用户名: 密码: 验证码:
雷达自适应波形优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达发射波形的选取影响着回波中包含的信息量,与雷达检测、估计、成像、跟踪及干扰抑制等方面性能有直接的关系。根据雷达工作环境自适应地选择发射波形,有利于使雷达以最佳方式从回波中提取更多更准确的目标信息,对于提高雷达的感知能力和适应能力,以及抗干扰能力有重要的理论意义和实用价值,自适应优化设计雷达发射波形近年来已成为国内外雷达界的研究热点。
     本文围绕着改善雷达目标检测、抗干扰及成像方面的性能展开了发射波形自适应优化设计研究,主要研究内容包括以下几个方面:
     (1)为了改善匹配照射下单输入单输出(SISO)雷达在加性噪声中的目标检测性能,进行了发射波形自适应优化设计研究。推导了匹配照射下SISO雷达滤波器输出信噪比(SNR)的时域向量表达式,结合工作于复高斯白噪声背景下的正交频分复用(OFDM)雷达,给出了在降低发射信号峰均比(PAPR)的约束下提高滤波器输出SNR的波形自适应优化设计方法。该方法采用凸优化算法求得近似最优OFDM信号子载波调制系数向量,所优化发射波形的检测性能接近最优匹配照射调制信号,同时其PAPR接近0dB,达到检测性能与PAPR性能的综合改善;结合工作于加性有色噪声背景下的SISO雷达,给出了目标信号子空间加权的波形自适应优化设计方法,该方法在提高SISO雷达滤波器输出SNR的同时,降低发射波形的PAPR和距离旁瓣,设计得到的波形可增强雷达系统对有色噪声的抑制能力,同时有利于降低系统设备复杂度,充分利用发射功率以及降低微弱目标被掩盖的几率。
     (2)为了改善匹配照射下多输入多输出(MIMO)雷达在杂波及复高斯白噪声中的目标检测性能,进行了发射波形自适应优化设计研究。利用OFDM信号的频率分集特性,将其用于共址MIMO雷达,每个阵元发射一个子载波信号,依据匹配照射理论,给出了基于交替迭代算法联合优化子载波调制系数向量和滤波器系数向量的方法。该方法运算量小,收敛速度快,所优化波形可有效改善正交频分复用-多输入多输出(OFDM-MIMO)雷达对扩展目标的检测性能且具有较好的抗杂波稳健性;考虑到OFDM信号的高PAPR特性不利于实际工程应用,进一步提出了改进的交替迭代算法用于自适应优化设计随机相位编码发射波形。该算法在基于已知接收滤波器优化相位编码信号的问题上,采用半正定松弛将优化问题转换为凸问题,之后结合经典对分法与高斯随机算法求得原优化问题的近似最优解。设计得到的波形可进一步提高MIMO雷达的滤波器输出信杂噪比(SCNR),改善检测性能,且波形包络恒定,更具有工程适用性。
     (3)针对宽带、超宽带雷达所面临的同频窄带干扰抑制问题,进行了稀疏频谱波形(SFW)自适应优化设计研究。提出了自适应优化设计低距离旁瓣SFW的随机相位编码方法。通过使波形功率谱密度(PSD)与期望PSD相匹配,优化波形的同频窄带干扰对抗性能。通过最小化波形自相关函数的积分旁瓣电平降低波形的距离旁瓣,基于Pareto优化理论,建立联合优化二者的目标函数,并给出基于快速傅里叶变换的循环迭代算法进行求解。所提波形优化方法计算复杂度低,易于工程实现,且灵活性较强。所优化波形的陷波性能和距离旁瓣性能均获得进一步改善,且可通过调节Pareto权值均衡二者性能;针对MIMO雷达,给出了自适应优化设计正交SFW的双阶段交替投影算法。该算法将波形优化问题分解为最优频谱求解与最优波形综合两个子优化问题依次求解,既可获得具有一定正交性及稀疏频谱的相位编码信号,也可通过调节参数设置获得正交性能和陷波性能进一步改善的低PAPR信号。该算法适用性较强、运算量较小、收敛速度快。
     (4)针对MIMO雷达的距离-角度成像问题,进行了发射波形自适应优化设计研究。提出了将波形优化设计与目标雷达截面积(RCS)估计相结合的方法,基于最小均方误差准则,依次针对各距离-角度单元设计最优发射波形及接收滤波器,并将其用于相应距离-角度单元内散射点RCS的估计,此过程以递归的方式进行,在遍历目标场景内所有距离-角度单元后进行下一轮更新。该方法借助了自适应波形设计的优势,可有效提高MIMO雷达距离-角度成像精度及抗高斯白噪声稳健性。
The radar transmitting waveform influences the amount of information included in the echoes. It has a direct relationship with the radar performance with respect to detection, estimation, imaging, tracking, and interference mitigation. Choosing transmitting waveforms adaptively according to the operating environment is favorable for extracting more information from the echoes in the best way. This enjoys important theoretical significance and practical value in improving the sensing capability, adaptability, and anti-jamming ability for radars. Adaptive optimizing and designing radar transmitting waveforms has become a hot research topic internationally in recent years.
