.The effect of polyethylene octane elastomeron the morphological and mechanical properties of polyamide-6/polypropylenenanocomposites [J].Polymers and Polymer Composites,2005,13(8):795-805.
    [127]季根忠,刘维明,齐陈泽.刚性粒子增韧聚合物机理研究[J].高分子通报,2005(2):50-54.
    [128] Leong Y W, Ishak Z A, Mohd A A. Mechanical and thermal properties oftalc andcalcium carbonate filled polypropylene hybrid composites[J].J Appl Polym Sci,2004,9l(5):3327-3336.
    [129] Marisa C G Rocha, Antonio H M F T Silva, Fernanda M B Coutinho, et al. Study ofcomposites based on polypropylene and calcium carbonate by experimental design[J].Polymer Testing,2005(24):1049-1053.
    [130] SHENGTU B Q, LI J P, WENG Z X. Effect of oleic acid modified namo-CaCO3on thecrystallization behavior and mechanical properties of polypropylene [J].Chinese J Chem Eng,2006,14(6):814-818.
    [131]刘生鹏,危淼,张文祥.无机粒子增强增韧阻燃聚丙烯的研究进展[J].上海塑料,2010(1):6-11.
    [132] WANG K, WU J S, YE L, et al. Mechanical properties and toughening mechanisms ofpolypropylene/barium ulfate composites [J].Composites,2003(34):1199-1205.
    [133]梁兵,洪晓东,武淑要.高抗冲PP/滑石粉复合材料的研究[J].沈阳化工学院学报,2007,21(3):187-190.
    [134]陈呜才,冯嘉春,涨秀菊,等.稀土偶联剂在无机刚性粒子增韧聚丙烯材料中应用[J].塑料,2004,33(2):23-28.
    [135] YANG K, YANG Q, LI G X. Morphology and mechanical properties ofpolypropylene/calcium carbonate nano-composites[J]. Materials Letters,2006,60(6):805-809.
    [136] SHENGTU B Q, LI J P, WENG Z X. Crystallization and mechanical properties ofpolypropylene filled with SiO2nanoparticles [J]. Chinese jounal of polymer science,2007,25(3):227-233.
    [137]季光明,陶杰,汪涛,等.纳米TiO2填充改性PP的力学性能研究[J].复合材料学报,2005,22(5):l00-l06.
    [138] Ludovie Cauvin, Naresh Bhatnagar, Mathias Brieu, et al. Experimental study andmicromechanical modeling of MMT platelet-reinforced PP nanocomposites [J].Comptesrendus mecanique,2007(335):702-707.
    [139] PENG H R, ZHU L C, ZHANG Z K. Preparation, structure and property research ofnano-Mg/PP composites[J].Composite Interfaces, The Ninth International Conference onComposite Interfaces (ICCI. Ⅸ) Part2,2004,l1(3):231-243.
    [140]陈尔凡,郝春功,T Vladlkova.四脚状氧化锌晶须增强聚丙烯复合材料[J].材料研究学报,2007(10):465-470.
    [141]杨宁,贵大勇,钱诚.钛酸钾晶须增强聚丙烯研究[J].中国塑料,2004,18(1):71-74.
    [142]赵红振,齐暑华,周文英,等.聚丙烯增韧改性最新进展[J].化学推进剂与高分子材料,2007,5(1):27-32.
    [143] Zebarjad S M, Saj S A, Tahani J M. Modification of fracture toughness of isotacticpolypropylene with a combination of EPR and CaCO3particles [J].Journal of materialsprocessing technology,2006,175:446-451.
    [144] YANG H, ZHANG X Q, Qu C, et al. Largely improved toughness of PP/EPDM blendsby adding nano-SiO2particles [J]. Polymer,2007,48:860-869.
    [145]高翔,毛立新,田明.聚丙烯/三元乙丙胶/凹凸棒土三元复合材料的力学性能与亚微相态[J].高分子材料科学与工程,2005,2l(4):197-200.
