用户名: 密码: 验证码:
盐岩地下储气库注采气压变化的三维地质力学模型试验与数值计算分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国为了解决能源短缺这一逐渐凸显的矛盾,开始实施能源战略储备。由于盐岩具有良好的蠕变性、低孔隙率和低渗透性等特点,被国际公认为是能源储存的最理想的介质。在国外,对盐岩能源储备的相关研究已经比较成熟。但是,与国外巨厚的盐丘相比,我国盐层具有厚度小、夹层多、埋深浅等缺陷,更重要的是与国外成熟的盐岩研究技术相比,我国对盐岩及其储库的研究刚刚起步,有许多重大的科技问题和相关的基础理论亟待解决。由于盐岩地下储气库注气与采气交变气压变化是影响储库运营安全的重要因素,本文在国家重点基础研究发展计划(973课题)——《油气储库群运营中的灾变风险评估与调控机制》的支持下,以江苏金坛盐岩储气库为工程背景开展了盐岩地下储气库在注采气压变化条件下的三维地质力学模型试验研究,有效揭示了注采气压变化对储库营运安全稳定的影响。本文的研究内容和创新点如下:
     第一,以金坛盐岩储气库为工程原型,根据储库介质的原岩物理力学参数、强度特征和变形特性,开展了大量的材料配比和相应的力学试验,研制出基本满足相似要求的储库模型相似材料。
     第二,作为技术骨干设计研制出了真三维非均匀加载模型试验系统,包括模型试验加载反力装置、梯度非均匀加载装置和数字加压控制系统,实现了模型试验真三维非均匀加载的数字化和可视化。
     第三,作为技术骨干设计研制出了模型注采气试验系统,包括注气与采气装置和注采气智能控制系统。该系统可高精度、智能化地实现注气与采气的整个模拟过程。
     第四,按照储库实际运营工况,采用所研制的相似材料、真三维非均匀加载模型试验系统和注采气试验系统,进行了盐岩地下储气库在注采气压变化条件下的三维地质力学模型试验,有效获得储库洞周的变形规律,为盐岩储库的运营安全管理提供了指导。
In order to tackle the increasingly serious problem of energy shortage, the strategic reserves of energy being performed in our country. Salt rock is considered to be the best media due to its characteristics of good rheological, low porosity, and low permeability etc. However, there are defects of small thickness, multi-laminated, and shallow depth for salt bed in our country compared with the thick salt dome of abroad. To be more important, the research on salt rock and gas storage has just started in our country, so there are more important technologic issues and related basic theory which are desiderated to be solved. Because the pressure change during gas injection and recovery process is an important influencing factor of gas storage in salt rock,so the 3-D geomechanical model test was carried out under the change between injection and recovery pressure in the background of salt rock gas storage named JINTAN in JiangSu province under the support of National Key Basic Development Plan(973 subject)-《Risk assessment of catastrophe and regulation mechanism for soil and gas storage in the operation process》, and The influence of injection and recovery pressure on stability in operation process of storage was revealed effectively. The content and innovative points included in the article are presented as follows:
     In the first place, according to the mechanical parameters, strength characteristics and deformation features, plenty of material mixture ration and its relevant mechanical test were carried out on the background of JINTAN salt rock gas storage. The similar materials which are similar with all kinds of characteristics basically of the medium in the gas-storage were attained.
     In the second place, a 3-D geomechanics model test system of heterogeneous loading was designed and developed which includes counterforce device, non-uniform loading device and digital pressure control system. The test system can achieve the 3-D and non-uniform loading visually and digitally.
     In the third place, an injection and recovery pressure experiment system was designed. It is made up of the device of injection and recovery pressure and an intelligent control system. This system can simulate the process of injection and recovery pressure accurately and intelligently.
     Last but not least, according to the actual operating conditions, the similar materials, the 3-D geomechanics model test system and the injection and recovery pressure experiment system were applied to perform the 3-D model test in the condition of the change between injection and recovery pressure. The change rule of the gas storage was attained effectively which can supply guidance for the safe operation of gas storage in salt rock.
引文
[1]杨春和,梁卫国,魏东吼等.中国盐岩能源地下储存可行性研究[J].岩石力学与工程学报,2005,25(25):4409~4417.
    [2]杨春和,李银平,陈峰.层状盐岩力学理论与工程[M].北京:科学出版社,2009.
    [3]吴文,侯正猛,杨春和.盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究[J].岩石力学与工程学报,2005,24(14):2497-2505.