     This thesis centers on adaptive optimizing and designing radar transmitting waveforms for improving the detection, anti-interference, and imaging performances. The main works are illustrated as follows:
     (1) To solve the problem of improving the detection performance in additive noise for Single Input Single Output (SISO) radar based on the principle of matched illumination, the method for adaptively designing the transmitting waveform is studied. The vector expression in time-domain of the output signal-to-noise ratio (SNR) of SISO radar according to the matched illumination theory is derived. Considering Orthogonal Frequency Division Multiplexing (OFDM) radar operating in complex Gaussian white noise, an adaptive waveform optimization method is given to improve the output SNR under the constraint of low peak-to-average power ratio (PAPR). This method employs convex optimization to acquire the sub-optimal coefficient vector for modulating the subcarriers of OFDM signal. The detection performance achieved by the optimized waveform approximates that realized by the optimum matched illumination modulation OFDM signal. The PAPR of optimized waveform approaches to0dB. The given method can make a comprehensive improvement in both detection and PAPR performances. Regarding the SISO radar performing in the additive colored noise, an adaptive waveform design method of weighted target signal subspace is provided. This method realizes improvements in the SISO radar output SNR as well as reductions in PAPR and range sidelobes. The optimized waveform can enhance the ability for suppressing the colored noise. Simultaneously, it is favorable to reduce the complexity of SISO radar system, make full use of transmitting power, and cut down the probability of weak targets being covered.
     (2) To improve the detection performance of Multiple Input Multiple Output (MIMO) radar in clutter combined with complex Gaussian white noise, studies are conducted on adaptive waveform optimization based upon matched illumination. Taking advantages of the frequency diversity, OFDM signal is applied to MIMO radar with each transmitting antenna emitting one subcarrier. Under the instruction of matched illumination principle, a method adopting an alternate iterative algorithm is presented to jointly optimize subcarrier modulation coefficient vector and receiving filter vector. This method has a low computational complexity and fast convergence. The optimized waveform can improve the OFDM-MIMO radar detection performance effectively and has a good robustness against clutter. Since the OFDM signal usually has a high PAPR, not suitable for practical engineering application, a method is further proposed to adaptively design the random phase-coded transmitting waveforms. To optimize the phase-coded signal with regard to receiving filter, the proposed method transforms the optimization problem into a convex problem through semi-definite relaxation, and then recurs to the classical bisection procedure and Gaussian randomization. A sub-optimal solution can be obtained, and can make a further improvement in MIMO radar output signal-to-clutter-plus-noise ratio (SCNR), and improve the detection performance. In addition, the optimized waveform has a constant envelope, which has more adaptability in engineering.
     (3) To deal with the problem of the narrow-band interference mitigation faced by wide band and ultra wide band radar, studies on the adaptive sparse frequency waveform (SFW) design are carried out. A method to design a phase-coded SFW with low range sidelobes is proposed. Through making the power spectrum density (PSD) of the waveform match the expected PSD, the anti-interference performance is optimized. The range sidelobes are reduced by minimizing the integrated sidelobe level (ISL) of the waveform autocorrelation. Then according to the Pareto theory, a target function jointly optimizing the PSD and ISL performances is constructed. A cyclic iterative algorithm (CIA) based on Fast Fourier Transformation is proposed to solve the optimization problem. CIA is computationally efficient, easy to be realized in engineering, and flexible. Further improvements can be brought into the performances of PSD and range sidelobes, which can be balanced by means of adjusting the value of Pareto weight. As the narrow band interferences also disturb MIMO radar, the two-stage alternate projection method is presented to design a set of orthogonal SFWs. This method decomposes the optimization problem into two subproblems, which are intended for solving the optimized spectrum and waveform synthesis. A set of phase-code orthogonal SFWs can be obtained, in addition, a set of orthogonal SFWs with low PAPR can also be acquired through parameter settings. The proposed method has good applicability, low computational complexity, and fast convergence.
     (4) Aiming at increasing the range-angle imaging accuracy for MIMO radar, investigations of adaptive waveform design are made. A method combing waveform design and Radar Cross Section (RCS) estimation is proposed. The transmitting waveforms and the corresponding filters are optimized against each range-angle bin based on the criterion of MMSE. The RCS of the scatter in the corresponding range-angle bin is estimated with the optimized waveforms. The above process is conducted in a recursion way. When all the range-angles bins in the target scene are covered, a new round of updating is carried on. The proposed method takes the advantages of waveform design, and can improve range-angle imaging accuracy and robustness against Gaussian white noise for MIMO radar.