    [146]武爱军.PP/EPDM/滑石粉复合材料的抗冲击性能以及添加PE-双嵌段共聚物的效果[J].世界橡胶工业,2007,34(12):14-17
    [147]李彩林,郭少云,陈跃,等. PP/POE/滑石粉三元复合材料的研究[J].高分子材料科学与工程,2006,22(3):214-218.
    [148]梁小波.PP/POE/滑石粉材料在我国汽车零部件上的应用[J].汽车工艺与材料,2009,8:67-69.
    [149]吴美升,黄佳木,盖国胜.纳米SiO2包覆硅灰石粉增韧聚丙烯的界面效应与结晶行为[J].化学建材,2004(4):20-23.
    [150]李跃文,陈兴华,陈丹,等.LDPE对PP/硅灰石复合材料增韧改性的研究[J].塑料工业,2008,36(7):24-27.
    [151] Lim J W, Hassan A, Rahmat A R. Rubber-toughened polypropylene nanocomposite:Effect of polyethylene octene copolymer on mechanical properties and phasemorphology[J].J Appl Polym Sci,2006,99(6):3441-3450.
    [152]赵伟,王丽.PP/POE/PE/CaCO3/PP-g-MAH复合材料力学性能的研究[J].塑料助剂,2009,5:35-37.
    [153]胡圣飞,刘维华,郦华兴等.PP/纳米CaCO3/木粉复合材料研究[J].湖北工学院学报,2004,19(6):1-3.
    [154]党文杰,宋永明,王清文,等.木纤维/聚丙烯复合材料界面相容性及增韧改性的研究[J].北京林业大学学报,2007,29(2):133-136.
    [155]姜锋.木塑复合材料增韧性能的研究[D].中国林业科学研究院硕士论文,2007.
    [156]雷芳.PP基木塑复合材料的应用研究[D].广东工业大学硕士论文,2008.
    [157] Hristov V N, Vasileva St, Krumova M, et al. Deformation mechanisms and mechanicalproperties of modified polyprolene/wood fiber composites [J]. Polymer Composites,2004,25(5):521-526.
    [158] Craig Clemons. Elastomer modified polypropylene-polyethylene blends as matrices forwood flour–plastic composites [J].Composites Part A: Applied Science and Manufacturing,2010,41(11):1559-1569.
    [159] Deka B K, Maji T K. Study on the properties of nanocomposite based on high densitypolyethylene, polypropylene, polyvinyl chloride and wood [J].Composites Part A: AppliedScience and Manufacturing,2011,42(6):686-693.
    [160] Deka B K, Tarun K M. Effect of TiO2and nanoclay on the properties of wood polymernanocomposite [J].Composites Part A: Applied Science and Manufacturing,2011,42(12):2117-2125.
    [161]周吓星,李大纲,林巧佳,等.HDPE/稻壳复合材料老化性能的研究[J].建筑材料学报,2011,14(3):354-360.
    [162]王云英,刘杰,孟江燕,等.纤维增强聚合物基复合材料老化研究进展[J].材料工程,2011(7):85-89.
    [163]孙占英,李大纲,吴正元,等.自然气候条件下木塑复合材料性质的变化[J].木材工业,2006,20(3):71-73.
    [164]周吓星.环境因子对塑木地板耐久性能影响的研究[D].南京林业大学硕士论文,2009.
    [165]田先玲.木塑活动房性能的研究[D].南京林业大学硕士论文,2010.
    [166] WANG W H, BU F H, ZHANG Z M, et al. Performance of rice-hull-PE compositeexposed to natural weathering[J].Journal of Forestry Research,2010,21(2):219-224.
    [167] Svetlana Butylina, Marko Hyv rinen, Timo K rki. A study of surface changes ofwood-polypropylene composites as the result of exterior weathering[J]. Polymer Degradationand Stability,2012,97(3):337-345.
