用户名: 密码: 验证码:
基于长期累积变形演化状态控制的高速铁路基床结构设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路对轨道结构提出了高平顺性、高稳定性的要求。严格控制路基工后沉降,为轨道结构提供一个坚实、稳固的基础,是实现轨道结构长久保持高平顺性和高稳定性的先决条件,也是高速铁路保持其长期服役性能的关键问题之一。作为路基结构上部的基床部分,直接承受列车长期动荷载作用和气候环境变化的影响。在高周循环荷载作用下基床结构的累积塑性变形是线路结构长期变形的重要组成部分,以控制长期累积塑性变形为出发点,建立基于力学分析和满足功能要求的基床结构设计方法不仅是对现有基床结构设计理论的完善与发展,对已建高速铁路基床结构在未来数十年内是否能保持其长期良好服役性能的评价也具有重要意义。
     在吸取、总结和分析已有研究成果基础上,以构建基于长期累积变形演化状态控制的基床结构设计方法为核心,开展了列车荷载经轨道结构传递至路基面的动应力作用模式、土工填料在循环荷载作用下的长期累积变形演化状态特征及关键控制参数、基床结构的室内大型动态模型试验、路基压实质量检测中的小型平板载荷试验技术等方面研究。主要工作和结论如下:1、基床结构承受的列车荷载作用特性分析
     无砟轨道具有刚度大、稳定性好、传递扩散荷载能力强等特点,固定轴距的两个轴载之间存在明显的叠加效应,实测路基面动应力时程曲线表明,无砟轨道路基面动应力一次加卸载过程由一个转向架的两个轴载共同作用完成,而有砟轨道路面承受列车荷载一次加卸载作用由单个轴载完成。
     基于实测的无砟轨道路基面动应力时程曲线,建立了动应力随时间变化规律与列车轴载移动的空间位置关系,确定了列车荷载经轨道结构传递扩散至路基面纵向影响范围的计算方法,得到的纵向影响距离在9~10m之间,与Winkler弹簧地基上叠合梁的理论计算结果吻合。在此基础上,提出了无砟轨道路基面纵向梯形、横向均匀荷载作用模式。针对目前有砟轨道路基面荷载作用模式采用2.8m纵向影响距离未能考虑轨枕间距、道床厚度等因素的不足,以单轮载力由5根轨枕分担为基础,假定列车荷载在道床中沿线路纵向按“折线型”扩散的模式下,建立了有砟轨道路基面动应力纵向影响范围与轨枕间距、道床厚度之间的关系式,进一步完善了有砟轨道路基面动应力影响范围的确定方法。通过建立列车轴载与传递扩散至路基面动应力的力学平衡关系,分析综合动力影响系数的取值及考虑有砟轨道路基面动应力横向不均匀影响修正的基础上,得到路基面动应力计算方法及用于基床结构设计中承载力和耐久性检算的荷载水平。
     通过对无砟轨道路基面实测动应力时程曲线进行幅频特性分析表明,无砟轨道对车辆荷载的良好扩散作用已致使转向架轴距对应的频响特征不明显,大幅降低了路基承受的动荷载作用频率,主要作用频率分别是以车长为基本扰动波长计算频率值的1、2、3、4倍。
     2、循环荷载作用下土工填料长期累积变形演化状态特征及填土单元模型循环加载试验研究
     基于循环荷载作用下土工填料变形规律分析及有关累积塑性变形发展状态的已有研究成果,以累积塑性变形演化呈现出收敛与否、收敛发散快慢的现象特征为出发点,提出了循环荷载作用下土工填料累积塑性变形的演化呈现快速稳定、长期稳定、长期破坏和快速破坏的四个状态类别,建立了基于累积塑性变形速率发展趋势,以负幂函数f(N)=CN-p表达的数学判别准则(p值判别法),当p≥2时为快速稳定状态、1     构筑了压实系数分别为0.9、0.95和1.0条件下的级配碎石填料模型,进行了直径为30cm的刚性承载板循环加载试验及地基系数K30测试,基于“p值判别法”得到了级配碎石填料对应快速稳定、长期稳定、长期破坏和快速破坏四个状态的三个循环应变阈值。试验表明:压实系数0.9、0.95和1.0状态所对应的级配碎石填料K30值分别为137MPa/m、214MPa/m、380MPa/m;由快速稳定过渡为长期稳定状态的循环应变阈值εt1≈140~202με、均值εl1约为164με,由长期稳定转化为长期破坏状态的εt2≈443~650με、εt3约为526με,由长期破坏发展至快速破坏状态的εt3≈1339~2172με、εt3约为1734με;建立了循环应变阈值和动承载力阈值与K30值之间的经验关系式。3、基于长期累积变形演化状态控制的基床结构设计方法及其关键技术指标
     基于建立的基床结构设计荷载作用模式及获得的基床填料长期累积变形演化状态控制参数,以满足不同轨道结构对基床变形状态控制要求为目标,采用循环应变为核心控制指标、K。值为核心设计指标,运用力学分析原理,构建了基于长期累积变形演化状态控制的高速铁路基床结构设计方法及设计流程,提出了与有砟轨道和无砟轨道基床结构循环应变水平状态相适应的填料参数取值原则。
     运用基床结构长期累积变形演化状态控制设计方法,探讨了不同基床表层厚度条件下,无砟和有砟轨道结构基床底层的最小K30。控制值。对于无砟轨道结构,设计K30值为190MPa/m的基床表层厚度在0.2m-1.2m时,基床底层最小K30控制值约为108MPa/m~102MPa/m;相同基床表层条件下的有砟轨道结构,基床底层的最小K30控制值约为100MPa/m~68MPa/m。由此可见,无砟轨道结构需要较高基床底层填筑压实标准以满足长期累积变形快速稳定的控制要求,而有砟轨道结构的基床底层K30控制标准受基床表层厚度的影响明显。
     4、基床结构室内大型动态模型试验分析
     在室内构筑大型填土模型,进行了基床结构的大型动态模型试验。模型填土平面选取3m×3m的单元结构,厚度为2.2m,砖墙和砂袋堆砌组成的边界约束,模拟半无限空间体中局部结构在循环荷载作用下的力学响应。对模型结构施加了荷载水平为20kPa、40kPa、60kPa、80kPa、100kPa、120kPa,共计260万次的循环加载试验。试验过程中,测试了模型结构不同深度出的弹性变形、累积塑性变形、动应力、以及距顶面40cm的侧向弹性和累积塑性变形。当荷载水平小于60kPa时,最大循环应变为166με,沿深度范围内的循环应变均小于模型填土压实状态所对应的循环应变阈值ε1,处于快速稳定状态;当荷载水平为100kPa和120kPa时,模型表层约50cm厚度范围内的循环应变超过了应变阈值ε,,推断该结构层范围内累积塑性变形演化处于长期稳定状态,实测的累积塑性变形的演化趋势很好的映证了这一结论。试验结果验证了基于长期累积变形演化状态控制的基床结构设计理念的合理性及以循环应变为关键控制技术指标的可行性。
