用户名: 密码: 验证码:
海水养殖贝类苗种循环水高效净化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是中国科学院海洋研究所主持的国家高技术研究发展计划(863计划)项目子课题的一部分。本文重点研究蛋白泡沫分离技术、臭氧消毒技术和生物滤池在海水养殖贝类苗种循环水处理技术的应用,并对海水养殖水进行了中试研究。工厂化水产养殖是提高生产力的重要途径,也是人们采用高科技手段实现可控化高效养殖,解决日益枯竭的海洋资源危机的有效措施。
     工厂化养殖体系中由于养殖密度较大,以及投饵等所引起的水质恶化是该体系维持正常生产的制约因素之一,研究和建立高效的水质净化系统并应用于工厂化养殖循环水的净化处理是工厂化养殖体系正常运行的关键技术,也是实现其稳产高效的保证,具有重要理论意义和广阔的应用前景。
     本文针对海水养殖贝类苗种循环水的水质特点探讨其高效净化的技术和方法,较系统深入地研究了泡沫分离、O3消毒灭菌、曝气生物滤池(简称BAF)和活性炭对水中有机物的去除率及其影响因素,优化了工艺参数,取得了良好的结果。得出采用砂滤——BAF——泡沫分离——O3灭菌——活性炭吸附联合处理工艺对该循环系统进行净化处理的可行性,实现了工厂化养殖水循环使用。本文所获得的主要结果如下:
     1、利用泡沫分离器去除养殖循环水中的有机物是可行的,泡沫分离器的去除效率受有机物浓度和性质、最佳气液比等多种因素的影响。有机物的浓度和性质是影响泡沫分离器去除率的决定因素,在本文确定的最佳气液比、最小表面气体流速、最佳停留时间等工艺参数下,可使泡沫分离器对有机物的去除达到理想的效果。
     2、经臭氧处理后的海水,其主要的水质指标pH、氧化还原电位(ORP)、化学耗氧量(COD)、溶解氧(DO)、氨氮(NH3-N)、亚硝酸盐氮(NO2-N)、细菌总数等可以达到养殖海水循环水质要求,水质状况明显改善。
     3、生物培养实验表明:采用经臭氧处理的海水培养小球藻(Chlorella sp.),发现臭氧生成氧化物对其生长具有明显影响。当其浓度低于0.735mg/L时,对小球藻不产生毒害作用;当浓度超过1.036 mg/L时,则对小球藻的生长具有明显的毒害作用。此时观察到大量小球藻死亡。在0.735mg/L和1.036 mg/L之间,稍有毒害作用。通过实验获得了臭氧投加量与小球藻生长量间的定量关系,提出了消除和控制其毒害作用的对策。
     4、活性炭可以有效吸附臭氧生成氧化物。研究了在进水水质不变的前提下,活性炭吸附柱最佳高度;在进水量为45.6L/h时,炭层高度≥800mm。在该条件下能保证活性炭出水中残余臭氧生成氧化物浓度在0.1mg/L以下。既能使臭氧处理再循环用水达到较好的消毒目的,又可消除O3消毒过程中产生的不利影响。
     5、实验结果表明水中残余臭氧生成氧化物(ORO)浓度与氧化还原电位之间具有一定的关系,因此通过体系中氧化还原电位的测定来跟踪ORO在处理水中的残存量,从而提供了一个简便可靠的监测ORO的方法,为工厂化养殖系统控制生物生长的不利因素提供技术支持和科学依据。
     6、对滤池滤料进行了优选实验,其中陶粒滤料对COD的去除效果最好,悬浮滤料次之,竹球最差;实验初期,陶粒滤池与悬浮滤料滤池对氨氮的去除效果接近,出水水质都能达到养殖水水质的要求,但是随着实验的进行,陶粒对氨氮的去除效果逐渐超过悬浮滤料;竹球滤池对氨氮和亚硝酸盐表现出良好的去除效果,一直未出现亚硝酸盐的积累。由于悬浮滤料价格较贵,对氨氮和COD的去除效果也一般,本实验把它舍弃。在本实验条件下,三种滤料的曝气生物滤池出水COD和NH3-N浓度都随着进水有机负荷和氨氮负荷的提高而增加,但随着所选用滤料的不同,负荷对它们的影响又有所不同;本实验确定的三种滤料滤池的最佳水力停留时间是1h,最佳滤料层高60cm,最佳气水比为3:1,为BAF在实际中的推广应用提供了科学依据。
     本研究的创新之处在于:
     1、对蛋白泡沫分离技术和臭氧消毒技术在海水养殖贝类苗种循环水中的应用进行了现场中试研究,得到了一定水质下的蛋白泡沫分离器的相关参数;发现并首次定量探讨了臭氧生成氧化物对养殖循环水水质的影响和消除其影响的途径。得到了海水养殖贝类苗种循环水处理利用砂滤——BAF——泡沫分离——O3灭菌——活性炭吸附联合处理工艺中各处理单元的控制参数。
     2、本文在研究臭氧水质净化的基础上,探讨了臭氧及其氧化产物对海水生态系中的微藻可能产生的影响,提出了防治对策。
     3、提出一种检测有害成分的简便方法,对生产有指导作用和应用价值。
     4、进行了不同滤料在海水中的挂膜研究,探讨了对挂膜可能产生影响的因素,同时还研究了氨氮负荷、有机负荷、水力停留时间、填料高度、水温、pH以及气水比对3种滤料去除氨氮、COD的影响,为BAF在工程中的推广应用提供了技术依据。
Industrialized mariculture is an important approach to increasing productivity. It is also an effective measure for mankind to realizing controllable and high effective mariculture and resolving the crisis of increasingly exhausted ocean resource by high technology.
     The deterioration of water quality caused by high density of mariculture in industrialized mariculture system and bait casting is one of key factors that the system can be kept to normally produce. It is a key technique for normal work of industrialized mariculture system and ensuring of stable and effective production that study and establishment high effective water purified system and its application in circle water treatment of industrialized mariculture. So study and establishment high effective water purified system and its applications in circle water treatment of industrialized mariculture have important academic meaning and will have wide application.