引文
[1]Skolnik M I. Radar handbook.3rd ed. New York:McGraw-Hill,2008
    [2]张明友,汪学刚.雷达系统.第二版.北京:电子工业出版社,2006
    [3]丁鹭飞,耿富录.雷达原理.第三版.西安:西安电子科技大学出版社,2000
    [4]Richards M A. Fundamentals of radar signal processing. New York:McGraw-Hill, 2005
    [5]Skolnik M I. Introduction to radar systems.3rd ed. New York:McGraw-Hill,2000
    [6]吴顺君,梅晓春.雷达信号处理和数据处理技术.北京:电子工业出版社,2008
    [7]Widrow B. Adaptive antenna system. IEEE International Radar Conference,1967: 2143-2158
    [8]黄振兴,张明友.自适应阵列处理进展.成都:四川科学技术出版社,1991
    [9]Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems,1974, AES-10(6): 853-863
    [10]Brennan L E, Reed L S. Theory of adaptive radar. IEEE Transactions on Aerospace and Electronic Systems,1973, AES-9(2):237-252
    [11]保铮,张玉洪,廖桂生,等.机载雷达空时二维信号处理.现代雷达,1994,16(1):38-48
    [12]廖桂生,熊军,吴顺君.机载雷达空时二维信号处理自适应权值训练的距离分段递推算法.信号处理,1998,14(3):233-238+264
    [13]王永良,彭应宁.机载雷达空时二维自适应信号处理的进展与展望.电子学报,1999,27(3):94-100
    [14]周文辉.相控阵雷达及组网跟踪系统资源管理技术研究[博士论文].长沙:国防科技大学,2004
    [15]何学辉.基于凸优化的雷达波形设计及阵列方向图综合算法研究[博士论文].西安:西安电子科技大学,2010
    [16]Wicks M C.A brief history of waveform diversity. IEEE Radar Conference,2009: 328-333
    [17]Manasse R. The use of pulse coding to discriminate against clutter. MIT Lincoln Lab Group Report 312-12,1961
    [18]Delong D F, Hofstetter E M. On the design of optimum radar waveforms for clutter rejection. MIT Lincoln Lab Group Report JA-2892,1967
    [19]Sussman S. Least-square synthesis of radar ambiguity functions. IEEE Transactions on Information Theory,1962,8(3):246-254
    [20]Spafford L J. Optimum radar receive waveforms in the presence of clutter. Technical Information Series Report R65EMHI4,1965
    [21]Ares M. Optimum burst waveforms for detection of targets in uniform range-extended clutter. Technical Information Series Report R66EMHI6,1966
    [22]Van Trees H L. Optimum signal design and processing for reverberation-limited environments. IEEE Transactions on Military Electronics,1965,9(3):212-229
    [23]Rummler W D. Clutter suppression by complex weighting of coherent pulse trains. IEEE Transactions on Aerospace and Electronic Systems,1966, AES-2(6):689-699
    [24]Delong D F, Hofstetter E M. On the design of optimum radar waveforms for clutter rejection. IEEE Transactions on Information Theory,1967,13(3):454-463
    [25]Stutt C, Spafford L J. A 'best' mismatched filter response for radar clutter discrimination. IEEE Transactions on Information Theory,1968,14(2):280-287
    [26]Haykin S. Radar vision. IEEE International Radar Conference,1990:585-588
    [27]Haykin S. Adaptive radar:evolution to cognitive radar. IEEE International Symposium on Phased Array Systems and Technology,2003:613-616
    [28]Haykin S. Cognitive radar networks. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2005:1-3
    [29]Guerci J R. Cognitive radar:a knowledge-aided fully adaptive approach. IEEE International Radar Conference,2010:1365-1370
    [30]Haykin S. Cognitive radar:a way of the future. IEEE Signal Processing Magazine, 2006,23(1):30-40
    [31]Guerci J R. Cognitive radar:the next radar wave. Microwave Journal, Euro-Global Edition,2011,54(1):22,24,26,28,30,32,34,36
    [32]Harman S. The diversity of chaotic waveforms in use and characteristics. The Institution of Engineering and Technology Forum on Waveform Diversity and Design in Communications, Radar and Sonar,2006:33-40
    [33]Wicks M C, Antonik P. Waveform diversity in intelligent sensor systems. The Institution of Engineering and Technology Forum on Waveform Diversity and Design in Communications, Radar and Sonar,2006:1-6
    [34]Garnham J W, Roman J R. How will waveform diversity affect electromagnetic compatibility. International Waveform Diversity and Design Conference,2007: 98-101
    [35]Capraro G T, Bradaric I, Wicks M C. Knowledge base technologies for waveform diversity and electromagnetic compatibility. International Waveform Diversity and Design Conference,2007:88-92
    [36]Capraro G T, Berdan G B, Liuzzi R A, et al. Artificial intelligence and sensor fusion. International Conference on Integration of Knowledge Intensive Multi-Agent Systems,2003:591-595
    [37]Capraro G T, Capraro C T, Wicks M C, et al. Artificial intelligence and waveform diversity. International Conference on Integration of Knowledge Intensive Multi-Agent Systems,2003:270-274
    [38]Soldani F, Alabaster C M. The benefits of matched illumination for radar detection of ground based targets. International Waveform Diversity and Design Conference, 2007:23-27