     5、铁路路基压实质量检测中的地基系数Ko、变形模量E2试验技术分析
     基于室内填土模型试验,对比分析了变形模量、地基系数K30两种小型平板载荷试验的特点,重点讨论了“沉降稳定控制法”和“等时间间隔控制法”两种加载控制方式对试验结果和试验效率的影响。结果表明:K30较Ev2更能直接反映路基的压密程度,每级荷载的保持时间对试验结果有显著影响,满足1%沉降稳定控制标准需较长的试验历时;K30试验的沉降稳定控制标准由1%改为2%、或加载时间间隔为6min,可缩短30%~50%试验时间,K30值误差在10%以内;对两种加载控制方式试验结果分析基础上,提出了基于荷载与沉降稳定时间呈正相关性的“荷载-时间控制法”试验加载方式,即每级荷载保持时间Δt1(min)与加载级数i(i≥2)相等且Δt1=2min.该方法可提高试验效率近50%、且具有可操作性强、误差小等优点,用于铁路路基砾石类填料压实质量的K30。检测具有良好适应性。
The high-speed railway requires the track structure with high smoothness and stablity. Controlling the post-construction settlement of subgrade is the necessary prerequiaite that keeps high smoothness and stablity of track, which is also the key factor of the high-speed railway maintaining good long-term service performace. The cumulative plastic deformation under numerous cyclic loading is an important component of the post-construction settlement for the upper structure of subgrade. Starting with the controlling of the cumulative plastic deformation, the design method of subgrade structure was found which not only is the development and improvement of the existing subgrade structure design theories, it would be significant for assessing the service perfprmance of high-speed railway subgrade which has constructed and put into sevice in it's design working life, about100years.
     Summing up the results of research at home and aboard, the paper circled around to construct the subgrade structure design method based on the long-term cumulative defornation evolution state controlling, the characteristics of subgrade bearing train load and the controlling parameters of subgrade filling and the indoor large scale dynamic model testing of subgrade and the test technique of the coefficent of subgrade reaction were studied. The main work and conclusions are as follows:
     1. Analysis on the characteristics of the subgrade bearing train load
     As ballastless track structure has bigger stiffness, better Stability and better capacity for diffusing load, the two axle loads between the bogie wheelbase have obvious superimposed effect. The dynamic stress time history curve which is measured on the subgrade surface shows that one loading and unloading process of the dynamic stress in ballastless track subgrade is completed by two axle loads of the same bogie. While for ballasted track, the process is completed by single axle load.