    [168]乔海霞,顾东雅,曾竟成.聚合物基复合材料加速老化方法研究进展,材料导报,2007,21(4):48-51.
    [169] WANG W, Sain M, COOPER P A. Hygrothermal weathering of rice hull/HDPEcomposites under extreme climatic conditions [J].Polymer Degradation andStability,2005(90):540-545.
    [170] Falk R H, Lundin T, Colin F. The Effects of weathering on Wood-ThermoplasticComposites intended for outdoor applications [A].Proceedings of the2ndannual conferenceon durability and disaster Mitigation in wood frame housing. November6-8,2001Madison,Wisconsin,175-179.
    [171] Schut J H. Wood-plastic composites weathering quality issues[M]. Plastics Technology,www.ptonline.com/articles/200509fas.html
    [172]王伟宏,王清文.稻壳/聚乙烯复合材的自然老化与紫外光加速老化[J].林业科学,2008,44(8):92-94.
    [173]党文杰.紫外加速老化对木纤维/聚丙烯复合材料性能的影响[D].东北林业大学硕士论文,2007.
    [174]石祎,郑万友,姜海波.高密度聚乙烯含量对木塑复合材料老化性能的影响[J].林业机械与木工设备,2010,38(12):34-36.
    [175] Diene Ndiaye, Elisabeth Fanton, Sandrine Morlat-Therias, et,al. Durability of woodpolymer composites: Part1. Influence of wood on the photochemical properties[J].Composites Science and Technology,2008(68):2779-2784.
    [176] Laurent M. Matuana, Shan Jin, Nicole M Stark. Ultraviolet weathering ofHDPE/wood-flour composites coextruded with a clear HDPE cap layerPolymer Degradationand Stability,2011(96):97-106.
    [177] ZHANG Z M, DU H,WANG W H, et al. Property changes of wood-fiber/HDPEcomposites colored by iron oxide pigments after accelerated UV weathering [J].Journal ofForestry Research,(2010)21(1):59-62.
    [178]王林娜,蔡建臣,薛平.木塑复合材料加速老化性能的研究[J].工程塑料应用,2010,38(2):63-66.
    [179] Fabiyi J S, McDonald A G.Wood plastic composites weathering:Visual appearance andchemical changes[J]. Polymer Degradation and Stability,2008,93:1405-1414.
    [180] Stark N M, Matuana L M, Clemons C M. Effect of processing method on surface andweathering characteristics of wood-flour/HDPE composites [J].J Appl Polym Sci,2004,93(3):1021-1030.
    [181] Stark N M, Matuana L M. Surface chemistry changes of weathered HDPE/wood-flourcomposites studied by XPS and FTIR spectroscopy. Polym Degradation Stab,2004,86(1):1-9.
    [182] Stark N M. Effect of weathering cycle and manufacturing method on performance ofwood flour and high-density polyethylene composites [J]. J Appl Polym Sci,2006,100(4):3131-3140.
    [183] Stark N M, Matuana L M. Characterization of weathered wood-plastic compositesurfaces using FTIR spectroscopy, contact angle, and XPS [J]. Polym Degradation Stab,2007.92(10):1883-1890.
    [184] Stark N M, Matuana L M. Influence of photostabilizers on wood flour-HDPEcomposites exposed to xenon-arc radiation with and without water spray [J]. PolymerDegradation and Stability,2006(91):3048-3056.
    [185] Muasher M, Sain M. The efficacy of photostabilizers on the color change of woodfilled plastic composites [J]. Polymer Degradation and Stability,2006(91):1156-1165.
    [186] James S Fabiyi and Armando G McDonald. Effect o f wood species on property andweathering performance of wood plastic composites [J].Composites Part A: Applied Scienceand Manufacturing,2010,41(10):1434-1440.
    [187] Guan L T, LI K F, XIE X T et al. Study on Soil Corrosion Resistance of CastanopsisFissa/PVC Composite[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46(z1):235-236.