    [39]Pillai S U, Oh H S, Youla D C, et al. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Transactions on Information Theory,2000,46(2):577-584
    [40]Garren D A, Osborn M K, Odom A C, et al. Enhanced target detection and identification via optimised radar transmission pulse shape. IEE Proceedings:Radar, Sonar and Navigation,2001,148(3):130-138
    [41]Guerci J R, Pillai S U. Theory and application of optimum transmit-receive radar. IEEE Proceedings of National Radar Conference,2000:705-710
    [42]Guerci J R. Optimum matched illumination-reception radar for target classification. US Patent No.5175552,1992
    [43]Guerci J R, Schutz R W, Hulsmann J D. Constrained optimum matched illumination-reception radar. US Patent No.5146229,1992
    [44]Garren D A, Osborn M K, Odom A C, et al. Optimal transmission pulse shape for detection and identification with uncertain target aspect. IEEE Radar Conference, 2001:123-128
    [45]Garren D A, Odom A C, Osborn M K, et al. Full-polarization matched-illumination for target detection and identification. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):824-837
    [46]Goodman N A, Venkata P R, Neifeld M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):105-113
    [47]Leshem A, Naparstek O, Nehorai A. Information theoretic adaptive radar waveform design for multiple extended targets. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):42-55
    [48]Sira S P, Cochran D, Papandreou S A, et al. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):56-66
    [49]Sira S P, Cochran D, Papandreou S A, et al. Improving detection in sea clutter using waveform scheduling. IEEE International Conference on Acoustics, Speech, and Signal Processing,2007:1241-1244
    [50]Sira S P, Morrell D, Papandreou S A. Waveform design and scheduling for agile sensors for target tracking.38th Asilomar Conference on Signals, Systems and Computers,2004:820-824
    [51]Sira S P, Li Y, Papandreou S A, et al. Waveform-agile sensing for tracking:a review perspective. IEEE Signal Processing Magazine,2009,26(1):53-64
    [52]Naparstek O, Leshem A. Joint adaptive waveform design and direction-of-arrival tracking. IEEE Radar Conference,2008:1-6
    [53]De Maio A, Huang Y W, Piezzo M. A doppler robust max-min approach to radar code design. IEEE Transactions on Signal Processing,2010,58(9):4943-4947
    [54]De Maio A, De Nicola S, Huang Y W, et al. Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Transactions on Signal Processing,2008,56(11):5618-5629
    [55]De Maio A, Huang Y W, Piezzo M, et al. Design of optimized radar codes with a peak to average power ratio constraint. IEEE Transactions on Signal Processing, 2011,59(6):2683-2697
    [56]De Maio A, De Nicola S, Huang Y W, et al. Design of phase codes for radar performance optimization with a similarity constraint. IEEE Transactions on Signal Processing,2009,57(2):610-621
    [57]Romero R A, Bae J, Goodman N A. Theory and application of SNR and mutual information matched illumination waveforms. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):912-927
    [58]王彩云,许小剑,毛士艺.高分辨率雷达中带宽对信号检测影响的研究.宇航学报,2006,27(5):915-919
    [59]纠博,刘宏伟,何学辉,等.多特征子空间波形优化设计方法.电子与信息学报,2009,31(12):2858-2863
    [60]纠博,刘宏伟,何学辉,等.基于凸优化的宽带雷达波形优化方法.电波科学 学报,2009,24(2):264-269
    [61]纠博,刘宏伟,李丽亚,等.基于相位调制的宽带雷达波形优化方法.电子与信息学报,2008,30(9):2038-2041
    [62]纠博,刘宏伟,李丽亚,等.雷达波形优化的特征互信息方法.西安电子科技大学学报(自然科学版),2009,36(1):139-144
    [63]纠博,刘宏伟,李丽亚,等.一种基于互信息的波形优化设计方法.西安电子科技大学学报(自然科学版),2008,35(4):678-684
    [64]纠博,刘宏伟,胡利平,等.针对目标识别的波形优化设计方法.电子与信息学报,2009,31(11):2585-2590
    [65]Jiu B, Liu H W, Feng D Z, et al. Minimax robust transmission waveform and receiving filter design for extended target detection with imprecise prior knowledge. Signal Processing,2012,92(1):210-218
    [66]公绪华,孟华东,魏轶曼,等.杂波环境下面向扩展目标检测的自适应波形设计方法.清华大学学报(自然科学版),2011,51(11):1652-1656
    [67]王彬,汪晋宽,宋昕,等.认知雷达中基于Q学习的自适应波形选择算法.系统工程与电子技术,2011,33(5):1007-1012
    [68]何劲,罗迎,张群,等.随机线性调频步进雷达波形设计及成像算法研究.电子与信息学报,2011,33(9):2068-2075
    [69]许光.一种综合考虑目标检测与估计的波形设计方法.现代雷达,2011,33(7):22-26
    [70]Liu J, Zhang Z J, Yang Y. Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna. Signal Processing,2012,92(4):1126-1131
    [71]Liu J, Zhang Z J, Yang Y. Performance enhancement of subspace detection with a diversely polarized antenna. IEEE Signal Processing Letters,2012,19(1):4-7
    [72]Brandsetter R W, Schwarz J, Seidon A. Adaptive spread spectrum radar. US Patent No.4679048,1987
    [73]Lindenfeld M J. Sparse frequency transmit and receive waveform design. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):851-861