     The relation between the changing regularity of dynamic stress with time and the movement of the train axle load is established which based on the the dynamic stress time history curve which is measured on the subgrade surface of ballastless track. And the calculation method of longitudinal impact range of train load which diffuses to the subgrade surface through the track structure is determined b. What's more, by using that calculation method, the calculated longitudinal impact range is between9m and10m, which is consistent with the theoretical calculation result of Winkler spring foundation composite beam theory. Based on these theories and methods, the load model of ballastless track and the load distribution can be simplified to be trapezoidal distribution in the longitudinal of the lines and to be uniform distribution in the transverse direction, is proposed. In the existing design, the load model of ballasted track supposes the longitudinal impact range of train load is2.8m. Here, Sleeper spacing, thickness of ballast and other factors are not concerned. Aimed at the above shortcoming and based on the assumption that single wheel load is shared by the5sleeper and diffusion model of the train load is in broken line form, the relationship formula among the longitudinal impact range of dynamic stress on the subgrade surface in ballasted track, the distance of sleepers and ballast thickness is established. So, the ways to determine the impact range of dynamic stress on the subgrade surface in ballasted track is furture perfected. By establishing the equilibrium relationship between the train axle load and dynamic stress on the subgrade surface, analysing the comprehensive coefficient values of dynamic effect and considering the correction of transversely uneven effect of dynamic stress on the subgrade surface in ballasted track, the calculation method of dynamic stress on the subgrade surface and the load level for checking load-bearing capacity and durability in the roadbed design are got.
     The amplitude-frequency characteristic analysis for the dynamic stress time history curve,which is measured on the subgrade surface of ballastless track, shows that the good capacity for diffusing train load in ballastless track makes the frequency response characteristics, which is corresponding to the bogie wheel base, not obvious. The frequency of subgrade under dynamic load is sharply reduced. And the main frequencies are1,2,3,4times of the frequency value which is calculated by using the train length as the basic disturbance wavelength.
     2. The status features of the long-term cumulative deformation of the geotechnical filling under the cyclic loading and the study of the cyclic loading research of the filled earth unit
     The analysis of the deformation law of the geotechnical filling under cyclic loading and the study of the development status of the cumulate plastic deformation has obtained results. Based on the existing research results, with the start point that whether the cumulate plastic deformation converge or not and whether the speed of convergence is fast or slow, the paper put forward that there are four status of the cumulate plastic deformation development. They are fast settling, long-term settling, long-term breaking and fast breaking. What's more, the paper establish the criterion based on the development of the cumulate plastic deformation speed, which is expressed by the negative power function:f(N)=CN-P. WhenP≥2, it's called the fast settling status; when1     It constructs the model of the graded broken stone with the different compacting factor of0.9,0.95,1.0and conducts the cyclic loading experiment which can set out the ground coefficient K30with the rigidity loading board. Then, it obtains the three threshold value of the four status of the graded broken stone which called fast settling, long-term settling, fast broken and long-term broken based on the "p-convergence". The experiment indicates that the K30value of the graded broken stone of the different compacting factor of0.9,0.95,1.0is137MPa/m,214MPa/m,380MPa/m respectively. The transition threshold value ε11from the fast settling status to the long-term settling is140-202μs, the mean value ε11is64με. The transition threshold value ε12from the long-term settling status to the long-term broken is443-650με, the mean value ε12is526με. The transition threshold value ε13from the long-term settling status to the long-term broken is1339-2172με, the mean value ε13is1734με. Moreover, it establishes relationship between the threshold value of the cyclic strain, dynamic bearing capacity and the K30value.3. The design method for subgrade of the high-speed railway based on the deformation
     state controlling and the key technical indexs
     Based on established load pattern of bed structure design and bed filing accumulated deformation evolution status control parameters, In order to satisfy different track structures on bed deformation state control requirements, Using cyclic strain as the core control indicators、K30values as the core design index, Using the principle of mechanics analysis, Constructed based on the long-term cumulative deformation evolution state control of high speed railway bed structure design method and design process, Put forward ballast track and ballastless track bedding structure of cyclic strain corresponds to the level state of filling parameter selection principle.
     Using long-term cumulative deformation evolution state control bed structure design method, Discussed under the condition of different thickness of bed surface, ballast track and ballastless track structure at the bottom of bed the minimum control K30values. For ballastless track structure, Design K30values for190MPa/m the surface layer of bed thickness in0.2m-1.2m, at the bottom of bed the minimum control values of K30about108MPa/m-102MPa/m; The same under the condition of bed surface ballast track structure, at the bottom of bed the minimum control values of K30is about 100MPa/m~68MPa/m. Thus it can be seen ballastless track structure need the higher at the bottom of bed fill compaction standards to meet the long-term cumulative deformation fast and stable control requirements, while ballast track structure at the bottom of bed the control standards of K30significantly influenced by the thickness of the surface layer of bed.