    [4]吴文,杨春和,侯正猛.盐岩中能源(石油与天然气)地下储存力学问题研究现状及其发展[J].岩石力学与工程学报,2005,24(supp2),5561-5568.
    [5]Dreyer W E. geomechanische untersuchungen an kavernen in steinsalz und schlunssfolgerungen fur die unterirdische gasspeicherung. Bergakademie,1969,:404-414.
    [6]Lux K H, Gebirsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau[M].Stuttgart;Ferdinand Enke Verlag,1984.
    [7]Hansen F D, Mellegard K D, Senseny P E. Elasticity and strength of natural rock salt[J].Proceedings of 1st Conf. Mech. Beh. of Salt. Clausthal-Zellerfeld:Trans. Tech. Publ.: 1984,:71-83.
    [8]Hunsche U. Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different geometries [J]. Proceedings of 4th Conf. Mech. Beh. Of salt. Clausthal-Zellerfeld:Trans. Tech. Publ,1998:163-174.
    [9]Hunsche U. Fracture experiments on cubic rock salt samples [J]. Proceedings of 2st Conf. Mech. Beh. Of salt. Clausthal-Zellerfeld:Trans. Tech. Publ,1984a:169-179.
    [10]Hunsche U. Result and interpretation of creep experiments on rock salt[J]. Proceedings of 2st Conf. Mech. Beh. Of salt. Clausthal-Zellerfeld:Trans. Tech. Publ,1984b:159-167.
    [11]Hunsche U. Measurement of creep in rock salt at small strain rates [J]. Proceedings of 2nd Conf. Mech. Beh. Of salt. Clausthal-Zellerfeld:Trans. Tech. Publ,1988:187-196.
    [12]Hunsche U. Albrecht H. Results of true tri-axial strength tests on rock salt[J]. Engineering Fracture Mechanics,1990,35(4):867-877.
    [13]Lux K H. Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws[J]. Proceedings of 6th Int. Symp. On salt. Alexandria:The Salt
    Institute,1983:417-435.
    [14]Lux K H, Hou Z M. New developments in mechanical safety analysis of repositories in rock salt[J]. Proceedings of Int. Conf. on Radioactive Waste Disposal, Technologies& Concepts. Berlin:Springer-Verlag:281-286.
    [15]Schulze O, Popp T, Kern H. Development of damage and permeability in deforming rock salt[J]. Engineering Geology,2001,61(2-3):163-180.
    [16]Hunsche U. A failure criterion for natural polycrystalline rock salt[J]. Advances in Constitutive Laws for Engineering Material. Moscow:International Academic Publishing Company,1989:1043-1046.
    [17]Chan K S, Bodner S R. Application of isochronous healing curves in predicting damage evolution in a salt structure[J]. International Journal Damage Mechanics,9:130-153.
    [18]Chan K S, Brodsky N S, Fossum A F, et al. A constitutive model for inelastic flow and damage evolution in solids under triaxial compression [J]. Mechanics of Materials, 14(1):1-14.
    [19]Chan K S, Brodsky N S, Fossum A F, et al. Damage-induced nonassociated inelastic flow in rock salt[J]. International Journal of Plasticity,10(6):623-642.
    [20]Cristescu N D. Evolutive damage in rock salt[J]. Proceedings 4th Conf. Mech. Bech. Of salt. Clausthal-Zellerfeld:Trans. Tech. Publ,1998:131-142.
    [21]Stead D, Szczepanik Z. Time-dependent acoustic emission studies on potash[J]. Rock Mechanics as a Multidiscplinary Science,1991:471-479.
    [22]Kerry L D, Kirby D M, Gary D C, at al. Poof of concept research on a salt damage criterion for caver design[A].In:A project Status Report, Spring 2002 Meeting[C]. Banff, Alberta, Canada:[s.n],2001,1-20.
    [23]Chan K S, A constitutive model for representing coupled creep, fracture and healing in rock salt[A]. In:The Mechanical Behavior of salt. Proc,3rd conf. Trans. Tech, Publ.[C]. Clausthal-Zellerfeld:[s.n.],1998:221-224.
    [24]Aubertin M, An up to now version of SUVIC-D for modeling the behavior of salt[A]. In:The Mechanical Behavior of salt. Proc,4th conf. Trans. Tech, Publ.[C]. Clausthal-Zellerfeld: [s.n.],1998:205-220.