    [74]Liu W X, Lesturgie M, Lu Y L. Real-time sparse frequency waveform design for HFSWR system. Electronics Letters,2007,43(24):1387-1389
    [75]Wang G H, Lu Y L. Sparse frequency transmit waveform design with soft power constraint by using PSO algorithm. IEEE Radar Conference,2008:127-130
    [76]Wang G H, Lu Y L. Designing single/multiple sparse frequency waveforms with sidelobe constraint. IET Radar, Sonar and Navigation,2011,5(1):32-38
    [77]Picciolo M L, Griesbach J D, Goldstein J S. Adaptive noise waveform design for radar. IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop,2009:451-456
    [78]沙学军,邱听,王利利.超宽带正交脉冲波形设计.哈尔滨工程大学学报,2008,29(7):718-722
    [79]沙学军,王利利,吴宣利,等.基于半正定规划的超宽带正交脉冲波形设计.哈尔滨工业大学学报,2008,40(7):1048-1051
    [80]吴宣利,沙学军,张乃通.脉冲超宽带系统中波形设计方法的分析与比较.哈尔滨工业大学学报,2009,41(1):1-6
    [81]宁晓燕,沙学军,王利利.认知超宽带无线电自适应波形设计算法.哈尔滨工程大学学报,2009,30(12):1420-1424
    [82]陈国东,武穆清.一种基于多频带PSWFs组合的CUWB自适应脉冲波形设计.电子与信息学报,2008,30(6):1432-1436
    [83]李占民,周音,孙学斌,等.基于遗传算法的超宽带波形设计.无线电工程,2012,42(1):14-16
    [84]Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998,16(8):1451-1458
    [85]Foschini G J, Golden G D, Valenzuela R A, et al. Simplified processing for high spectral efficiency wireless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communications,1999,17(11):1841-1852
    [86]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal,1996,1(2):41-59
    [87]Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998,6(3):311-335
    [88]Fishler E, Haimovich A, Blum R S, et al. MIMO radar:an idea whose time has come. Proceedings of the IEEE Radar Conference,2004:71-78
    [89]Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar.37th Asilomar Conference on Signals, Systems and Computers,2003:1057-1064
    [90]Lehmann N H, Fishier E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Transactions on Signal Processing,2007, 55(5):2215-2225
    [91]De Maio A, Lops M, Venturino L. Diversity-integration tradeoffs in MIMO detection. IEEE Transactions on Signal Processing,2008,56(10):5051-5061
    [92]Tajer A, Jajamovich G H, Wang X D, et al. Finite-sample optimal joint target detection and parameter estimation by MIMO radars.43rd Asilomar Conference on Signals, Systems and Computers,2009:1176-1180
    [93]Tajer A, Jajamovich G H, Wang X D, et al. Optimal joint target detection and parameter estimation by MIMO radar. IEEE Journal of Selected Topics in Signal Processing,2010,4(1):127-145
    [94]Aittomaki T, Koivunen V. MIMO radar direction finding performance using swerling model.42nd Asilomar Conference on Signals, Systems and Computers, 2008:518-522
    [95]Aittomaki T, Koivunen V. Performance of MIMO radar with angular diversity under swerling scattering models. IEEE Journal of Selected Topics in Signal Processing,2010,4(1):101-114
    [96]Aittomaki T, Koivunen V. Target detection and positioning in correlated scattering using widely distributed MIMO radar. European Radar Conference,2010:403-406
    [97]He Q, Blum R S, Godrich H, et al. Cramer-Rao Bound for target velocity estimation in MIMO radar with widely separated antennas.42nd Annual Conference on Information Sciences and Systems,2008:123-127
    [98]He Q, Blum R S, Godrich H, et al. Target velocity estimation and antenna placement for MIMO radar with widely separated antennas. IEEE Journal on Selected Topics in Signal Processing,2010,4(1):79-100
    [99]He Q, Lehmann N H, Blum R S, et al. MIMO radar moving target detection in homogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(3):1290-1301
    [100]He Q, Blum R S. Cramer-Rao Bound for MIMO radar target localization with phase errors. IEEE Signal Processing Letters,2010,17(1):83-86
    [101]王怀军,许红波,陆珉,等.基于MIMO雷达的高分辨成像方法.微波学报,2009,25(5):79-83
    [102]王怀军,粟毅,朱宇涛,等.基于空间谱域填充的MIMO雷达成像研究.电子学报,2009,37(6):1242-1246
    [103]王怀军,粟毅,黄春琳.基于天线布阵的MIMO雷达成像研究.信号处理,2009,25(8):1203-1208
    [104]朱宇涛,郁文贤,粟毅.一种基于MIMO技术的ISAR成像方法.电子学报,2009, 37(9):1885-1894
    [105]Qu Y, Liao G S, Zhu S Q, et al. Performance analysis of beamforming for MIMO radar. Progress in Electromagnetics Research,2008,84:123-134
    [106]Jin M, Liao G S, Li J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Processing,2009,89(2):244-251
    [107]Zhao G H, Chen B X, Zhu S P. Direction synthesis in DOA estimation for monostatic multiple input multiple output (MIMO) radar based on synthetic impulse and aperture radar (SIAR) and its performance analysis. Science in China, Series E: Technological Sciences,2008,51(6):656-673