     4. The large scale dynamic model testing of subgrade in the laboratory
     The large-scale made ground mode is set up indoor, the large dynamic test is taken. This model, which is consisted of made ground and boundary constraint,could simulate the mechanical response simulation of local structure in elastic half space under cyclic loading. And the made ground has a surface of3m×3m and a thickness of2.2m,the boundary constraint is provided by brick walls and sand bag stack. The model structure is applied by a series of load level of20kPa,40kPa,60kPa,80kPa,100kPa,120kPa, giving a total of2600000times of cyclic loading. During the test, the elastic deformation,cumulative plastic deformation, dynamic stress of different depth of the model structure, as well as the lateral elasticity and the cumulative plastic deformation from the top surface of40cm will be tested.When the load level is less than60kPa, the maximum cyclic strain is166με, the cyclic strain along the depth is less than the cyclic strain threshold εt1which is corresponding to the compaction state of the made ground, being in a fast steady state; When the load level is100kPa and120kPa, the cyclic strain of the range from the model surface about50cm thickness is bigger than the strain threshold, infering that the evolution of the cumulative plastic deformation within this structure layer is in a long steady state.This conclusion is verified well by the evolution trend of real measured deformation cumulative plastic. The test results show the rationality of the subgrade design concept based on the control of the long-term evolution deformation and the feasibility of the cyclic strain as the key control index.
     5. The test technique of the coefficient of subgrade reaction in the compaction quality detection of subgrade
     Based on the model test of laboratory fill, analyze and compare the characteristics of the two mini-plate loading test through the indoor testing of deformation modulus and coefficient of foundation K30, and particularly focusing on the influence and efficiency of the loading mode upon the testing results. Results show that, the ground coefficient can better reflect the compaction quality of subgrade than the strain modulus. The time interval of loading has significant influence on the testing results. The testing will take a long time to satisfy the steady criterion of deformation1%. And the testing time will reduce about30%-50%if the deformation steady criterion changed from1%to2%, or the time interval of loading was about6min, and the K30error will within10%. On the basis of analysis experimental results of the loading mode, the load-time controlling loading method was proposed, considering load is in positive correlation with the settlement stability time, namely the time interval of loading, Δt1=2min, is equal to load grade. The method improves test efficiency nearly50%, and has advantage of easy operation and small errors, which is especially suitable for the compaction quality detection of railway subgrade being made of gravel soil.
引文
[1]王其昌.高速铁路土木工程[M].西南交通大学出版社.2007.
    [2]王昆耀,常亚屏.往返荷载作用下粗粒土的残余变形特性[J].土木工程学报,2000,6(3):48-53.
    [3]贾革续,孔宪京.粗粒土动残余变形特性试验研究[J].岩土工程学报,2004,26(1):26-30.
    [4]邹德高,孟凡伟,孔宪京,徐斌.堆石料残余变形特性研究[J].岩土工程学报,2007,39(6):944-947.
    [5]王龙,解晓光,冯德成.级配碎石材料强度与塑性变形特性[J].哈尔滨工业大学学报.2010,38(9):1293-1297.
    [6]中华人民共和国铁道部.TB 10621-2009,《高速铁路设计规范(试行)》.北京,中国铁道出版社,2009.
    [7]Timoshenko, S. Method of analysis static and dynamical stresses in rail[C]. Proc. Of 2nd International Congress of Applied Mechanics, Zurich,1927.
    [8]Krylov, V.V. Generation of ground vibration by superfast trains[J]. Appl.Acoustic,1995,(44):149-164.
    [9]Filippov I.G. Method of solving equation of motion of viscoelastic media[J]. Mekhnika kompozitnykh materialov,1973,9(3):429-435.
    [10]Kaynia A., Madshus C., Zaekrisson P. Ground vibration from high speed trains: Prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6):531-537.
    [11]Chen Y.H. Response of an infinite Timoshenko beam on a viscoelastie foundation to a harmonic moving loading[J]. Journal of Sound and Vibration,2001, 241(5):809-824.
    [12]Kim, Seong M. Vibration and stability of axial loaded beams on elastic foundation under moving harmonic loads[J]. Engineering Structures,2004, 26(1):95-105.
    [13]Lyon D. The calculation of track forces due to dipped rail joints, wheel plats and rail welds. The second ORE Colloquium on Technique Cmputer Program, May 1972.
    [14]谢伟平,于艳丽,李红兵.高速移动荷载下轨道系统振动振动模拟的数值算法[J].武汉理工大学学报,2001,23(12):57-59.
    [15]谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学学报,2003,24(1):24-27.
    [16]Fryba L. Vibration of solids and structures under moving loads. Noordhoff international publishing, Groningen, The Netherlands,1972.
    [17]蒋建群,周华飞.弹性半空间体在移动集中荷载作用下的稳态响应[J].岩土工程学报,2004,26(4):440-444.
    [18]雷晓燕.高速轨道振动与轨道临界速度的傅立叶变换[J].中国铁道科学,2004,28(6):30-34.
    [19]王常晶.移动荷载作用下地基的动应力及饱和软粘土特性研究[D].杭州,浙江大学,2006.
    [20]佐藤裕著,卢肇英译.轨道力学[M].北京,中国铁道出版社,1981.
    [21]和振兴,翟婉明.高速列车作用下板式轨道引起的地面振动[J].中国铁道科学,2007,28(2):7-11.
    [21]翟婉明,车辆-轨道垂向系统模型及耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [22]翟婉明,孙翔.低动力作用轮轨系统垂向动力参数研究与设计[J].铁道学报,1993,15(3):1-10.
