用户名: 密码: 验证码:
电蓄热技术的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究旨在与当前国家电力政策相结合,大力开发利用低谷电,缓解目前城市生活用电紧张的压力。提出了一项利用夜间低谷电蓄热的方法,该方法在夜间将低谷电转化为热能并储存起来,白天缓慢地释放出来为生产和生活提供热水,以加强低谷电的使用。
     文中侧重于低谷电蓄热技术进行了探讨和研究。主要内容包括国内外电蓄热技术的研究现状;蓄热介质的选择;小型电蓄热试验装置的设计和加工;电蓄热试验装置的运行及测试;试验结果的分析;电蓄热与电直接加热的技术经济对比分析。
     试验结果表明,此蓄热装置可以稳定、连续运行,系统总效率可达55%,内部收益率达40.8%,完全能达到设计要求。利用三盐作为蓄热介质,通过电加热管加热,使其在143℃左右相变,把电能转换成热能储存起来用于加热热水,热水的最高温度为100℃,这项技术完全可行。如果采用分时电价政策,电蓄热与电直接加热相比,加热相同数量的热水,它的能源消耗费用低,能带来很好的经济效益。但是电蓄热技术在有些方面还存在一些问题,需要作进一步的改进。
In order to make use of off-peak electricity availably and alleviate the pressure of using electricity in city. This paper presents a technology of off-peak electricity thermal storage in face of the country policy of electric power. The electricity energy is stored in thermal energy during off-peak time and the thermal energy is used to generate hot water for production and life when needed during peak time, which urges the use of off-peak electricity.
    The subject of the technology of off-peak electricity thermal storage is discussed and investigated: the status in quo of electricity thermal storage studied in the world; the selection of thermal storage medium; the design and manufacture of electricity thermal storage device; the operating and testing of electricity thermal storage device; the analysis of experimental result; the technical and economic comparison between electricity thermal storage and electricity direct calefaction.
    The experimental results indicate that the electricity thermal device operates steadily and continuously. The systemic thermal efficiency is up to 55%, the FIRR(fmancial internal ratio of return) is 40.8%, which accords with requirement of design. Three salt that is used as thermal storage medium brings phase-change at 143℃ through calefaction, and the electricity is stored as thermal energy for heating water, whose maximum temperature is 100℃. This technology of off-peak electricity thermal
    
    
    storage is feasible in technology. If the policy of electric power is applied, off-peak electricity thermal storage is compared with electricity direct calefaction, its expense of energy consumption is the lower. It can bring profit. But electricity thermal storage has some problems in some ways and needs further improvements.
引文
1 方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版社,2000
    2 岳鹿群.在中国节能协会蓄冷空调研究中心成立大会上的讲话.制冷与空调.1995,3
    3 候欣宾,崔海亭.高温相变蓄热在空间太阳能热动力发电系统的应用.河北科技大学学报.2001,22(2):1~3,7
    4 刘铃,叶红卫.国内外蓄热材料发展概况.兰化科技.1998,16(3):168~171
    5 刘道平.蓄冷技术及应用现状.暖通空调,1998,1
    6 夏敏文等.热能工程设计手册.北京:化学工业出版社,1998.4
    7 姬伟松,马有江.对供暖系统存在的问题的探讨.节能技术.1997,(6):1
    8 张开黎,旷玉辉等.太阳能利用中的蓄热技术.青岛建筑工程学院学报.2000,21(4):92~97
    9 杨世铭.传热学.北京:高等教育出版社,1989
    10 汤学忠.热能转换与利用.冶金工业出版社,1989
    11 王剑锋.相变储热研究进展:(2)组合相变材料储热与应用潜力.新能源.2000.22(4):22~23
    12 严德隆,张维君.空调蓄冷应用技术.北京:中国建筑供应出版社,1997
    13 王补宣,葛新石.太阳能利用中储热研究的新进展.自然杂志.1981,4(1):16~19
    14 邝生鲁,蒋子铎,贡长生.固液相变储能.新能源.1984,6(10):15~19
    15 郑宏飞.太阳能化学贮热的研究现状及前景.新能源.1995,17(4):5~8
    16 培克曼 G.吉利PV.蓄热技术及其应用.北京:机械工业出版社,1989
    17 李汝辉,刘德彰,李世武.能量有效利用.北京:北京航空航天大学出版社,1992
    18 贺岩峰,张令轩等.热能储存材料研究进展.现代化工,1994,8:8~10
    19 张寅平,胡汉平等.相变贮热理论和应用.合肥:中国科学技术大学出版社,1996
    20 阮德水,张道圣等.固—固相变蓄热材料.新能源.1992,14(4):41~44
    21 张建玲,张建军等.脂肪酸二元体系相变贮热性能的研究.新能源.1999,21(11):5~7
    22 林怡辉,张正国等.复合相变蓄能材料的研究与发展.新能源.2000,22(7):35~38,47
    