    [108]Lv H, Feng D Z, Liu H W, et al. Tri-iterative least-square method for bearing estimation in MIMO radar. Signal Processing,2009,89(12):2686-2691
    [109]Wu Y, Tang J, Peng Y N. Models and performance evaluation for multiple-input multiple-output space-time adaptive processing radar. IET Radar, Sonar and Navigation,2009,3(6):569-582
    [110]Tang J, Wu Y, Peng Y N. Diversity order and detection performance of MIMO radar: a relative entropy based study. IEEE Radar Conference,2008:1-5
    [111]Tang J, Li N, Wu Y, et al. On detection performance of MIMO radar:a relative entropy-based study. IEEE Signal Processing Letters,2009,16(3):184-187
    [112]汤俊,伍勇,彭应宁,等MIMO雷达对空域Rician起伏目标检测性能研究.中国科学(F辑:信息科学),2009,39(8):866-874
    [113]戴喜增,彭应宁,汤俊MIMO雷达检测性能.清华大学学报(自然科学版),2007,47(1):88-91
    [114]汤俊,伍勇,彭应宁,等MIMO雷达检测性能和系统配置研究.中国科学(F辑:信息科学),2009,39(7):776-781
    [115]Rabideau D J. Multiple-input multiple-output radar aperture optimisation. IET Radar, Sonar and Navigation,2011,5(2):155-162
    [116]Rabideau D J. Non-adaptive multiple-input multiple-output radar techniques for reducing clutter. IET Radar, Sonar and Navigation,2009,3(4):304-313
    [117]Xu L Z, Li J, Stoica P. Target detection and parameter estimation for MIMO radar systems. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3): 927-939
    [118]Xu L Z, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Transactions on Signal Processing,2007,55(6):2375-2385
    [119]Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar. IEEE Signal Processing Letters,2007,14(12):968-971
    [120]Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transactions on Signal Processing,2008, 56(2):623-635
    [121]Chen C Y, Vaidyanathan P P. Compressed sensing in MIMO radar.42nd Asilomar Conference on Signals, Systems and Computers,2008:41-44
    [122]武其松,井伟,邢孟道,等.MIMO-SAR大测绘带成像.电子与信息学报,2009,31(4):772-775
    [123]秦国栋,陈伯孝,陈多芳,等.多载频MIMO雷达解速度模糊及综合处理方法.电子与信息学报,2009,31(7):1696-1700
    [124]符渭波,赵永波,苏涛,等.基于L型阵列MIMO雷达的DOA矩阵方法.系统工程与电子技术,2011,33(11):2398-2403
    [125]莫海生,李军,廖桂生.基于NLS的MIMO雷达方向图综合.雷达科学与技术,2008,6(6):476-480
    [126]赵光辉,陈伯孝.基于二次编码的MIMO雷达阵列稀布与天线综合.系统工程与电子技术,2008,30(6):1032-1036
    [127]郭艺夺,张永顺,张林让,等.双基地MIMO雷达相干分布式目标快速角度估计算法.电子与信息学报,2011,33(7):1684-1688
    [128]武其松,邢孟道,保铮.双通道MIMO-SAR运动目标成像.系统工程与电子技术,2010,32(5):921-926
    [129]刘韵佛,刘峥,谢荣.一种基于拟牛顿法的MIMO雷达发射方向图综合方法.电波科学学报,2008,23(6):1188-1193
    [130]吕晖,冯大政,和洁,等.一种简化的机载MIMO雷达杂波特征相消器.航空学报,2011,32(5):866-872
    [131]李彩彩,廖桂生,朱圣棋,等.一种抑制严重非均匀杂波的机载MIMO-STAP方法.电子学报,2011,39(3):511-517
    [132]张娟,张林让,刘楠,等.一种有效的MIMO雷达相干信源波达方向估计方法.电子学报,2011,39(3):680-684
    [133]张娟,张林让,刘楠.一种有效的MIMO雷达自适应脉冲压缩方法.电子与信息学报,2010,32(1):17-21
    [134]Pillai S U, Oh H S. Optimum MIMO transmit-receiver design in presence of interference. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems,2003:IV436-IV439
    [135]Friedlander B. Waveform design for MIMO radars. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1227-1238
    [136]De Maio A, Lops M. Achieving full diversity in MIMO radar:code construction and performance bounds. International Radar Symposium,2006:1-4
    [137]De Maio A, Lops M. Adaptive transmit/receive schemes for MIMO radar. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2007:97-100
    [138]Rabideau D J. Adaptive MIMO radar waveforms. IEEE Radar Conference,2008:1-6
    [139]Aubry A, Lops M, Tulino A M, et al. On MIMO waveform design for non-gaussian target detection. International Radar Conference,2009:1-6
    [140]Naghibi T, Behnia F. Convex optimization and MIMO radar waveform design in the presence of clutter.2nd International Conference on Signals, Circuits and Systems, 2008:1-6
    [141]Naghibi T, Behnia F. MIMO radar waveform design in the presence of clutter. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):770-781
    [142]Naghibi T, Namvar M, Behnia F. Optimal and robust waveform design for MIMO radars in the presence of clutter. Signal Processing,2010,90(4):1103-1117
    [143]Grossi E, Lops M, Venturino L. Minmax waveform design for MIMO radars under unknown correlation of the target scattering. Signal Processing,2012,92(6): 1550-1558
    [144]Grossi E, Lops M, Venturino L. Robust waveform design for MIMO radars. IEEE Transactions on Signal Processing,2011,59(7):3262-3271
    [145]Zhou S H, Xu H, Hu L B, et al. Research for scattering properties of spatial and frequency diversity MIMO radar targets.9th International Conference on Signal Processing,2008:2533-2537