    [23]Zhai Wanming, Sun Xiang. A detailed model for investigating vertical interaction between railway veicle and track[J].Vehivle system dynamics,1994, 23(Supplement):603-615.
    [24]翟婉明,蔡成标,史炎,王其昌.车辆-轨道相互作用统一模型及软件的试验验证[J].铁道学报,1996,18(4):42-46.
    [25]Zhai Wanming, Cai Chenbiao.Coupling model of vertical/track interantions[J].Vehivle system dynamics,1996,26(1):61-79.
    [26]翟婉明,任尊松.提速列车与道岔的垂向相互作用研究[J].铁道学报,1998,20(3):33-38.
    [27]翟婉明,韩卫军,蔡成标,王其昌.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(6):65-69.
    [28]翟婉明,蔡成标,王开云.轨道刚度对列车性能的影响[J].铁道学报,2000,22(6):80-83.
    [29]翟婉明,蔡成标,王其昌,卢祖文,吴细水.列车提速对线路的动力影响研究与对策[J].中国铁道科学,2000,21(3):11-20.
    [30]Zhai W. M., Cai C. B., Wang Q. C., Lu Z. W., Wu X. S. Dynamic effects of vechicles on tracks in the case rasing train speed[J].Journal of Rail and Raipid Transit,2001,215(F2):125-135.
    [31]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [32]Diana G., F.C.P. Luco. A interaction between railroad superstructure and railway vehicles[J].Vehivle system dynamics,1994,23(Supplement):75-86.
    [33]Ripke B., Knothe K. Simulation of high frequency vehicle-track interactions[J].Vehivle system dynamics,1995,24(Supplement):72-85.
    [34]Oscarsson J., Dahlberg T. Dynamic train/track/ballast interaction-computer models and full-scale experiments[J].Vehivle system dynamics,1998, 28(Supplement):73-84.
    [35]Popp K., Kruse H., Kaiser I., Verhicle-track dynamics in the mid-frequency range[J].Vehivle system dynamics,1999,31(5):423-464.
    [36]Eason G. The stresses produced in a semi-infinite solid by a moving surface force[J].International Journal of Engineering Sciences,1995, (2):581-609.
    [37]Alabi B. A parametric study on some aspects of ground borne vibration, due to rail traffic[J]. Journal of Sound and Vibration,1992,153(1):77-87.
    [38]Jones D., Petyt M. Ground vibration in the vicinity of a rectangular load on a half-space[J]. Journal of Sound and Vibration,1993,166(1):141-159.
    [39]Jones D., Petyt M. Ground vibration in the vicinity of a strip load:a elastic layer on an half-space [J]. Journal of Sound and Vibration,1993,166(1):1-18.
    [40]Jones D., Houedec D., Peplow A. Vibration in vicinity of a moving harmonic rectangular load on a half-space[J].European Journal of Mechanics and solids, 1998,17(1):153-166.
    [41]Dieterman H. A., Metrikine A. V. Critical elocities of a harmonic load moving uniformly along an elastic layer [J]. Journal of Applied Mechanics, ASME,1994, 208(1):61-72.
    [42]Grundman H., Lieb M., Trommer E. The response of a layered half-space to traffic loads moving along its surface[J]. Archive of Applied Mechanics,1999,69(1):55-67.
    [43]Sheng X., Jones C, Petyt M. Ground vibration generated by a harmonic load acting on a railway track[J]. Journal of Sound and Vibration,1999,225(1):3-28.
    [44]彭波,谢伟平.移动荷载作用下下地基-轨道系统的土动力分析[J].华中科技 大学学报,2003,20(2):72-74.
    [45]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [46]梁波.不平顺条件下路基的动力反应[J].铁道学报,1999,21(2):84-88.
    [47]梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2000,22(1):65-71.
    [48]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [49]梁波,孙常新.高速铁路路基动力响应中的双峰现象[J].土木工程学报,2006,39(9):117-122.
    [50]杨英豪,王杰贤.列车运行时振动波在土中的传递[J].西安建筑科技大学学报,1996,27(3):329-333.
    [51]Hall Lars.Simulation and analyses of train-induced ground vibration in finite-element models[J].iSoil Dynamics and Earthquake Engineering 2003,25(5): 403-413.
    [52]Ekevid, Torbjorn W., Nels-Erik. Wave propagation related to high-speed train a scaled boundary FE-approach for unbound[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(36):3947-3964.
    [53]宫全美,张达石.高速铁路地基刚度的合理取值范围[J].同济大学学报(自然科学版),2004,32(10):1390-1393.
    [54]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙,中南大学,2005.
    [55]边学成.高速列车运动荷载作用下地基和隧道的动力响应分析[D].杭州,浙江大学,2005.
    [56]边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析[J].力学学报,2005,37(4):477-485.
    [57]卿启湘.高速铁路无砟轨道-软岩路基系统动力特性研究[D].长沙,中南大学,2005.
    [58]宣言.客运专线曲线线路车线耦合系统动力学性能和无砟轨道结构振动响应的仿真研究[D].北京,铁道科学研究院,2005.