    [25]Lux K H, Duesterloh U, Bertram J, et al. Abschlubrticht zum BMBF-Forschungs-vorhaben 02C00922[R]. Claustha:Professor fur Deponietechnik u. Geomechanik der TU,1997.
    [26]Chunhe Yang, J.J.K Daemen, Jian-Hua Yin. Experimental investigation of creep behavior of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:233-242.
    [27]杨春和,白世伟.应力水平及加载路径对盐岩失效的影响[J].岩石力学与工程学报,2002,19(3):270-275.
    [28]W. Liang, C Yang, Y. Zhao, et al. Experimental investigation of mechanical properties of bedded salt rock[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44:233-242.
    [29]陈锋,李银平,杨春和等.云应盐矿盐岩蠕变特性试验研究[J].岩石力学与工程学报,2006,25(supp.1):3021-3027.
    [30]Y.P.Li, C.H.Yang, Q.H.Qian, et al. Experimental research on deformation and failure characteristics[A]. In:The Mechanical Behavior of salt-Understanding of THMC Processes in Salt-Wallner.2007.
    [31]吴文,侯正猛,杨春和.盐岩的渗透性特性研究[J].岩土工程学报,2005,27(7):73-76.
    [32]高小平,杨春和,吴文等.盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报,2006,24(12):2054-2059.
    [33]吴文,徐松林,杨春和等.盐岩冲击特性试验研究[J].岩石力学与工程学报,2004,23(21):3613-3620.
    [34]吴文,徐松林,杨春和等.盐岩冲击过程本构关系和状态方程研究[J].岩土工程学报,2004,26(3):367-372.
    [35]杨春和,陈锋,曾义金.盐岩蠕变本构关系研究[J].岩石力学与工程学报,2002,21(11):1602~1604.
    [36]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报,2005,24(23):4253~4258.
    [37]陈锋,杨春和,白世伟.盐岩储气库蠕变损伤分析[J].岩土力学,2006,27(6):945~949.
    [38]高小平,杨春和,吴文.盐岩失效特性实验研究[J].岩土力学,2005,27(5):558~561.
    [39]尹雪英,杨春和,陈剑文.金坛盐矿老腔储气库长期稳定性分析数值模拟[J].岩土力学,2006,27(6):869-874.
    [40]陈锋,杨春和,白世伟等.盐岩储气库最佳采气速率数值模拟研究[J].岩土力学, 2007,28(1):57-61.
    [41]丁国生,杨春和,张保平等.盐岩地下储库洞室收缩变形分析[J].地下空间与工程学报,2008,4(1):80-84.
    [42]李勇.新型岩土相似材料的研制及在分岔隧道模型试验中的应用[D].山东大学硕士论文,2006.
    [43]黄秋枫.地质力学模型相似材料[J].现代矿业,2009,3(3):49-53.
    [44]韩伯鲤,张文昌,杨存奋.新型地质力学模型材料MIB[J].武汉水利电力大学学报,1983,(1):11-16.
    [45]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水利发电学报,2004,23(1):48—51
    [46]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126—2130.
    [47]彭海明,彭振斌,韩金田等.岩性相似材料研究[J].广东土木与建筑,2002,12(12):13-17.
    [48]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157—3161.
    [49]李树忱,冯现大,李术才等.新型固流耦合相似材料的研制及应用[J].岩石力学与工程学报,2010,29(2):281-288.
    [50]徐文胜,许迎年,王元汉等.岩爆模拟相似材料的筛选试验研究[J].岩石力学与工程学报,2000,19(supp):873—877.
    [51]潘一山,章梦涛,王来贵等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49—56.
    [52]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994,27(1):18-23.
    [53]陈安敏,顾金才,沈俊等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372~378.
    [54]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):3727~3731.
    [55]孙晓明,何满潮,刘成禹等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870~2874.
    [56]李仲奎,卢达溶,中山元等.三位模型试验新技术及其在大型地下洞群研究的应用[J]. 岩石力学与工程学报,2003,22(9):1430~1436.
    [57]张强勇,李术才,尤春安等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143~148.
    [58]朱维申,张乾兵,李勇等.真三轴荷载条件下大型地质力学模型试验系统的研制[J].岩石力学与工程学报,2010,29(1):1~6.
    [59]蒋树屏,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报,2000,19(5):567~572.
    [60]张强勇,李术才,贾超等.高地应力真三维加载模型试验系统:中国,ZL200810016641[P].2008-10-15.
    [61]张强勇,李术才,李勇等.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26 (supp.2):4051-4059.