    [146]Zhou S H, Liu H W, Zhao Y B, et al. Target spatial and frequency scattering diversity property for diversity MIMO radar. Signal Processing,2010,91(2): 269-276
    [147]黄勇,关键,董云龙MIMO阵列雷达检测中的自适应空时编码设计.电子与信息学报,2010,32(8):1831-1836
    [148]刘韵佛,刘峥,刘俊.基于高分辨距离像的MIMO雷达波形设计.系统工程与电子技术,2011,33(4):755-758
    [149]Wang G H, Lu Y L. High resolution MIMO-HFSWR radar using sparse frequency waveforms. Wireless Sensor Network,2009,1(3):152-162
    [150]Wang G H, Lu Y L. Sparse frequency waveform design for MIMO radar. Progress in Electromagnetics Research B,2010,20:19-32
    [151]Deng H. Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Processing Letters,2004,11(2):179-182
    [152]Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Transactions on Signal Processing,2004,52(11):3126-3135
    [153]Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars. IEEE Radar Conference,2006:244-247
    [154]Chen C Y. MIMO radar ambiguity optimization using frequency-hopping waveforms.41st Asilomar Conference on Signals, Systems and Computers,2008: 192-196
    [155]Yang Y, Blum R S, He Z S, et al. MIMO radar wave form design via alternating projection. IEEE Transactions on Signal Processing,2010,58(3):1440-1445
    [156]Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):330-343
    [157]He H, Stoica P, Li J. Designing unimodular sequence sets with good correlations-including an application to MIMO radar. IEEE Transactions on Signal Processing,2009,57(11):4391-4405
    [158]Song X F, Zhou S L, Willett P. Reducing the waveform cross correlation of MIMO radar with space-time coding. IEEE Transactions on Signal Processing,2010,58(8): 4213-4224
    [159]Liu B, He Z S, He Q. Optimization of orthogonal discrete frequency-coding waveform based on modified genetic algorithm for MIMO radar. International Conference on Communications, Circuits and Systems,2008:966-970
    [160]Liu B. Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes. IEEE Transactions on Aerospace and Electronic Systems, 2009,45(4):1650-1657
    [161]施群,张弓,刘文波.混沌理论在MIMO雷达波形设计中的应用.数据采集与处理,2010,25(4):525-529
    [162]胡亮兵,刘宏伟,吴顺君.基于约束非线性规划的MIMO雷达正交波形设计.系统工程与电子技术,2011,33(1):64-68
    [163]张旭峰,黎湘,朱玉鹏.基于随机步进频信号的MIMO波形设计和成像方法.现代雷达,2011,33(10):28-32
    [164]Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation.38th Asilomar Conference on Signals, Systems and Computers,2004:295-299
    [165]Antonio G S, Fuhrmann D R. Beampattern synthesis for wideband MIMO radar systems. International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2005:105-108
    [166]Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Transactions on Signal Processing,2007,55(8):4151-4161
    [167]He H, Stoica P, Li J. Wideband MIMO systems:signal design for transmit beampattern synthesis. IEEE Transactions on Signal Processing,2011,59(2): 618-628
    [168]赵永波,水鹏朗,刘宏伟,等.基于线性调频信号的综合脉冲与孔径雷达波形设计方法.电子学报,2010,38(9):2076-2082
    [169]Wang H Y, Liao G S, Li J, et al. Waveform optimization for MIMO-STAP to improve the detection performance. Signal Processing,2011,91(11):2690-2696
    [170]蒋敏,黄建国,韩晶MIMO阵列恒定包络波形设计.电子学报,2011,39(9):2194-2199
    [171]黄培康,殷红成.雷达目标特性.北京:电子工业出版社,2005
    [172]马岸英,任光亮,田晓东.多载波无线电探测器信号波形设计.西北大学学报(自然科学版),2005,35(3):283-286
    [173]Levanon N, Mozeson E. Multicarrier radar signal-pulse train and CW. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):707-720
    [174]Sen S, Nehorai A. Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters,2009,16(7):592-595
    [175]Sen S, Nehorai A. Adaptive design of OFDM radar signal with improved wideband ambiguity function. IEEE Transactions on Signal Processing,2010,58(2):928-933
    [176]Palomar D P, Eldar Y. Convex optimization in signal processing and communications. New York:Cambridge University Press,2010
    [177]Vandenberghe L, Boyd S. Semidefinite programming. SIAM Review,1996,38(1): 49-95
    [178]Lobo M S, Vandenberghe L, Boyd S, et al. Applications of second-order cone programming. Linear Algebra and its Applications,1998,284(1-3):193-228
    [179]Boyd S, Vandenberghe L. Convex optimization. New York:Cambridge University Press,2009
    [180]Sturm J. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, http://sedumi.ie.lehigh.edu,2001.
    [181]Toh K C, Todd M J, Tutuncu R H. SDPT3:MATLAB software for semidefinite-quadratic-linear programming, ver.4.0(beta). http://ww.math.nus.edu. sg/-mattohkc/sdpt3.html,2006.
    [182]Boyd S, Grant M. CVX users'guide, http://cvxr.com/cvx/download,2009.
    [183]Lofberg J. YALMIP:a toolbox for modeling and optimization in MATLAB. http://control.ee.ethz.ch/-joloe/wiki/pmwiki.php.