    [59]陈震.高速铁路路基动力响应研究[D].武汉,中国科学院武汉岩土力学研究所,2006.
    [60]邱延峻,张晓靖,魏永幸.列车速度对无砟轨道路基动力特性的影响[J].交通运输工程学报,2007,7(2):1-5.
    [61]孙常新.结合秦沈客运专线的高速铁路路基动力特性分析[J].兰州,兰州交通大学,2004.
    [62]陈鹏.高速铁路列车-线路-桥梁耦合振动理论及应用研究[D].北京,北京交通大学,2008.
    [63]董亮,赵成刚,蔡德钩,张千里,叶阳升.高速铁路路基的动力响应分析方法[J工程力学,2008,25(11):231-240.
    [64]董亮,赵成刚,蔡德钩,张千里,叶阳升.高速铁路无砟轨道路基动力特性数值模拟及试验研究[J].土木工程学报,2008,41(10):81-86.
    [65]陶宏亮.高速铁路板式无砟轨道路基的动力响应及参数影响研究[D].长春,吉林大学,20089.
    [66]李佳.遂渝铁路无砟轨道路遂过渡段性能实车测试及路基结构FEM分析[D].西南交通大学,2008.
    [67]相颖慧.遂渝铁路无砟轨道路涵过渡段性能实车测试及路基结构FEM分析[D].西南交通大学,2008.
    [68]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-9470.
    [69]马学宁.车-路耦合条件下高速铁路路基及桥路过渡段结构系统动力分析[D].兰州交通大学,2008.
    [70]宋小林.高速铁路无砟轨道基础结构的动力特性分析.博士后出站报告,西南交通大学,2011.
    [71]郝瀛.铁道工程[M].北京:中国铁道出版社,2004.
    [72]周神根.铁路路基设计动荷载研究[J].路基工程,6-11,1996(5).
    [73]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].西南交通大学,2003.
    [74]中华人民共和国铁道部.铁建司2004257号,《京沪高速铁路设计暂行规定》.中国铁道出版社北京,2000.
    [75]李子春.轨道结构垂向荷载传递与路基附加动应力特性研究[D].北京,铁道科学研究院,2005.
    [76]马伟斌.既有线提速基床与道床相互影响研究[D].北京,铁道科学研究院,2006.
    [77]黄晶,罗强,李佳,张良.车辆轴载作用下无砟轨道路基面动应力分布规律探讨[J].铁道学报,2010,32(2):60-65.
    [78]胡一峰,李怒放.高速铁路无砟轨道路基设计原理[M].北京:中国铁道出版社,2010.
    [79]杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963(2):49-57.
    [80]王炳龙,潘振华.土工固格网改善基床土的动应力分析[J].铁道学报,1998,20(5):103-108.
    [81]王炳龙,余绍峰,周顺华.提速状态下路基动应力测试分析[J].铁道学报,2000,22增:79-81.
    [82]王炳龙,周顺华.不同高度土工格室整治基床下沉病害的试验研究[J].岩土工程学报,2003,25(2):163-166.
    [83]王炳龙,周文杰.土工固格网整治铁路路基基床下沉病害土的研究[J].工程力学,1997,(A03):432-437.
    [84]王炳龙.高速铁路路基工程[M].北京:中国铁道出版社,2007.
    [85]罗强,周华,王之犍.土工格室加固既有线铁路基床试验研究[J].铁道学报,2004,26(3):98-102.
    [86]孙常新,梁波,杨泉.秦沈客运专线路基动响应分析[J].兰州铁道学院学报,2003,22(4):110-112.
    [87]刘尧军,郭增强,赵玉成.秦沈客运专线不同填料路基动力特性试验研究[J].石家庄铁道学院学报,2003,17(2):19-22.
    [88]铁道科学研究院.遂渝线无砟轨道试验段综合试验路基基床动力特性测试[R].北京:铁道科学研究院,2007.
    [89]张泉,罗强.遂渝铁路刚性路基动应力测试分析.铁道标准设计.2006(2),18-20.
    [90]范声波.高速铁路无砟轨道路基动响应测试分析[D].西南交通大学,2010.
    [91]铁道科学研究院.武广客运专线武汉综合试验段综合试验研究总报告[R].北京:铁道科学研究院,2009.
    [92]西南交通大学.京沪高速铁路先导段综合试验-路基及过渡段动力性能试 验[R].成都:西南交通大学,2011.
    [93]Morgan, J. R. The response of granular materials to repeated loading[C]. Proc. 3rd Conf., ARRB,1178-1192,1966.
    [94]Barksdale R. D. Laboratory evaluation of rutting in base materials[C]. Proceeding of 3rd International Conference on The structural Design of Asphalt Pavements, London,161-174,1972.
    [95]Brown, S.F, Hyde, A.F.L. Significance of cyclic confining stress in repeated-load triaxial testing of granular materials[C]. In Proceeding of the 3rd on structure design of asphalt pavements, Transportation research record, Transportation research board, Washington D C.49-58,1975.