    [188] Xie X T, LI K F, YAN X, et al. Study on Effects of wet-dry-oxidation stabilization oncastanopsis fissa/PVC composite [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46(z1):236-237.
    [189] Pilarski J M, Matuana LM. Durability of wood flour-plastic composites exposed toaccelerated freeze-thaw cycling. Part1. rigid PVC matrix [J]. Journal of Vinyl&AdditiveTechnology,2005,11(1):1-8.
    [190] Magnus Bengtsson,Stark N M, Kristiina Oksman. Durability and mechanical propertiesof silane cross-linked wood thermoplastic composites [J]. Composites Science andTechnology,2007(67):2728-2738.
    [191]肖伟.加速老化对木塑复合材料性能的影响——冻融、氙灯加速老化[D].南京林业大学硕士论文,2010.
    [192]孙占英,李大纲,吴正元,等.人工模拟了海水和酸雨条件对HDPE/稻壳复合材料的影响[J].塑料工业,2005,33(6):156-158.
    [193] Morris P I, Cooper P A. Recycled plasticPwood composite lumber attacked by fungi [J].Forest Products Journal,1998,48(1):86-88.
    [194] Jose Antonio, Silva Guzman.Development of an accelerated method for assessingdecay of wood plastic composite [D].PH.D thesis, Oregon State University,2004.
    [195] John Z L, DUAN X F, WU Q L.Chelating efficiency and thermal, mechanical anddecay resistance performances of chitosan copper complex in wood–polymer composites [J].Bioresource Technology,2008(99):5906-5914.
    [196] Lomelí-Ramírez M G, Ochoa-Ruiz H G, Fuentes-Talavera F J, et al. Evaluation ofaccelerated decay of wood plastic composites by Xylophagus fungi [J]. Internationalbiodegradation&Biodegradation,2009,63(8):1030-1035
    [197]叶永连.塑木复合材料耐腐性研究[D].南京林业大学硕士论文,2008.
    [198] Nele Defoirdt, Soetkin Gardin, Jan Van den Bulcke,et al.Moisture dynamics of WPCand the impact on fungal testing [J].International Biodeterioration&Biodegradation,2010(64):65-72.
    [199]雷文,余旺旺,上官国锦,等.高密度聚乙烯/木粉复合材料的热氧老化(Ⅰ)——增容剂及抗氧剂对复合材料耐热氧老化的效果对比[J].材料导报:研究篇,2009,23(1):102-104.
    [200]雷文,余旺旺,上官国锦,等.高密度聚乙烯/木粉复合材料的热氧老化(Ⅱ)——热氧老化对木塑复合材料力学性能的影响[J].材料导报:研究篇,2009,23(4):102-104.
    [201]雷文,上官国锦,徐逸,等.热氧老化对高密度聚乙烯/木粉吸水性能的影响[J].南京林业大学学报(自然科学版),2010,34(1):96-99.
    [202]蔡培鑫,吕群,张清锋,等.木塑复合材料的热氧化规律研究[J].中国塑料,2011,25(5):46-50.
    [203]王伟宏,王清文,宋永明.木塑复合材料老化性能研究进展[J].林业科学,2008,44(5):143-149.
    [204]许凤和,李晓骏,陈新文,等.复合材料老化寿命预测技术中大气环境当量的确定[J].复合材料学报,2001,18(2):93-96.
    [205]张家宜.高分子材料老化寿命的评定方法[J].特种橡胶制品,2011,32(3):61-64.
    [206]国家质量监督检验检疫总局.GB/T6343-2009泡沫塑料及橡胶表观密度的测定[S].北京:中国标准出版社出版,2009.
    [207]国家质量监督检验检疫总局.GB/T9341-2008塑料弯曲性能的测定[S].北京:中国标准出版社出版,2008.
    [208]国家质量监督检验检疫总局.GB/T9341-2008塑料拉伸性能的测定[S].北京:中国标准出版社出版,2008.