    [184]Sidiropoulos N D, Davidson T N, Luo Z Q. Transmit beamforming for physical-layer multicasting. IEEE Transactions on Signal Processing,2006,54(6): 2239-2251
    [185]Wing K M, Davidson T N, Kon M W, et al. Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Transactions on Signal Processing,2002,50(4):912-922
    [186]Zhang S Z, Huang Y W. Complex quadratic optimization and semidefinite programming. SIAM Journal on Optimization,2006,16(3):871-890
    [187]Luo Z Q, Sidiropoulos N D, Tseng P, et al. Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM Journal on Optimization,2007,18(1):1-28
    [188]Leshem A, Naparstek O, Nehorai A. Information theoretic adaptive radar waveform design for multiple extended targets. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):42-55
    [189]Friedlander B. A subspace framework for adaptive radar waveform design.39th Asilomar Conference on Signals, Systems and Computers,2005:1135-1139
    [190]Bergin J S, Techau P M, Don Carlos J E, et al. Radar waveform optimization for colored noise mitigation. IEEE International Radar Conference Record,2005: 149-154
    [191]Li J, Guerci J R, Xu L Z. Signal waveform's optimal-under-restriction design for active sensing. IEEE Signal Processing Letters,2006,13(9):565-568
    [192]王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [193]叶中付,向利,徐旭.基于信息论准则的信源个数估计算法改进.电波科学学报,2007,22(4):593-598
    [194]Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing,1985, ASSP-33(2): 387-392
    [195]徐成贤,陈志平,李乃成.近代优化方法.北京:科学出版社,2007
    [196]周晓飞,姜文瀚,杨静宇.核子空间样本选择方法的核最近邻凸包分类器.计算机工程与应用,2007,43(32):34-37
    [197]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997
    [198]Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine,2007,24(5):106-114
    [199]Haimovich A M, Blum R S, Cimini L J J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine,2008,25(1):116-129
    [200]王克让,张劲东,朱晓华.一种提高MIMO雷达角闪烁抑制性能的方法.宇航学报,2010,31(7):1838-1843
    [201]Chen C Y, Vaidyanathan P P. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Transactions on Signal Processing,2009,57(9):3533-3544
    [202]Sen S, Hurtado M, Nehorai A. Adaptive OFDM radar for detecting a moving target in urban scenarios. International Waveform Diversity and Design Conference,2009: 268-272
    [203]Sen S, Nehorai A. Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing,2011,59(1):78-90
    [204]Wu X H, Kishk A A, Glisson A W. MIMO-OFDM radar for direction estimation. IET Radar, Sonar and Navigation,2010,4(1):28-36
    [205]Sen S, Nehorai A. OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Transactions on Signal Processing,2010, 58(6):3152-3162
    [206]Zhang Y, Wang J X. OFDM-coded signals design for MIMO radar.9th International Conference on Signal Processing,2008:2442-2445
    [207]Zhang J D, Zhu X H, Wang H Q. Adaptive radar phase-coded waveform design. Electronics Letters,2009,45(20):1052-1053
    [208]徐仲,张凯院,陆全,等.矩阵论简明教程.北京:科学出版社,2005
    [209]Havary-Nassab V, Shahbazpanahi S, Grami A, et al. Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing,2008,56(9):4306-4316
    [210]Saab Y G. A fast and robust network bisection algorithm. IEEE Transactions on Computers,1995,44(7):903-913
    [211]Van Driessche R, Roose D. An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Computing,1995,21(1):29-48
    [212]Nemirovski A, Roots C, Terlaky T. On maximization of quadratic form over intersection of ellipsoids with common center. Mathematical Programming,1999, Ser. A 86:463-473
    [213]Luo Z Q, Ma W, So A M C, et al. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine,2010,27(3):20-34
    [214]Liu W X, Lu Y L, Lesturgie M. Optimal sparse waveform design for HFSWR system. International Waveform Diversity and Design Conference,2007:127-130
    [215]Lesturgie M. Improvement of high-frequency surface waves radar performances by use of multiple-input multiple-output configurations. IET Radar, Sonar and Navigation,2009,3(1):49-61
    [216]Frazer G J, Abramovich Y I, Johnson B A, et al. Recent results in MIMO over-the-horizon radar. IEEE Radar Conference,2008:1-6
    [217]Stoica P, He H, Li J. New algorithms for designing unimodular sequences with good correlation properties. IEEE Transactions on Signal Processing,2009,57(4): 1415-1425
    [218]Leong H W, Dawe B. Channel availability for east coast high frequency surface wave radar systems. Defence R&D Canada Technical Report, DREO TR 20001-104, 2001.
    [219]Blunt S D, Gerlach K. Multistatic adaptive pulse compression. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):891-903
    [220]Li J, Stoica P, Zheng X Y. Signal synthesis and receiver design for MIMO radar imaging. IEEE Transactions on Signal Processing,2008,56(8):3959-3968
    [221]Yardibi T, Li J, Stoica P, et al. Source localization and sensing:a nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):425-443
    [222]Roberts W, Stoica P, Li J, et al. Iterative adaptive approaches to MIMO radar imaging. IEEE Journal on Selected Topics in Signal Processing,2010,4(1):5-20
    [223]Phoong S M, Chang Y B, Chen C Y. DFT-modulated filterbank transceivers for multipath fading channels. IEEE Transactions on Signal Processing,2005,53(1): 182-192
    [224]Tkacenko A, Vaidyanathan P P. Iterative greedy algorithm for solving the FIR paraunitary approximation problem. IEEE Transactions on Signal Processing,2006, 54(1):146-160
    [225]Serbetli S, Yener A. Transceiver optimization for multiuser MIMO systems. IEEE Transactions on Signal Processing,2004,52(1):214-226
    [226]Capon J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE,1969,57(8):1408-1418
    [227]Stoica P, Selen Y. Model-order selection:a review of information criterion rules. IEEE Signal Processing Magazine,2004,21(4):36-47
    [228]Stoica P, Moses R L. Spectral analysis of signals. New Jersey:Prentice-Hall, Upper Saddle River,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700