用户名: 密码: 验证码:
内燃机关键摩擦副表面微织构润滑与摩擦机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机中蕴含着多种型式的摩擦副部件与系统,其摩擦学行为影响着内燃机的工作性能与运行效率,又对动力性、经济性、排放及稳定性和使用寿命有着举足轻重的影响。随着内燃机日益向高效节能与环保方向发展,对摩擦副提出了更高的技术要求。本文将内燃机摩擦学研究拓展到微观尺度上,突破摩擦副传统加工技术的瓶颈,引入表面织构激光微加工技术,从新型激光微制造装置与工艺、润滑摩擦理论、摩擦磨损试验以及装机台架性能试验等方面研究入手,探索激光表面织构技术在缸套(孔)、凸轮轴等关键摩擦副上应用研究,实现摩擦副表面形貌的主动优化设计与制造,以达到改善润滑,减小摩擦,减磨增寿与提高发动机综合性能等目标,为形成具有自主知识产权的内燃机高性能摩擦副表面织构新技术奠定基础。
     本文首先在综合考虑表面织构区域形貌与非织构区域的表面粗糙形貌的耦合作用的基础上,引入平均雷诺方程、膜厚方程与微凸体接触方程,提出了一个表面织构缸套(孔)-活塞环摩擦副系统的混合润滑理论模型,可以真实反映内燃机整个工作循环过程中的摩擦学行为特征。通过缸套表面织构,在发动机大部分工作区域可以形成良好的流体动压润滑,在上下止点附近,摩擦副处于混合润滑状态,微凸体作用力起平衡外载荷的主要作用,由非织构区微凸体表面接触引起的峰元摩擦力占主导地位;但是通过表面织构,仍可产生一定的流体油膜压力,并可大为降低混合润滑区域的摩擦力。缸套表面粗糙度对润滑性能的影响较大,表面粗糙度越小,对应的膜厚比越大,而无量纲摩擦力和摩擦功耗则变小。经过缸套表面微观几何形貌参数优化设计研究显示:缸套表面存在最优激光微织构微形貌参数组合,达到润滑摩擦性能的最佳,同时随着内燃机的转速及负荷的增加,最小膜厚比不断减小,而无量纲摩擦力逐渐增大。
     满足无缸套发动机机体气缸孔表面微织构要求,研制了新型激光头旋转式的激光微加工专用设备。采用独特的水冷腔内倍频激光谐振腔技术,减小了腔内热损失,增加了激光器输出功率。设计了新型旋转式激光头部件,可保证辅助气体的可靠密封与光路的畅通。通过快速响应控制系统的软硬件设计,实现了单个激光脉冲加工与机械运动的高精度联合协调控制,最大程度降低了激光微加工时的热效应副作用,提高了微加工质量与效率。并通过激光器标定与激光基础工艺试验等研究,确定了凹腔与沟槽形貌激光微加工所需的合理激光控制参数范围。
     利用MMW-1A万能摩擦磨损试验机,进行了激光表面织构摩擦副试样的润滑摩擦性能试验研究,考察了不同表面织构形貌参数对润滑摩擦性能的影响,试验发现表面织构试样的摩擦系数可降低30%-50%,而试样表面的磨损状况也得到有效改善。
     最后进行了激光微织构缸套(孔)、喷油泵凸轮轴的装机台架性能试验研究,结果表明:在某单缸柴油机上,激光微织构交叉网纹相比原机,动力性指标基本不变,燃油耗降低1-1.54%,烟度下降了53-65.3%,漏气量降幅度为26.9-30.7%,机械效率可以提高约2.3%;而缸套激光微加工出的交叉网纹沟槽清晰、分布均匀,深度比较一致,工作表面更平整,能增加缸套的承载面积,其表面评定参数优于原机平台网纹缸套,达到了提高缸套表面摩擦学性能的目的。在某车用汽油机上,激光微凹腔织构机体气缸孔相比原机,动力性性能保持不变,燃油消耗率下降了3%-4.7%,机油耗明显改善,降低了近56%。激光微织构球墨铸铁凸轮轴的耐久试验后的磨损量很小,仅为1-2μm左右,达到了钢质材料凸轮轴的同等水平,证实了通过表面织构,可以改善凸轮轴表面的润滑性能,有效提高耐磨性能。
There are variety types of friction pair components and systems in the Internal Combustion Engine (ICE), and these tribological behaviors have a significant impact on the working performance and operation efficiency, and also have a great influence on the engine's performance of power, fuel consumption, emissions, stability and service life, and so on. With the ICE developing to the direction of energy saving, high efficient and environmental protection, it puts forward higher requirements to the friction pairs. This article expands the tribology research of ICE to the micro-scale, introduces Laser Surface Texturing(LST) technology which breaks through the bottleneck of traditional processing techniques and this paper researches from the new laser micro-manufacturing equipment and technology, lubrication and friction theory, friction and wear experiment, and engine performance test to explore the application of laser surface texture technology on the cylinder (bore), camshaft and other key friction pairs to achieve active optimum design and manufacture on the surface morphology of friction pair in order to achieve the comprehensive purpose of improving lubrication, reducing friction and wear, and improving the engine's performance, to lay the foundation for the formation of independent intellectual property rights of new surface texturing technologies on high-performance engine's friction pairs.
