用户名: 密码: 验证码:
隔爆一体式电机调速系统部分硬件功率设计问题及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以教育部创新团队项目、辽宁省教育厅创新团队项目及抚顺煤矿电机制造有限责任公司项目为背景,以1140V/75kW隔爆一体式电机为研究对象,针对煤矿作业空间狭窄及变频调速系统与电机高度集成后带来的驱动系统体积问题、无速度传感器矢量控制转速估计值易受测量参数影响问题、系统成本等问题,开展了隔爆一体式电机调速系统硬件功率设计及转速估计研究。论文的主要研究内容包括以下几个方面:
     为了提高系统集成度,缩减隔爆一体式电机体积及成本,基于电力电子系统建模,对变频调速系统硬件功率部分展开设计。研究一种解析法计算逆变器母线电容参数的方法,对整流输出一个周期内的波形进行详细分析,考虑了电压跌幅、纹波电流、系统稳定性的相互影响,并采用牛顿-拉夫逊法计算母线电容值。给出了输入电流、进线电抗器电压、母线电容电压、母线电容纹波电流、输出电流的仿真与计算方法。
     针对隔爆一体式电机设计过程中受到体积及温升的制约,准确计算整流器及逆变器损耗对于正确设计隔爆一体式电机调速系统水冷散热器及合理选择IGBT具有重要意义。基于此,提出解析法计算可控整流器、逆变器IGBT损耗的计算方案。在实现过程中,综合考虑了门极驱动电阻、直流母线电压、温度、结温对IGBT损耗的影响。给出了SVPWM调制算法下逆变器IGBT及Diode的导通损耗、开关损耗、总损耗、温差及结温的计算方法。考虑到IGBT损耗与结温相互影响的特点,利用自定义热路模型,提出以环境温度为初始条件的循环迭代算法,最后给出了IGBT结温、壳温及散热器温度曲线。定量分析了直流母线电压、门极驱动电阻、环境温度对整流器及逆变器的损耗及温升计算的影响。在此基础上,设计水冷散热器一台,对隔爆一体式电机主要发热部件进行了损耗计算,并应用温度仿真软件进行热流分析,将仿真与实验进行了对比。
     对调速系统电流及转速调节器参数进行基于MATLAB与Simplorer/Ansoft协同仿真平台的在线调整,通过程序优化正确的PI调节器参数,为系统实验时PI参数的整定节约时间。
     基于DSP2812对隔爆一体式电机调速系统进行无速度传感器矢量控制程序设计。针对煤矿电网电压波动大,转速估计过程中采集数据易受测量参数剧烈波动而导致的转速估计误差增大问题,研究采用基于模糊自适应卡尔曼滤波的感应电动机无速度传感器控制策略。通过监视理论残差与实际残差的比值,对测量噪声协方差阵进行递推在线修正,使其逐渐逼近真实噪声水平,从而使滤波器执行最优估计,提升转速估计策略抗测量参数波动的能力,提高估算精度。
     对隔爆一体式电机进行结构设计,制作1140V/75kW隔爆一体式电机一台。搭建实验平台,分别在空载及负载条件下,对其进行实验研究。主要包括:空载条件下开关特性实验、不同转速、负载转矩下温升实验、PI参数调节实验、速度突然上升、下降、电流突加扰动等转速估计实验等。验证采用本文所提出的方案、设计的隔爆一体式电机的正确性与可行性。
Based on the background of ministry of education innovation team project, educationdepartment of Liaoning province innovation team project and project of Fushun Coal MineMotor Manufacturing Ltd., a1140V/75kW explosion-proof integrative motor as researchobject, aimed at volume problem of driving system resulting from narrow mine working spaceand after the variable-frequency speed control system was integrated with motor highly, andthe problem that speed estimation value of speed sensorless vector control system is easilyaffected by measuring parameters, and system cost problems, research on speed controlsystem power design and speed estimation of explosion-proof integrative motor had beencarried out. The main contents of this thesis include the following aspects:
     In order to improve the system integration, reduce volume and cost of explosion-proofintegrative motor,Based on power electronics modeling, the power part of variable-frequencyspeed control system was spreading design. An analytical method to calculate the buscapacitance parameters of inverter was put forward, and a detailed analysis was made aboutoutput waveform of rectifier in a cycle considering interaction between the voltage drop,ripple current and system stability, and the bus capacitance values were calculatedby Newton-Raphson method. And it gave the simulation and calculation scheme of inputcurrent, voltage of SKSG, voltage of bus capacitance, ripple current of bus capacitance andoutput current.