    [96]Pappin, J.W. Characteristics of granular material for pavement analysis[D]. University of Nottingham, England,1979.
    [97]Raymond, G.P., Williams, D.R. Repeated load triaxial tests on a dolomite ballast[J]. J. Geotech. Engrg. Div., ASCE,104(7),1013-1029.
    [98]Thom, N.H. Design of road foundations[D]. University of Nottingham, England,1988.
    [99]Allen, J. The effect of non-constant lateral pressures of the resilient response of granular materials[D]. University of Illinois at Urbana-Champaign, Urbana, 1973.
    [100]Holubec, I. Cyclic creep of granular materials[R]. Department of Ontario, Canada.
    [101]Dawson, A. R. Introduction to soils and granular materials, Lecture notes from residential course, Bituminous pavement-materials, design and evaluation, Department of Civil Engineering, University of Nottingham,1990.
    [102]Thom, N. H., Brown, S. F. Effect of moisture on the structural performance of a Crushed-Limestone road base[C].Transportation Research Record, Transportation Research Board,Washington,D.C:50-56,1987.
    [103]Brown, S.F., Hyde, A. F. Significance of cyclic confining stress in repeated load triaxiale testing of granular material[M]. Transportation Research Record 537, Transportation Research Board, Washington, D. C.,49-58,1975.
    [104]Gidel. G., Hornych, P., Chauvin, J. J. A new approach for investigating the permanent deformation behavior of unbound granular material using the repeated load triaxial apparatus[J].Bulletin Des Labortories Des Ponts ET Chaussees,2001,5-21.
    [105]Belt, J., Ryynanen, T. Ehrola, E. Mechanical properties of unbound base course[C]. Proceeding of the 8rd International Conference on Asphalt Pavement, Seattle,771-781,1976.
    [106]Van Niekerk A. A. Mechanical behavior and performances of granular bases and sub-base in pavements[D]. University of technology, Delft,2002.
    [107]Lillian, U. Deformation properties of unbound granular aggregates[D]. Norwegian University of science and technology, Trondheim,2007.
    [108]Khedr, S. Deformation characteristic of granular base course in flexible pavement[M]. Transportation Research Record 1043, Transportation Research Board, Washington, D. C.,131-138,1985.
    [109]Paute, J. L., Jouve, P., Martinez, J., and Ragneau, E. Modele de calcul pour le dimensionnement des chaussees souples[J]. Bull. de Liaison des laboratories des ponts et chaussees,156,21-36.
    [110]Sweere, G. T. H. Unbound granular bases for roads[D]. University of Delft, Delft,1990.
    [111]Paute, J. L., Hornych, P., Benaben, J. P. Repeated load triaxial testing of granular materials in the French network of laboratories des ponts et chaussees[C]. Flexible pavements Proc.1996,53-64.
    [112]Woff, H., Visser, A. T. Incorporating elasto-plasticity in granular layer pavement design[C]. Proc. Instn. of Civ. Engrs. Transp.,1994,105,259-272.
    [113]Lashine, A. K., Brown, S. F., Pell, P. S. Dynamic properties of soils[R]. University of Nottingham, Nottingham, England,1971.
    [114]Veveka, V. Raming van de spoordiept bij wegen met een bitumineuze verharding[J]. De Wegentechniek,1979,24(3),25-45.
    [115]Lerarp, F., Dawson, A. Modelling permanent deformation behavior of unbound granular materials[J]. Construction and building materials,1998,12(1), 9-18.
    [116]I.Perez,L.Medina,M.G.Romana. Permanent deformation models for a granular materials used in road pavements[J]. Construction and building Materials:790-800,2006.
    [117]Lentz, R. W., Baladi, G. Y. Constitutive equation for permanent strain of sand subjected to cylic loading[M]. Transportation Research Record 810, Transportation Research Board, Washington, D. C.,50-54,1981.
    [118]Bonaquist R F, Witchzak M W. A comprehensive constitutive model for granular materials in flexible pavement structures[C]. Seattle,1997.
    [119]Abdelkrim M, Bonnet G, Patrick de Buhan. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J]. Computers and Geotechnics,2003:462-479.
    [120]Chazallon C, Hornych P, Mouhoubi S. Elastoplastic model for the long-term behavior modeling of unbound granular materials in flexible pavements [J]. International Journal of Geomechanics, ASCE,2006,6(4):279-289.
    [121]T. Wichtmann, H. A. Rondon, A. Niemunis, T. Triantafyllidis, A. Lizcano. Prediction of permanent deformations in pavements using a high-cycle accumulation model[J]. Journal of Geotechnical and Geoenviromental Engineering, 2010,136(5):728-740.
    [122]C. Karg, S. Francois, W. Haegeman, G. Degrande. Elasto-plastic long-term behavior of granular soils:Modeling and experimental validation.2010:635-646.
    [123]Bouckovalas, G., Whitman, R., Marr, W. A. Permanent displacement of sand with cyclic loading[J]. Journal of Geotechnical Engineering,1984,110(10): 1606-1623.