     Firstly, an analytical mixed lubrication model of cylinder liner-piston ring was established, synthetically considering the coupling effect between surface roughness of contacts area (non-texturing area) and micro-texturing, and introducing the average Reynolds equation, the film thickness equation and the equation of asperity contacts, etc. The presented model can most truly reflect the engine's tribological behavior in working cycle. The simulation results show that near the Top Dead Center (TDC) and the Below Dead Center (BDC) areas, the friction pair is under the mixed lubrication state, and the asperity contact plays a dominant role in balancing external load and the peak friction force appears. However, micro-dimples formed by LST can still bring some appropriate hydrodynamic lubrication effect. At the other areas except TDC and BDC, hydrodynamic lubrication effect is more obvious. But through the laser surface texturing it can still form some fluid film pressure, and greatly reduce the friction force of mixed lubrication region. The surface roughness of cylinder liner has a great influence on the cylinder liner-piston ring lubrication conditions. The minimum oil ratio increases with the decreasing surface roughness of the cylinder liner, while the dimensionless friction force and friction power decrease. The study of optimization design on the parameter of the surface morphology of cylinder liner shows that there are optimal parameters of micro-morphology on cylinder to achieve the best lubrication and friction performance. At the same time as the engine speed and load increase, the minimum oil ratio decreases and the dimensionless friction increase.
     For meeting the requirements of surface texturing processing on cylinder bore of the engine block; new LST processing equipment with rotating laser head was developped. It applied unique water-cooled laser resonator cavity and frequency doubling technology which can reduce the heat loss of cavity and increase laser output power. A new rotating laser head was designed which ensure auxiliary gas reliable sealing and the light path flow unblocked. By the designing of software and hardware of quick response control system, achieved high precision joint coordination control between single laser pulse and rotary motion of mechanical system. Maximally reduce the thermal effects side effects by laser micro-processing and improve quality and efficiency of micro-machining. And the proper laser control parameters range of the LST micro dimple and groove's morphology were determined by calibration on the LST processing equipment and based laser testing and other research.
     The experiment of the effects of different surface texture morphology on the lubrication and friction properties was studied in the LST samples, using the MMW-1A universal friction and wear test equment. The study found that the friction coefficient of the surface texturing sample can reduced by 30%-50%compared with the non-texturing sample, and the wear of the sample surface has also been effectively improved.
     Finally, the performance tests with LST cylinder liner (bore), camshaft of fuel pump were conducted. The results showed that the power performance of a single-cylinder diesel engine remained unchanged with LST cylinder liner, and the fuel consumption inproved about 1-1.54%, smoke decreased 53-65.3%, gas leakage declined 26.9-30.7%, the mechanical efficiency increased about 2.3%, compared to the original engine with plat-honing.The LST cross-groove is clear, uniform, and its depth is consistent, the working surface is more flat, which can increase the cylinder's bearing area, its cylinder liner surface assessment parameters were better than plat-honing, thereby improve the tribological properties of the cylinder liner. Another experiment results of a gasoline engine with LST cylinder bore show that it can maintain the power performance, while reducing fuel consumption 3%-4.7%, significantly improving the engine oil consumption nearly 56%.The engine durability test showed the wear value of LST nodular cast iron camshaft is only about 1-2μm, reaching the same level of steel camshaft, which confirmed that LST can improve the lubrication of camshaft, and effectively increase its wear resistance.