     For the design process of explosion-proof integrative motor is restricted by volume andtemperature,the accurate calculation of the rectifier and inverter loss is important fordesigning speed regulation system water-cooled radiator of explosion-proof integrative motoraccurately and selecting IGBT reasonable. Based on this,A calculation scheme to calculatecontrolled rectifier and inverter IGBT loss was put forward based on analytical method. In theprocess of implementation, the impact of gate drive resistance, DC bus voltage, temperature,junction temperature on loss of IGBT was considered comprehensively. A calculation methodof inverter IGBT and Diode conduction loss, switch loss, total loss, temperature difference andjunction temperature based on SVPWM modulation algorithm was given. Considering thecharacteristics that IGBT loss and junction temperature influence each other, by using customthermal circuit model, put forward an iteration algorithm in the initial condition of the ambienttemperature, and gave the junction temperature of IGBT, shell temperature and temperature curve of the radiator finally. The influence of the DC bus voltage, the gate drive resistors, theenvironment temperature on rectifier and inverter loss and temperature rise calculation werequantitatively analyzed. On this basis, a water-cooling radiator had been designed, and losscalculation of main heating parts of the explosion-proof integrative motor was conducted, toanalysis heat flux by applying temperature simulation software, simulation and experimentalresults had been compared.
     Based on the co-simulation platform of MATLAB and Simplorer/Ansoft, onlineadjustment was conducted on current and speed regulator parameters of speed control system,optimized correct PI regulator parameters through programs to save tuning time of PIparameters in system experiment.
     Vector control program of speed sensorless for speed control system of explosion-proofintegrative motor based was design on DSP2812. For the problems that coal mine power gridvoltage fluctuation was large, and collecting dates were vulnerable to volatility of measureparameters, thus leading to the increase of the speed estimation error in the speed estimationprocess, a kind of speed sensorless control strategy of induction motor based on fuzzy kalmanfiltering was proposed. Recursive and online amend measurement noise covariance matrix bymonitoring the ratio of the theoretical and actual residual, to make it approach the true noiselevel gradually, so that the filter can perform optimal estimation and improve estimationaccuracy.
     Structure of the explosion-proof integrative motor was design, and an1140V/75kWexplosion-proof integrative motor was made. Experiment platform to conduct experimentalstudy on it under no-load and load conditions respectively was built. Mainly including: switchcharacteristics experiment under no-load condition, temperature rise experiment underdifferent rotation speed and load torque, PI parameters regulation experiment, speed suddenlyrising and falling, current suddenly disturbances such as speed estimation experiments.Correctness and feasibility of the proposed scheme and the designed explosion-proofintegrative motor in this thesis had been verified.
引文
[1]刘卫平.我国煤气化技术的特点及应用[J].化肥设计,2008,46(1):11-16.
    [2]刘玲.交流变频调速技术的优势与应用[J].电气开关,2010,48(1):61-63.
    [3]曲天智,蒋金泉,赵丽娟.复杂结构薄煤层高效综采关键技术[M].中国矿业大学出版社,2010.
    [4]侯国英,朱永胜.正压通风型防爆变频器的设计[J].电气防爆,2003(3):19-20.
    [5]杜大勇.防爆变频器在煤矿生产中的应用[J].矿山机械,2005,33(9):132.
    [6]刘建设,朱旭祥,张宏涛.隔爆变频控制系统在钢丝绳牵引带式输送机中的应用设计[J].煤炭工程,2007(10):13-14.
    [7]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [8]钱照明,汪槱生,徐德鸿等.中国电气工程大典(第二卷)-电力电子技术[M].北京:中国电力出版社,2009.
    [9]王云亮.电力电子技术[M].北京:电子工业出版社,2004.
    [10]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2008.
    [11]钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010(1):1-9.
    [12]胡冬青.2012年IEEE国际功率半导体器件(电力电子器件)及功率集成电路会议综述[J].电力电子,2012(5):6-24.
    [13]陈明,马跃洲,马颖.微弧氧化脉冲电源主电路及其保护电路设计[J].电焊机,2010,40(4):48-52.