    [209]国家质量监督检验检疫总局.GB/T1034-2008塑料简支梁冲击实验方法[S].北京:中国标准出版社出版,2008.
    [210]国家质量监督检验检疫总局.GB/T1634-2004塑料负荷变形温度的测定方法[S].北京:中国标准出版社出版,2004.
    [211]国家质量监督检验检疫总局.GB/T1034-2008塑料吸水性的测定[S].北京:中国标准出版社出版,2008.
    [212]陈稀,黄海波,倪宜平,等.由聚丙烯熔体的流变行为测定其分子量分布[J].合成纤维工业,1994,17(4):10-15.
    [213] Zeichner G R, Patel P D. MWD determination of ultra high MFR polypropylene bymelt rheology[A].Proceedings of the second world congress of chemical engineering,Montreal, Quebec, Canada,1981,13(3):333.
    [214]李坚.木质材料流变学[M].哈尔滨:东北林业大学出版社,第二版,2005.
    [215] Payne A R, Whitaker R E. Low strain dynamic properties of filled rubbers[J].RubberChem, Technol.1971,44:440-479.
    [216]胡洪国.超细SiO2增强聚硅氧烷特种有机硅密封材料形态结构与动态流变行为[D]浙江大学博士论文,2005.
    [217]董琦琼.粒子填充高密度聚乙烯复合材料形态结构与动态流变行为[D].浙江大学博士论文.2005.
    [218] Lion A, Kardelky C. The payne effect in finite viscoelasticity [J].Inter. Jour.Plast,2004,20:1313-1345.
    [219]周持兴.聚合物流变实验及应用[M].上海:上海交通大学出版社,2003.45.
    [220] Ferry, J D. Viscolelastic properties of polymers [M]. John Wiley∝Sons, Inc:NewYork,1980.
    [221] Zheng Q, Cao Y, Du M. Dynamic rheological behavior of polypropylene filled withultra-fine powdered rubber particles[J]. Chinese Journal of Polymer Sci,2004,22(4):363-367.
    [222]郑强,赵铁军.多相/多组分聚合物动态流变行为与相分离的关系[J].材料研究学报,1998,12(3):225-232.
    [223] Rojo E,Munoz M E, Santamaria A,et a1. Correlation between conformationalparameters and rheological properties of molten syndiotactic polypropylenes[J]. MacromolRapid Comm,2004,25(14):1314-1318.
    [224] GU F, WANG S F, SONG C F, et a1.Synthesis and luminescence properties of SnO2nanoparticles[J].Chem Phys Letters,2003,372:451.
    [225] Brydson J A. Flow properties of polymer melts [M].2nd.London: George Godwin,1981:22-24.
    [226] ZHOU X X, CHEN L H, LIN Q J. Effects of chemical foaming agents on thephysico-mechanical properties and rheological behavior of bamboo powder-polypropylenefoaming composites [J].BioResources,2012,7(2):2183-2198.
    [227] Al-Rawahi N Z, Tryggvason G. Numerical simulation of dendritic solidification withconvection:two-dimensional geometry [J]. Journal of ComputationalPhysics,2002,180:471-496.
    [228] Tomezak F, Satyanarayana K G, Sydenstricker T H D. Studies on lignocellulosic fibresof Brazil: part Ⅱ:morphology and properties of Brazilian fibres [J]. Composites Part A:Applied Science and Manufacturing,2007,38(10):2227-2236.
    [229]任凤梅,冯新,欧阳彦辉,等.PP基木塑复合材料的热失重分析[J].塑料工业,2008,36(5):43-45.
    [230]张清锋,吕群,李珊珊.偶联剂对木塑复合材料热稳定性的影响[J].杭州师范大学学报(自然科学版),2009,8(6):439-443.
    [231]吴人洁.高聚物的表面与界面[M].北京科学出版社,1998:42-51.
    [232]国家质量监督检验检疫总局.GB-T3682-2000热塑性塑料熔体质量流动速率和熔体体积流动速率的测定[S].北京:中国标准出版社,2000.