引文
[l]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [2]周龙宝,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,2005.
    [3]Rogowski A. R. Method of Measuring the Instantaneous Friction of Piston Ring in a Firing Engine [J], SAE Paper,1961, (2):379-386.
    [4]中国汽车工业协会,http://www.caam.org.cn/
    [5]中国内燃机工业协会,http://www.ciceia.org.cn/
    [6]王霄,夏立齐.表面微造型技术改善物体表面摩擦性能的研究[J],润滑与密封.2006,(4):167-170.
    [7]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展[J].摩擦学学报,2006,26(6):603-607.
    [8]王宵,夏立齐,高传玉等.表面微造型技术改善物体表面摩擦性能的研究[J].润滑与密封,2006,176(4):167-170.
    [9]Etsion I. State of the art in laser surface texturing [J]. Journal of Tribology,2005,127(1): 248-253.
    [10]Castleman R.A. A Hydrodynamics Theory of Piston Ring Lubrication [J]. Physics,1936(7), 364-367.
    [11]Furuhama S. A Dynamic Theory of Piston Ring Lubrication [J]. Bull JSME,1960, (2):291-297.
    [12]Lloyd T. The hydrodynamic lubrication of piston rings [J]. Proc of Inst.Mesh.Eng,1969, 183(3):28-34.
    [13]Baker A.J.S., Dowson D., Strachan P. Dynamic operating factors in piston rings [J]. Int'l Symp of Marine Engrs.Tokyo,1970, (256):59-70.
    [14]Baker A.J.S., Dowson D., Economou P.N. Dynamic factors related to piston ring scuffing[J] Mesh.Eng.Pub.New York,1976,25-34.
    [15]Ting L.L., Mayer J.E. Piston ring lubrication and cylinder bore wear analysis-Part 1:theory [J]. ASME Jour, of Lubr.Tech.1973,96(2):258-266.
    [16]Hamilton G.M., Moore S.L.The Lubrication of Piston Rings [J].Proc.Inst. Mech.Eng. Part J: Journal of Engineering Tribology,1974, (188):253-268.
    [17]Rohde S.M. A Mixed Friction Model for Dynamically Loaded Contacts with Application to Piston Ring Lubrication [J].Proc. of the 7th Leeds-Lyon Symposium on Tribology, Lyon, 1980:262-278.
    [18]Patir N., Cheng H.S. An Average Flow Model for Determining Effects of Three Dimensional Roughness on Partial Hydrodynamic Lubrication [J]. Tran. ASME, Series,1979, (100):12-18.
    [19]Patir N., Cheng H.S. Application of Average Flow Model Lubrication between Rough Surfaces [J]. Trans. ASME.1979, (101):220-225.
    [20]Greenwood J.A., Tripp J.H. The Contact of Two Nationally Flat Surfaces [J]. Proc. Insr. Mech. Engr.,1971,28, (1):91-96.
    [21]Miltsios G.K. Lubrication and Friction of piston and Piston Rings in Internal Combustion Engines [D]. University of Michigan,1987.
    [22]Jeng Y. Theoretical Analysis of Piston—Ring Lubrication:Part Ⅰ:Fully Flooded Lubrication [J].STLE Tribology Transactions,1992,35(4):696-706.
    [23]Jeng Y. Theoretical Analysis of Piston—Ring Lubrication:Part Ⅱ:Starved Lubrication and Its Application to a Complete Ring Pack [J].STLE Tribology Transactions,1992,35(4):707-714.
    [24]Hu Y, Cheng H.S., Arai T. et al. Numerical Simulation of Piston Ring in Mixed Lubrication—A Nonaxisymmetrical Analysis [J].Transaction of ASME, Journal of Tribology, 1994,116(3):470-478.