    [14]蔡志平,曹国荣,蒋耀生.大功率整流装置主电路设计的基本原则及要素[J].大功率变流技术,2009(9):27-29.
    [15]陈英杰.双PWM变频器系统的研究与设计[D].广州:华南理工大学,2012.
    [16] ABB Sw itzerland ltd. Integrated gate commutated thyristors application note.ABB SwitzerlandLtd[J].Semiconductors Switzerland,2004.
    [17]沙玉婷,王斌,杨卫民.双馈风力发电机组主回路设计与器件选型[J].华电技术,2011,33(5):74-76.
    [18]荣亮等.矿用变频器功率器件选型及其驱动保护设计[J].工矿自动化,2012,10(10):87-88.
    [19]郑姿清.5kW三相逆变电源主电路设计[D].上海:上海海事大学,2007.
    [20]裴建红.高速动车组牵引变流器主电路设计[D].成都:西南交通大学,2012.
    [21]常东来.变频器中直流母线电容的纹波电容计算[J].变频器世界,2010(2):49-52.
    [22] Jwkolar S. Analytical calculation of the rms current stress on the dc-link capacitor of voltage-pwmconverter systems[J]. IEE Proc Electric Power Appli-cations,2006,153(4):535-543.
    [23]王正,于新平.逆变电源母线电容纹波电流与容值优化研究[J].电源学报,2012(11):86-89.
    [24]宋佳,曹丰文.PFC电解电容的选型[J].电源技术应用,2006,9(5):46-49.
    [25] Claudio A. Enhaneed transition mode power faetor corrector[J]. STAN966APPlication Note.
    [26]庄德玉.矿用两象限变频器DC-link电容选型方法及应用[J].工矿自动化,2011,8(8):41-43.
    [27] Wijenayake, DennisH.Modeling and analysis of DC link bus capacitor and inductor heating effect onAC drives[J]. New Orleans: Academic Pr.1997.
    [28]王青松.一种关于电压型变频器直流环节滤波电容的计算方法[J].电源技术应用,2006,9(6):41-43.
    [29]刘多亮,符永高,杜贵平.大功率高频变换器滤波电容问题研究[J].电力电子技术,2008,42(9):63-64.
    [30] Sakda S, Panarit S, Viboon C. Novel control technique of single-phase pwm rectifier bycompensating output ripple voltage[J].Industrial Tech-nology, DEC,2005:966-978.
    [31]曲泰元.250kVA三电平中压变频器的设计与研究[D].北京:北京交通大学,2007.
    [32]谢勤岚,陈红.PWM逆变器中IGBT的损耗计算[J].中南民族大学学报(自然科学版),2003,22(1):39-41.
    [33]王鹏,刘泽伟,干永革.大功率变频器热分析及冷却系统的设计[J].冶金自动化,2013(S2):502-505.
    [34]郜克存,戴瑜兴,张海伟.大功率三相光伏并网逆变器散热系统设计[J].哈尔滨理工大学学报,2012,17(4):27-30.
    [35]卢兴军,耿攀,李庆振.单相逆变器损耗分析与计算[J].通信电源技术,2012,29(4):46-51.
    [36]王鹏.低压变频器损耗计算及温升试验的研究[J].变频器世界,2013(6):97-100.
    [37] Dieckerhof S.高压IGBT和无变压器牵引应用中多电平变流器的功率损耗评估[J].变流技术与电力牵引,2006(4):24-31.
    [38]毛鹏,谢少军,许泽刚.IGBT模块的开关暂态模型及损耗分析[J].中国电机工程学报,2010,30(15):40-47.
    [39]熊袁,沈燕群,江剑.IGBT损耗计算和损耗模型研究[J].电源技术应用,2006,9(5):55-60.
    [40]胡建辉,李锦庚,邹继斌.变频器中的IGBT模块损耗计算及散热系统设计[J].电工技术学报,2009,24(3):159-163.
    [41] Bierhoff M H, Fuchs F W. Semiconductor losses in voltage source and current source IGBTconverters based on analytical derivation[J]. IEEE35th Annual Power Electronics SpecialistsConference, Aachen, Germany,2004(4):2836-2842.
    [42]吴锐,温家良,于坤山.不同调制策略下两电平电压源换流器损耗分析[J].电网技术,2012,36(10):93-98.