    [233]高华.木粉/马来酸酐接枝聚烯烃共混物复合材料[D]东北林业大学博士论文,2011.
    [234]潘明珠.麦秸纤维/聚丙烯复合材料制造工艺与性能研究[D].南京林业大学博士论文,2008.
    [235] XIE Y J, Hill C A S, Xiao Z F, et al. Silane coupling agents used for naturalfiber/polymer composites: A review [J]. Composites Part A: Applied Science andManufacturing,2010,41(7):806-819.
    [236]李春桃.硅烷偶联剂改性木粉/HDPE复合材料的研究[D].哈尔滨:东北林业大学材料学院,2010.
    [237]陈育如.铝锆偶联剂的应用[J].塑料工业,2001,29(6):44-46.
    [238]陈均志,冯练享,赵艳娜.铝锆偶联剂的发展现状及应用前景[J].化工新型材料,2005,33(12):24-26.
    [239]时志权,宋洪昌,冒爱琴.铝锆偶联剂的表征及应用[J].江苏化工,2005,33(3):30-32.
    [240]李新功,吴义强,郑霞,等.偶联剂在改善天然植物纤维/塑料界面相容性的应用[J].高分子通报,2010,(1):7-8.
    [241]万正龙,熊舟翼,熊汉国.钛酸酯偶联剂对竹粉/PVC性能影响[J].现代塑料加工应用,2010,22(3):25-28.
    [242]张东辉,何春霞,田丰年.木质纤维/PP复合材料吸水性能研究[J].塑料工业,2010,38(2):50-53.
    [243]周兆兵,张洋,贾翀.木质材料动态润湿性能的表征[J].南京林业大学学报(自然科学版),2007,31(5):71-74.
    [244]王正.木塑复合材料界面特性及其影响因子的研究[D].中国林科院博士论文,2001.
    [245]王鹏.高填充木塑复合材料流变行为与结晶性质研究[D].上海交通大学博士论文,2011.
    [246]欧荣贤,王清文.马来松香对木粉/HDPE复合材料流变性质的影响[J].林业科学,2009,45(5):126-130.
    [247]田静华.长支链聚丙烯及聚丙烯反应共混材料的制备、结构与性能的研究[D].上海:上海交通大学,2007.
    [248]娄立娟,刘建叶,俞炜,等.聚合物长支链的流变学表征方法[J].高分子通报,2009,(10):15-22.
    [249] Han C D, Kim J K. On the use of time-temperature superposition inmulticomponent/multiphase polymer systems[J].Polymer,1993,34(13):2533-2539.
    [250] Havriliak S, Negami S. A complex plane representation of dielectric and mechanicalrelaxation processes in some polymers [J]. Polymer,1967,8:161-210.
    [251] Ghasemi I, Azizi H, Naeimian N. Rheological behaviour of polypropylene/kenaffibre/wood flour hybrid composite [J]. Iranian Polymer Journal,2008,17(3):191-198.
    [252]周吓星,陈礼辉,林巧佳.硅烷对竹塑发泡材料流变及力学性能的影响[J].福建林学院学报,2012,32(2):183-187.
    [253] Marcovich N E, Reboredo M M, Kenny J, et al. Rheology of particle suspensions inviscoelastic media. Wood flour-polypropylene melt [J].Rheologica Acta,2004,43(3):293-303.
    [254]邸明伟,高振华.生物质材料现代分析技术[M].北京:化学工业出版社,2010.
    [255]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2009.
    [256] Abdelmouleh M, Boufi S, Beigacem M N, et al. Short natural-fiber reinforcedpolyethylene and natural rubber composites:Effect of silane coupling agents and fibersloading[J]. Composites science and technology,2007,67:1627-1639.
    [257]时志权.铝锆偶联剂的合成及其应用研究[D].南京理工大学博士论文,2000.