    [25]Harigaya Y, Ichinose M., Suzuki M. Effect of the temperature on the lubrication characteristics between the piston ring and the cylinder liner of the internal combustion engine [J]. Tribology and Applications, Proceedings of the 18th Annual Technical Conference of the ASME.1996,27(2):17-24.
    [26]Priest M., Dowson D., Taylor C.M.Theoretical modeling of cavitation in piston ring lubrication [J].Mechanical Engineering Science,2000,214(3):435-447.
    [27]Andrzej Wilff, Januse Piechna. Numerical simulations of piston ring pack operation with regard to ring twist effects [J]. The archive of mechanical engineering.2007,1.
    [28]孔凌嘉,谢友柏.缸套-活塞环摩擦学系统漏气与润滑和摩擦与磨损的计算[J].内燃机学报,1992,10(3):267-274.
    [29]刘焜,桂长林,谢友柏.活塞环-缸套润滑状态周向不均匀性的研究[J].内燃机学报,1997,15(3):281-289.
    [30]王伟,刘琨,焦明华等.活塞环-缸套液固二相润滑研究[J].内燃机学报,2005,23(2):176-181.
    [31]张勇,罗马吉,陈国华等.活塞环-缸套的二维润滑分析[J].机械工程学报,1999,35(6):21-24.
    [32]叶晓明,蒋炎坤,郝秀丽等.气缸套径向变形对活塞环弹流润滑性能的影响[J].车用发动机,2007,168(2):22-25.
    [33]周龙,白敏丽,吕继组等.用耦合分析法研究内燃机活塞环-气缸套传热润滑摩擦问题[J].内燃机学报,2008,26(1):69-75.
    [34]Ozgen Akalin. Piston ring and cylinder bore friction simulation in mixed-lubrication regime.Wayne State University,1999.
    [35]Laser Structuring Optimum Tribosystems through functionally optimized surfaces, Gehring Company. http://gehringco.com/
    [36]Etsion I., Kligerman Y. Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces [J]. Tribology Transaction,1999,42(3):511-516.
    [37]Ronen A., Etsion I. Friction-Reducing Surface-Texturing in Reciprocating Automotive Components [J]. Tribology Transaction,2001,44(3):359-366.
    [38]Kligerman Y., Etsion I.,Shinkarenko A. Improving Tribological Performance of Piston Ring by Partial Surface Texturing [J]. Transactions of the ASME,2005,127(3):632-638.
    [39]于新奇,蔡仁良.光加工多孔端面机械密封的动压分析[J].华东理工大学学报,2004,30(4):481-484.
    [40]符永宏,陆华才,华希俊等.激光微珩磨缸套润滑耐磨性能理论分析[J].内燃机学报,2006,24(6):559-564.
    [41]符永宏,张华伟,纪敬虎等.微造型活塞环表面的润滑性能数值分析[J].内燃机学报,2009,27(2):180-185.
    [42]王霄,张广海,陈卫等.不同微细造型几何形貌对润滑性能影响的数值模拟[J].润滑与密封,2007,32(8):66-68.
    [43]NathanW. Bolander. Advanced Natural Gas Reciprocating Engine:Parasitic Loss Control through Surface Modification[R]. Mechanical Engineering Tribology Laboratory,2005,11, 16.
    [44]Rosalind Takata, Yong Li. Effects of Liner Surface Texturing on Ring/liner Friction in Large-bore IC Engines. ASME Internal Combustion Engine Division 2006 Fall Technical Conference,2006,5,8.
    [45]王成焘,姚振强.汽车摩擦学[M].上海:上海交通大学出版社,2002.
    [46]Stephens L.S., Siripuram R., Hayden, M. and Mccartt, B. Determinnistic Micro Asperities on Bearings and Seals Using a Modified LIGA Process [J]. Journal of Engineering for Gas Turbines and Power,2004,126(1):147-154.
    [47]Siripuram R., Stephens L.S. Effect of Determinnistic Asperity Geometry on Hydridynamic Lubrication [J]. Journal of Tribology,2004,126(3):527-534.
    [48]Xiaolei W., Koji K., Koshi A., Kohji A. The Effect of Laser Texturing of Sic surface on the critical load for the transition water lubrication mode from hydrodynamic to mixed [J].Tribology International,2001,34(10):703-711.