    [43]黄碧霞,陈阳生.一种三相逆变器损耗分析方法[J].微电机,2009,42(9):49-52.
    [44] Rajapakse A D, Gole A M, Wilson P L. Electro-magnetic transients simulation models for accuraterepresentation of switching losses and thermal performance in power electronic systems[J]. IEEETransactions on Power Delivery,2005,20(1):319-327.
    [45] Kim T J, Kang D W, Lee Y H. The analysis of conduction and switching losses in multi-level invertersystem[J]. IEEE32nd Annual Power Electronics Specialists Conference,2001(3):1363-1368.
    [46] Dieckerhoff S, Bernet S, Krug D. Power loss-oriented evaluation of high voltage IGBT andmultilevel converters in transformerless traction applications[J]. IEEE Transactions on PowerElectronics,2005,20(6):1328-1336.
    [47]王群京,陈权,姜卫东.中点钳位型三电平逆变器通态损耗分析[J].电工技术学报,2007,22(3):66-71.
    [48]景巍,谭国俊,叶宗彬.大功率三电平变频器损耗计算及散热分析[J].电工技术学报,2011,26(2):134-140.
    [49]陈桂兰.交流电机无速度传感器矢量控制系统的研究[D].北京:中科院电工研究所,2005.
    [50]陆海慧,钱巍.异步电机转速估计方法综述[J].第12届全国电气自动化与电控系统学术年会,南京,2004:10-14.
    [51]陈杨裕.一种感应电机转速估计方法研究[D].重庆:重庆大学,2010.
    [52]王丙元,冯辉.基于定子电流的模型参考自适应感应电机转速估计[J].电机与控制学报,2013,17(9):48-56.
    [53] Barut M, Bogsyan S. Speed sen-insensitive to stator resistance variation Proceedings of sorlessestimation for induction motors using extended[J]. IEEE on Electrical Power Application,2004,15(6):685-693.
    [54] Orlowska K.Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motordrive[J]. IEEE Transactions on Industrial Electronics,2010,57(4):1296-1308.
    [55]蒋西文,曾岳南.一种改进的MRAS观测器及异步电机转速估计方法的研究[J].机电工程技术,2012,42(5):15-18.
    [56]谢桢,付立军,肖飞.直流变换器模式快速识别PI自适应控制策略[J].电机与控制学报,2013,17(1):25-30.
    [57]王文森,李永东,王光辉.基于PI自适应法的无速度传感器异步电动机矢量控制系统[J].电工技术学报,2002,17(1):1-6.
    [58]王超,张荣佳,刘春海.基于Pl自适应的双馈电机转速辨识[J].伺服控制,2012(8):35-37.
    [59]苗文彬,赵烨,戴鹏.永磁同步电机改进型滑模观测器无传感器控制[J].电气传动,2013,43(7):19-22.
    [60] Hongryel K, Jubum S, Jangmyung L. A high-speed sliding-mode observer for the sensorless speedcontrol of a PMSM[J]. IEEE Transactions on Industrial Electronics,2011,58(9):4069-4077.
    [61]周永勤,崔延光,王旭东.永磁同步电机无位置传感器模糊滑模观测技术[J].哈尔滨工程大学学报,2013,34(6):728-733.
    [62]黄守道,高剑,肖磊.压缩机用内置式永磁同步电机无位置传感器控制[J].电工技术学报,2013,28(5):182-187.
    [63] EMuraca P,Picardi C.A reduced order extended kalman filter in induction motor drives[J].MotionControl ProceedIngs,Asia-Pacific Workshop on Advances.1993:25-30.
    [64] TI incorporated application report.Sensorless control with kalman filter on fixed-point dsp[J].1997.
    [65] Bolognani S, Tubiana L, igliotto M. F-based sensor less IPM synchronous motor drive forflux-weakening application[J]. IEEE Transactions on Industry Applications,2003,39(3):768-775.
    [66] Xiong K, Zhang H, Liu L. Adaptive robust extended kalman filter for nonlinear stochastic systems[J].IET Control Theory&Applications,2008,2(3):239-250.
    [67] Ran Z Y, Li H D, Chen S J. Application of optimized EKF in direct torque control System ofinduction motor[J].First International Conference on Innovative Computing, Information and Control.Beijing, China: Beijing Jiaotong University&ICIC International,2006:331-335.