    [124]Heath D L. Design of conventional rail track foundation[J].Proc. of the institute of civil engineers.1972,51(3):49-57.
    [125]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报.1996,31(1):1-4.
    [126]王龙,解晓光,巴恒静.长期动载下级配碎石材料得塑性变形与临界应力[J]. 同济大学学报,2010,38(9).1293-1297.
    [127]Werkmeister, S., Dawson, A. R., Wellner, F. Permanent deformation behavior of unbound granular materials and the shakedown concept[J]. Journal of Transportation Research Board,2001,1757,75-81.
    [128]Werkmeister, S., Dawson, A. R., Wellner, F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering,2004, 130(5),665-674.
    [129]Werkmeister, S. Permanent deformation behavior of unbound granular materials in pavement constructions[D]. Dresden University of Technology,2003.
    [130]Werkmeister, S. Shakedown analysis of unbound granular materials using accelerated pavement test results from New Zealand's CAPTIF Facility [J]. Pavement Mechanics and Performances,2006,154,220-228.
    [131]Mingjiang Tao, Louay N. Mohammad, Munir D. Nazzal, Zhongjie Zhang, Zhong Wu. Application of shakedown theory in characterizing traditional and recycled pavement base materials[J].Journal of Transportation Engineering,2010, 136(3),214-222.
    [132]Minassian G H. Behavior of granular materials under cylic and repeated loading[D].University of Alaska Fairbanks,2003.
    [133]I. Hoff, L. J. Bakl(?)kk, J. Aurstad. Influence of laboratory compaction metnod on unbound granular materials[C],6th International symposium on pavement Unound.
    [134]日本铁道综合技术研究所编,陈唯一等译.铁道构造物等设计标准及解说-省力化轨道用土工构造物.
    [135]Claus GObel, Klaus Lieberenz.中铁二院工程集团有限责任公司译.铁路土工建筑物手册[M].北京:中国铁道出版社,2009.
    [136]Sauvage R. Les couches D'Assise de la voie Ferree[Z]. Renue Generale des chemins de Fer Dec,1978.
    [137]周神根.高速铁路路基基床设计[J].路基工程,1997,(3):1-6.
    [138]中华人民共和国铁道部.TB 10621-2009,《高速铁路设计规范(试行)》条 文说明.北京,中国铁道出版社,2009.
    [139]周镜,叶阳升.基床结构设计探讨[J].铁道科学与工程,2004,1(1):1-6.
    [140]张千里,韩自力,吕宾林.高速铁路路基基床结构分析及设计方法[J].中国铁道科学,2005,26(5):53-57.
    [141]张千里.铁路路基基床结构设计方法及参数的研究[R].北京:铁道科学研究院,2008.
    [142]Vucetic, M. Cyclic Threshold Shear Strains in Soils[J].Journal of Geotechnical Engineering, ASCE,1994,120(12):2208-2228.
    [143]胡一峰,李怒放.高速铁路无砟轨道路基设计原理[M].北京:中国铁道出版社,2010.
    [144]铁道科学研究院.不同基床表层结构及路基轨道动态试验研究[R].北京:铁道科学研究院,2003.
    [145]阚叔愚等.重载铁路工程[M].中国铁道出版社,1994.
    [146]日本国有铁道编.陈耀荣译.土工结构物设计标准和解说[M].中国铁道出版社,1982.
    [147]铁道科学研究院.铁路路基基床结构设计方法及参数的研究[R].北京:铁道科学研究院,2008.
    [148]中华人民共和国铁道部.铁建设(2007)47,新建时速300-350公里客运专线铁路设计暂行规定[M].北京:中国铁道出版社,2007.
    [149]许国平,周全能,胡一峰.高速铁路无砟轨道路基质量控制指标研究[J].铁道工程学报,2007,110(11):14-19.
    [150]中铁第五勘察设计院集团有限公司.用Ev2评价客运专线路基压实质量研究[R].北京:2007.
    [151]铁道科学研究院.铁路路基压实质量控制参数优化与控制体系研究[R].北京:中国铁道科学研究院,2009.
    [152]汤晓光,李明领,胡一峰,宋德果,聂志宏.客运专线路基压实标准研究[J].铁道标准设计,2009(增):19-23.
    [153]李怒放,胡一峰.中德无砟轨道路基压实标准对比[J].铁道标准设 计,2007(12):1-4.
    [154]杨有海,黄大维,赖国泉,夏琼.高速铁路路基戈壁填料地基系数与变形模量分析[J].岩土力学,2011,32(7):2052-2056(2065).
    [155]朱浩波,曲宏略,张顶立.高速铁路路基质量检测指标K30、Ev2、Evd的相关性分析[J].北京交通大学学报,2011,35(1):49-53.
    [156]中华人民共和国铁道部.TB 10102-2010,铁路土工试验规程[M].北京,中国铁道出版社,2010.
    [157]胡在良,李晋平,王君东,孟军涛,熊昌盛.无砟轨道铁路路基变形模量Ev2控制指标的试验研究[J].中国铁道科学,2008,29(5):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700