    [49]Xiaolei W., Koji K. Improving the anti-seizure ability of Sic seal in water with RIE texturing [J].Tribology Letters,2002,14, (4):275-301.
    [50]Xiaolei W., Koji K. Load Carry Capacity Map for the Surface Texture Design of Sic Thrust Bearing Sliding in Water [J].Tribology International,2003,3 (36):189-197.
    [51]Pettersson U., Jacobson S. Friction and wear properties of micro texturing DLC coated surface in boundary lubricated sliding [J]. Tribology Letters,2004,17, (3):553-559.
    [52]Miki Nakano., Atsuko Korenaga. Atsushi Korenaga. Koji Miyake.Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient under Lubricated Conditions [J]. Tribology Letters,2007,28(2):131-137.
    [53]张云电,赵峰,黄文剑.摩擦副表面微坑超声加工方法的研究[J].中国机械工程,2004,15(14):1280-1282.
    [54]杨红秀,任露泉.活塞缸套系统仿生非光滑界面摩擦与润滑机理的研究[D].吉林大学,2008.
    [55]Kovalchenko A., Ajayi O., Erdemir A., Fenske G, Etsion I. The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic [J]. Tribol Trans 2004,47(2):299-307.
    [56]Schreck, S. Zum Gahr, K.-H. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties [J].Applied Surface Science,2005,247(1):616-622.
    [57]Vilhena, L.M., Sedlacek, M. Surface texturing by pulsed Nd:YAG laser [J]. Tribology International,2009.42(10):1496-1504.
    [58]Klink U气缸工作表面的激光珩磨[J].国外内燃机,1998(2):50-52.
    [59]Etsion, I. Improving tribological performance of mechanical components by laser surface texturing [J]. Tribology Letters,2004,17, (4):733-737.
    [60]Ryk, G, Etsion, I. Testing piston rings with partial laser surface texturing for friction reduction [J].Wear,2006,261(7)792-796.
    [61]NathanW. Bolander, Farshid Sadeghi. Surface Modification for Piston Ring and Liner [J]. Solid Mechanics and Its Applications,2006,134(7):271-283.
    [62]Etsion I., Sher E. Improving fuel efficiency with laser surface textured piston rings [J]. Tribology International,2009,42(4):542-547.
    [63]联邦政府教育科技部课题报告,“应用UV光子进行内燃机灰口铸铁气缸表面的精密加工’ 课题号:13N6865.
    [64]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [65]符永宏,陈志焕,陶根宁.摩擦副表面激光微造型工艺试验研究[J].应用激光,2006,26(05):295-298.
    [66]符永宏,华希俊,陶根宁,尹必峰.发动机气缸表面规则微观形貌的激光加工研究[J].应用激光.2006,26(04):233-236.
    [67]Etsion I., Halperin G., Becker E. The effect of various surface treatments on piston pin scuffing resistance [J]. Wear,2006,261:785-791.
    [68]杨巍,符永宏.基于流体动压润滑理论的凸轮表面激光微造型参数优化设计研究[D].江苏大学,2009.
    [69]符永宏,杨巍,张华伟.激光微造型凸轮副的摩擦磨损[J].农业机械学报,2010,41(1):216-220.
    [70]张直明.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1986.
    [71]董勋.润滑理论[M].上海:上海交通大学出版社,1984.
    [72]Michail S.K., Barber G.C. The Effects of Roughness on Piston Ring Lubrication:Part 1— Model Development [J].Tribo.Trans,1995,38(1):19-26.
    [73]程方启,刘鸣.内燃机活塞环-缸套润滑的分析与研究[D].山东大学,2005.
    [74]Wu C W, Zheng L Q. An Average Reynolds Equation for Partial Film Lubrication with a Contact Factor [J].Transaction of ASME, Journal of Tribology,1989,111(1):188-191.
    [75]张俊红.汽车发动机构造[M].天津:天津大学出版社,2006.4
    [76]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [77]桂长林,刘琨.内燃机活塞环-缸套摩擦功耗的设计计算方法之研究[J].摩擦学学报,1994,14(4):326-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700