    [68] Barut M, Bogosyan S, Gokasan M. Experimental evaluation of braided EKF for sensorless control ofinduction motors[J]. IEEE Transactions on Industrial Electronics,2008,55(2):620-632.
    [69] Leite A V, Araujo R E, Freitas D. Full and reduce order extended kalman filter for speed estimationin induction motor drives a comparative study[J].35th Annual Power Electronics SpecialistsConference. Aachen, Germany: IEEE,2004:2293-2299.
    [70] Liu H P, Zhang Q F. Research on a modified EKF for speed estimation in induction motor drives[J].IEEE International Conference on Integration Technology. Shenzhen, China,IEEE,2007:432-436.
    [71] Gherram K, Yazid K, Menaa M. Sensorless indirect vector control of an induction motor by ANNSobserver and EKF[J].201018th Mediterranean Conference on Control&Automation (MED).Marrakech, Morocco,2010:521-526.
    [72]李波.基于扩展卡尔曼滤波的无位置传感器PMSM系统研究[D].哈尔滨:哈尔滨工业大学,2007.
    [73]姜晓亮.基于扩展卡尔曼滤波器的交流永磁同步电机参数辨识[D].南京:南京师范大学,2011.
    [74]赵韵,王明渝,刘述喜.基于扩展卡尔曼滤波器的异步电机矢量控制系统的转子电阻辨识[J].控制与应用技术,2009,36(3):18-21.
    [75]徐凯.基于扩展卡尔曼滤波算法的异步电机转速辨识性能评估[J].电气自动化,2008,30(4):20-23.
    [76]田恩国.基于EKF无速度传感器矢量控制系统的研究[D].青岛:山东科技大学,2007.
    [77]尹忠刚,赵昌,钟彦儒.采用抗差扩展卡尔曼滤波器的感应电机转速估计方法[J].中国电机工程学报,2012,32(18):152-157.
    [78]李洁钟,彦儒.无轨迹卡尔曼滤波器在感应电机转速估计中的应用研究[J].电工技术学报,2006,1(2):45-50.
    [79]林国汉,章兢,刘朝华.改进粒子群算法优化扩展卡尔曼滤波器电机转速估计[J].计算机应用研究,2013,7(7):2004-2006.
    [80]张选正,倪芳.国产3~10kV中高压变频器主电路现状及改进措施[J].电机与控制应用,2011,38(6):1-6.
    [81]邓爱喜.电力电子器件的发展与应用[J].科技经济市场,2008(5):22-23.
    [82]黄碧霞,陈阳生.一种三相逆变器损耗分析方法[J].微电机,2009,42(9):49-52.
    [83]黄先进,侯少敏,张立伟.高速列车变流系统热设计与温升仿真研究[J].电源学报,2011(4):68-72.
    [84] Kim M K, Jang K Y. A novel IGBT inverter module for low-power drive applications[J]. IEEE33rdAnnual Power Electronics Specialists Conference(PESC),2002:648-652.
    [85] Dieckerhof S.Power loss-oriented evaluation of high voltage IGBT and multilevel converters intransformerless traction applications[J]. IEEE Transactionson power electronic,2005:24-31.
    [86] Ning P Q, Lei G y. Selection of heatsink and fan for high-temperature power modules under weightconstraint[J]. APEC,2008:192-198.
    [87]胡文翠,王明渝,徐四勤.一种并网逆变器损耗计算的新方法[J].低压电器,2012(21):36-40.
    [88]徐志鸥.防爆环境下大功率三电平变换器功率损耗与散热方法研究[D].徐州:中国矿业大学,2011.
    [89]丁杰.机车变流装置中电力电子器件散热器的热设计[J].变流技术与电力牵引,2007(3):26-31.
    [90]丁杰,唐玉兔,忻力.一种改进的二电平IGBT变频器损耗计算方法[J].大功率变流技术,2013(4):18-21.
    [91]石书华,李守法,张海燕.三电平变频器水冷散热器温度场的计算与分析[J].动力工程学报,2010,30(1):68-72.
    [92]王帆.水冷散热器散热面积的计算[J].科技情报开发与经济,2011,21(28):176-178.