    
    23 张建军,张建玲等.新戊二醇、三羟甲基甲胺及其二元体系相变贮热性能的研究.新能源.2000,22(7):12~14,15
    24 王补宣.工程传热传质学.北京:科学出版社,1998
    25 王剑锋,陈光明.理想均匀等速相变传热机理之研究.新能源.1999,21(8):1~6
    26 王超,王启杰等.相变储能装置中凝固换热的强化.太阳能学报.1992,13(2):111~117
    27 李云苍,刘滔等.换热器最佳温差的研究.新能源.2000,22(4):10~13
    28 工程材料实用手册编辑委员会.工程材料实用手册.北京:中国标准出版社,1988
    29 阮德水,张太平等.相变贮热材料的DSC研究.太阳能学报.1994,15(1):19~24
    30 杨立忠,杨钧锡等.新能源技术.北京:中国科技出版社,1994
    31 鲁道夫,博克著.分析化学中试样分解方法手册.吴树澎,王信予译.北京:中国标准出版社,1987
    32 张仁元,柯秀芳.显热/潜热复合储能材料的研究.新能源.2000,22(12):29~31
    33 谷波,孙涛.蓄冷节能技术发展综述.节能.2001,2:6~9
    34 何杰,龙敏贤.潜热蓄热凝固过程的相似法求解与性能分析.太阳能学报,1990,11(1):100~107
    35 刑玉明,袁修干.空间站高温固液相变蓄热容器的实验研究.航空动力学报.2001,16(1):75~79
    36 刑登清,迟广山,阮德水等.多元醇二元体系固—固相变贮热的研究.太阳能学报.1995,16(2):131~137
    37 徐伟亮.常低温固—液相变材料的研制和应用.现代化工.1998(8):8~11
    38 张百良.农村能源技术经济及管理.北京:中国农业出版社,1995
    39 Lim J S, et al. Thermodynamic optimization of phase-change energy storage using two or more materials, ASME J Energy Resource Technology, 1992,114:84~90
    40 Son C H, Morehouse J H. Thermal conductivity enhancement of solid-solid phase-change materials for thermal storage, Journal of Thermophysics and Heat Transer, 1991,5:122~124
    
    
    41 Aceves S M, Nakamura H, Reistard G M, et al. Optimization of a class of latent thermal energy storage systems with multiple phase-change materials. Journal of Solar Energy E ngieering, ASME, 1998,120:14~19
    42 Babich M W, Hwang S W, Mounts R D. The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochimica Acta, 1992(210):77~82
    43 Zink; John.c, Who says you can not store electricity. Power Engieering v101 n3 Mar 1997
    44 Busico v. et al. Thermal Storage of Solar Energy. Process International. TNQ-Symp, 1981,309-324
    45 EL-Dessouky H, Ac-Juwayhel F. Effective of a thermal energy storage system using phase change materials, Energy Convers Mgmt, 1997,38(6):601~617
    46 Anon. Electric-energy storage hinges on three leading technologies, Power v139, n8, Aug 1995, McGraw-Hill, Inc
    47 Royon L. Investigation of heat transfer in a polymeric phase change material for low heat storage [J]. Energy Convers Manage, 1997,38(6):517~524
    48 Salyer I O, Sircar A K. A review of phase change materials research for thermal energy storage in heating and cooling applications at the University of Dayton from 1982 to 1996. International Joural of Global Energy Issues. 1997,9(3): 183~197
    49 H.P. Garg, et al. Solar Thermal Energy Storage, Reidel Lancaster, 1985
    50 Hasnain S M. Review on sustainable thermal energy storage technology. Energy Conversion and Management, 1998,39(11):1127~1138
    51 Kerslake T K, Ibrabim M B. Analysis of thermal energy storage material with change of phase volumetric effects [J]. ASME Joural of Solar Energy Engineering, 1993,115(2):22~31
    52 Rao P R. Efficient numerical method for two dimensional phase change problems [J]. Int J Heat and Mass Transfer. 1984,27:2077~2084
    53 Vaccarino C, Cimino G, Frusteri F, et al. A new system for heat storage utilizing salt hydrates.
    
    Solar Energy. 1985,34(2):171~173
    54 Lucia M D, Bejan A. Thermodynamics of phase change energy storage: the effects of fluid superheating during melting and irreversibility during solidification. Journal of Solar Energy Engineering, 1991,113:2~10
    55 Barrio M, Font J, Muntasell J, et al. Applicability for heat storage of binary systems of NPG, PG and PE:a comparative analysis. Solar Energy Materials. 1988,18:108~115
    56 Adebiyi G A, Hodge B K, Steele W G, et al. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase-change storage materials. Journal of Energy Resources Technology, ASME. 1996,118:102~111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700