    [62]朱维申,李勇,张磊等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩
    [63]袁大祥,朱子龙,朱乔生.高边坡节理岩体地质力学模型试验研究[J].三峡大学学报(自然科学版),2001,23(3):193~197.
    [64]陈安敏,顾欣,顾雷雨等人.锚固边坡体稳定性地质力学模型试验研究[J].岩石力学与工程学报,2006,25(10):2902~2101.
    [65]陈从新,黄平路,卢增木.岩层倾角影响顺层岩石边坡稳定的模型试验研究[J].岩土力学,2007,28(3):476~486.
    [66]张林,费文平,李桂林等人.高拱坝坝肩坝基整体稳定地质力学模型试验研究[J].岩石力学与工程学报,2005,24(9):3465~3469.
    [67]林鹏,杨强,杨若琼等人.锦屏高边坡稳定三维地质力学模型试验研究[J].岩石力学与工程学报,2008,27(5):894~900.
    [68]肖林萍,赵玉光,申玉生.双连拱隧道结构内力样式及围岩稳定性模型试验研究[J].岩石力学与工程学报,2005,24(23):4346~4351.
    [69]孟庆生,孔令伟,郭爱国等人.高速公路高填方路堤拼接离心模型试验研究[J].岩石力学与工程学报,2007,26(3):580~586.
    [70]余海龙,谭学术,等.盐岩洞腔稳定性模拟试验研究[J].西安矿业学院学报,1994,14(4):311~317.
    [71]任松,姜德义,刘新荣.盐腔形成过程对覆岩影响的相似材料模拟试验研究[J].岩土工程学报,2008,30(8):1178~1183.
    [72]中科院武汉岩土力学研究所自然基金结题报告:《深部盐岩层地下石油储备中的基础性研究》,基金编号:50434050,2008.
    [73]左东启.模型试验的理论与方法[M].北京:水利电力出版社,1984:11-32.
    [74]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验[M].北京:中国水利水电出版社,2005.
    [75]清华大学科研报告:《溪洛渡水电站地下厂房洞室群三维地质力学模型试验FLAC3D和离散元分析总结报告》,2001
    [76]朱维申,李勇,张磊等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [77]陈兴华.脆性材料结构模型试验[M].北京:水利电力出版社,1984.
    [78]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学模型试验[J].水利学报,2002,5(5):31-36.
    [79]杜应吉.地质力学模型试验的研究现状与发展趋势[J].西北水资源与水工程,1996,7(2):64-67
    [80]孔令强,孙景民.模拟媒体的相似材料配比试验研究[J].露天采矿技术,2007,7:33-36
    [81]康希并,张建义.相似材料模拟中的材料配比[J].淮南矿业学院学报,1998,2:50-54
    [82]左保成,陈从新.相似材料试验研究[J].岩土力学,2004,25(11):1805-1809
    [83]张强勇,王汉鹏,李勇等.铁晶砂胶岩土相似材料及其制备方法:中国,ZL2005101045814[P].2007-09-12.
    [84]GB/T50123-1999,土工试验方法标准[S].
    [85]GT/SL264-2001,水利水电工程岩石试验规程[S].
    [86]沈明荣.岩体力学[M].上海:同济大学出版社,1999:11-12.
    [87]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996,259-262.
    [88]张强勇,刘德军,贾超等.盐岩油气储库介质地质力学模型相似材料的研制[J].岩土力学,2009,30(12):3581-3586.
    [89]C.A.BAAR. The in-situ behavior of salt rocks, APPLIED SALT-ROCK MECHANICS,1.1997, ELSEVIER SCIENTIFIC PUBLISHING COMPANY.
    [90]Gujun Wang. A new constitutive creep-damage model for salt rock and its characteristics[J].Int.J.Rock Mech.Min.Sci,2004,41(3):1-7
    [91]朱维申,张乾兵,孙林锋.洞群模型试验中微型多点位移计的设计及应用.(录用)
    [92]王桂芳.现代数控机床的测量系统-光栅尺的测量原理和选择标准[J].现代制造,2002,(19):65-68.
    [93]李焕强,孙红月,刘永莉.光纤传感技术在边坡模型试验中的应用[J].岩石力学与工程学报,2008,27(8):1703-1708.]
    [94]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:1-2.
    [95]曾义金,杨春和,陈锋等.深井石油套管盐膏岩层蠕变挤压应力计算研究[J].岩石力学与工程学报,2002,21(4):595-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700