    [93]揭贵生,孙驰,汪光森.大容量电力电子装置中板式水冷散热器的优化设计[J].机械工程学报,2010,46(2):99-105.
    [94]最新热交换器设计计算与传热强化及质量检验标准规范实用手册[M].北京:机械工业出版社,2007.
    [95]俞佐平.传热学[M].北京:人民教育出版社,1989.
    [96]杨佩侠,刘策,蔺跃宏.机车电容器在牵引变流器中的应用及其技术[J].电力电容器与无功补偿,2013,34(2):34-38.
    [97]陈燕平,忻力,李中浩.牵引变流器中支撑电容器研究[J].铁道机车车辆,2011,31(2):76-81.
    [98]王一农,杜世俊,刘小宁.电容滤波型三相桥式整流电路的电压分析[J].合肥工业大学学报,2005,28(5):554-557.
    [99] Clare J C, Davis R M. The prediction of supply current waveforms and harmonics for rectifiercircuits with capaci-tive smoothing[J]. Power Electronics and Applications,1993(7):200-205.
    [100] Sakui M, Fujita H. An analytical method for calculating harmonic currents of a three-phase diodebridge rectifier with DC filter[J].Trans on Power Electron,1994,6(9):631-637.
    [101]李文静.桥式整流电容滤波电路输出电压的波形分析[J].电子测试,2013(6):46-47.
    [102]聂世雄,聂子玲,朱俊杰.中频电源并网运行直流支撑电容安全性研究[J].电气传动,2012,42(9):37-41.
    [103]全恒立,刘志刚,张钢.并联型有源滤波器主电路关键参数设计[J].电工技术学报,2011,26(12):106-112.
    [104]周霞,王斯然,凌光.三相桥式整流电路滤波电容的迭代计算[J].电力电子技术,2011,45(2):63-65.
    [105]刘海涛,陈涛. AC-DC-AC变频器直流支撑电容电流计算及分析[J].大功率变流技术,2012(4):5-9.
    [106] Bierhoff M,Fuchs F W. DC link harmonics of three phase voltage source converters influenced bythe pulse Width modulation strategy an analysis[J].The31st Annual Conference of IEEE onIndustrial Electronics Society,2005(3):1256-1264.
    [107]李洪义,黄华,宋飞.交直交变频器支撑电容选取原则初步探讨[J].船电技术,2010,30(11):6-10.
    [108]乔恩明.开关电源工程设计[M].北京:中国电力出版社,2010.
    [109]朝泽云.无速度传感器矢量控制系统的若干问题研究[D].武汉:华中科技大学,2006.
    [110]吴桢生.模糊控制在矢量控制系统中的应用研究[D].成都:西南交通大学,2009.
    [111]唐勇,谢顺依,李晨.异步电机无速度传感器矢量控制系统中扩展卡尔曼滤波器的优化研究[J].微电机,2005,38(2):46-49.
    [112]李剑飞,尹泉,万淑芸.基于扩展卡尔曼滤波器的异步电机转速辨识[J].电工技术学报,2002,17(5):40-44.
    [113]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,27(36):36-40.
    [114]李洁,钟彦儒.基于无轨迹卡尔曼滤波器的感应电机转速估计[J].系统仿真学报,2006,18(3):693-697.
    [115]陈一虹,颜东,张洪钺.自适应卡尔曼滤波实时性研究及其应用[J].北京航空航天大学学报,1996,22(2):146-149.
    [116]张池平,刘宗尧.一种改进的自适应模糊卡尔曼滤波算法[J].学术探讨,2007,3(8):25-28.
    [117]张高煌,赵恒,杨万海.一种新的模糊卡尔曼滤波器的控制算法及应用[J].控制理论与应用,2005,2(6):861-864.
    [118]李德东,土振臣,郭小星.基于模糊卡尔曼滤波的HEV氢镍电池SOC估计[J].电源技术,2011,5(2):191-193.
    [119]马野,王孝通,付建国.基于模糊卡尔曼滤波量测噪声自适应校正的方法研究[J].中国惯性技术学报,2005,13(2):24-26.
    [120]徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INSPGPS组合导航系统算法研究[J].宇航学报,2005,26(5):571-575.
    [121]柏箐,刘建业,袁信.模糊自适应卡尔曼滤波技术研究[J].信息与控制,2002,1(3):192-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700