    [258] Cohen B,Mass. Aluminum zirconium metallo-organic complexes useful as couplingagents[P].US:4.539.049,1985-09-03
    [259] Dorri S G, Gray D G. The Surface Analysis of Paper and Wood Fiber by ESCA1.Application to Cellulose and Lignin[J].Cellulose Chem.Technol,1978,(12):9-23.
    [260]徐信武,周定国.等离子体改性稻秸的XPS[J].南京林业大学学报(自然科学版),2009,33(5):69-72.
    [261] Biplab K Deka, Tarun K M. Effect of TiO2and nanoclay on the properties of woodpolymer nanocomposite[J].Composites: Part A,2011(42):2117-2125.
    [262]张纯,于杰,何力,等.注塑工艺参数对HDPE化学发泡行为的影响[J].高分子材料科学与工程,2010,26(10):107-111.
    [263]张喜梅,柏雪源.麦秸粉及发泡剂对高密度聚乙烯木塑复合材料的性能影响[C].济南:中国农业机械学会学术年会论文集,2008:281-285.
    [264]路全胜,于同敏,徐文波.注塑工艺条件与塑件质量分析[J].模具工业,1992,136(6):26-31.
    [265]李刚.聚丙烯制品外观缺陷及解决措施[J].工程塑料应用,2002,30(9):26-29.
    [266]邹志明,吴舜英.提高注塑制品尺寸精度的有效途径[J].塑料科技,2000(5):44-47.
    [267]邱斌,李伟.保压时间和保压压力对注塑制品厚度分布的影响[J].塑料制造,2006,11:70-72.
    [268]刘钵,陈利民.热塑性塑料注塑工艺参数优化设计[J].工程塑料应用,2005,33(5):29-33.
    [269]杨太德.注射成型制品的表观缺陷及其预防措施[J].连云港职业大学学报,1998:11(1):40-42.
    [270]周吓星,林巧佳,陈礼辉.聚丙烯/竹粉发泡复合材料的性能研究[J].塑料工业,2011,39(2):110-113.
    [271]孙占英,李大纲,吴正元,等.木塑复合材料吸水膨胀率的研究[J].福州大学学报(自然科学版),2005,33(2):321-324.
    [272]周吓星,黄舒晟,陈礼辉,等.竹粉增强聚丙烯发泡复合材料的吸水性和表面润湿性研究[J].福建农林大学学报,2012,41(2):208-212.
    [273] JOHN Z L, WU Q L. Surface Characterization of chemically modified wood: dynamicwettability [J]. Wood and Fiber Science,2006,38(3):497-511.
    [274] ZHANG Y, ZHOU Z B, YUAN S F, et al. Study on the surface dynamic wettability andfree energy of poplar [J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2008,32(1):49-52.
    [275] GU R J, BOHUSLAV V K, MICHALKOVA D, et al. Characteristics of wood-plasticcomposites reinforced with organo-nanoclays [J]. Journal of Reinforced Plastics andComposites,2010,29(24):3566-3586.
    [276]杨文斌,李坚,刘一星.木塑复合材料表面润湿性研究[J].福建师范大学学报(自然科学版),2005,21(3):19-21.
    [277] JOHN Z L, WU Qing lin. Surface and interfacial characterization of Wood-PVCComposite: Imaging morphology and wetting behavior [J]. Wood and Fiber Science,2007,37(1):95-111.
    [278]张丽.植物纤维表面改性及聚丙烯复合材料的研究[D].青岛科技大学,2007.
    [279]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2005:173-175.
    [280] LI T Q, Wolcott M P. Rheology of Wood Plastics Melt. Part1. Capillary rheometry ofHDPE filled with maple[J].Polym Eng Sci.2005,45(4):549-560.
    [281] Hristov V, Elizabeth T, Vlachopoulos J. Surface tearing and wall slip phenomena inextrusion of highly filled HDPE/wood flour composites[J]. Polym EngSci.2006,46(9):1204-1214.
    [282] Smita M, Sanjay, KN, Dynamic and steady state viscoelastic behavior andmorphology of MAPP treated PP/sisal composites [J]. Mat Sci Eng.2007,43:202-208.
    [283] HUANG H X, ZHANG J J. Effects of filler–filler and polymer–filler interactions onrheological and mechanical properties of HDPE-wood composites[J].Journal of Appl PolymSci,2009,111(6):2806-2812
    [284]杨文斌,刘其松,陈恩惠,等.竹粉/聚丙烯塑料复合材料转矩流变特性研究[J].世界竹藤通讯,2009,7(4):14-18.
    [285]李泽文,王海刚,王清文.木塑复合材料润滑剂性能的转矩流变性评价[J].黑龙江大学学报,2011,2(1):36-39.
    [286] ZHENG Q, SONG Y H, SONG X B. Relationshio between the positive temperaturecoefficient of resistivity and dynamic rheological behavior for carbon black-filledhigh-density polyethylene[J]. J Polym Sci.Part B: Polym. Phys,2003,41:983-992.
    [287] Nair K C M, Kumar R P, Thomas S, et al. Rheological behavior of short sisalfibre-reinforced polystyrene composites[J].Composite Part A,2000,31:1231-1240.
    [288] WANG P, LIU J Y, YU W, et al. Dynamic rheological properties of wood polymercomposites: from linear to nonlinear behaviors [J].Polym.Bull,2011(66):683-701.
    [289]张超,阎惠至,张瑜,等.微纳米有机微球对聚丙烯复合材料流变及力学性能的影响[J].合成纤维,2009,12:17-21.
    [290]上海大众企业标准. TL52388汽车内饰件用聚丙烯材料[S].上海:大众企业标准中心,2005.
    [291]项素云,田春香,孙彩霞.滑石粉的表面改性及其对填充PP性能的影响[J].中国非金属矿工业导刊,2006,1:36-39.
    [292]日本标准协会.JIS-K5101颜料实验方法[S].日本规格协会出版社,2004.
    [293]杨华明,曹建红,唐爱东,等.聚丙烯/滑石粉复合材料的等温结晶动力学[J].中国塑料,2004,18(1):15-19.
    [294]应继儒,刘生鹏,解孝林.PP/POE共混物的毛细管和转矩流变行为[J].高分子材料科学与工程,2009,25(9):128-131.
    [295]张芳,杜春毅,张炎.PP/POE/nano-CaCO3复合材料的动态力学热分析[J].塑料工业,2005,33(l):19-21.
    [296]于秀艳,朱孔营,徐艳博,等.相差显微镜研究PP/POE共混材料的相分散行为[J].化学工业与工程,2006,23(6):507-510.
    [297]雷芳.POE-g-MAH在PP基木塑复合材料中的应用[J].塑料工业,2008,36(11):49-52.
    [298]刘晓蓓,杨继年,李子全.POE-g-MAH对SGF/POE/PP泡沫复合材料结构和性能的影响[J].塑料,2010,39(2):74-77.
    [299]美国材料试验协会.ASTM G154-2000非金属材料紫外线曝光用荧光仪器操作的标准实施规范[S].北京:中国标准出版社出版,2000.
    [300] Heitner C, Scaiano J C. Light induced yellowing of wood containing papers//Photochemistry of lignocellulostic materials[M].ACS symposium series,531.AmericanChemical Society,1993:3-25.
    [301] Andreia C, T Joseane, Gulmine V, et al. The effect of accelerated aging on t he surfacemechanical properties of polyethylene[J].Polymer Degradation and Stability,2003(81):367-373.
    [302] Andrew J S. Temperature and time dependent behaviors of a wood-polypropylenecomposite [J].Washington State University Department of Civil and EnvironmentalEngineering,2006.
    [303]周吓星,李大纲,林巧佳,等.HDPE/稻壳复合地板的蠕变特性[J].福建林学院学报,2010,30(3):221-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700