     In this paper, the effective purified technique and method for the circle water system of mariculture for young seashell were studied based on the water property. The circle water system of mariculture for young seashell was purified by foam fractionation- ozone disinfection- activated carbon adsorption coupled treatment technique. The removal rate of organic compounds and influence factors with foam fractionation- ozone disinfection- activated carbon adsorption method were systemically studied. The technique parameters were optimized. The satisfactory results were obtained. The circular use of industrialized mariculture water was realized. The following is the major results in this paper:
     1. It is practicable to remove organic compounds in circle water of mariculture by foam separators. The removal rate of foam separator was affected by some factors, such as, the concentration of organic compounds and optimal vapor/liquid proportion. The concentration and quality of organic compounds were the key factors of effecting removal rate of foam separator. The removal results of organic compounds by foam separator were satisfactory under the condition of optimal vapor/liquid proportion, minimum velocity of surface vapor and optimal retention time.
     2. The main water quality parameters of seawater after ozone disinfection, including pH, oxidation -reduction potential (ORP), chemical oxygen demand (COD), dissolved oxygen (DO), ammonia (NH4-N), nitrite(NO2-N), total bacteria count, can achieve the demand of the aquaculture water quality. The water quality was distinctly modified after ozone disinfection.
     3. The biology culture experiment shows that ozone produced oxidant (OPO) can heavily affect the growth of Chlorella sp. cultured by seawater after ozone treatment. When the concentration of OPO was under the level of 0.735mg/l, the ozone produced oxidant was harmless to the growth of Chlorella sp.; while it is obviously harmful when above 1.036mg/l, a lot of chlorella sp. had perished. The quantitative relation between dosage of ozone and growth of Chlorella sp. was obtained. The means to eliminating and controlling the harmful effect of ozone was proposed.
     4. The activated carbon can effectively adsorb ozone and make the ozone transform to oxidant. The concentration of residual ozone-produced-oxidants in the water after activated carbon adsorption was less to 0.1 mg/l, under the condition that the imput water flow-rate was 45.6 l/h and the height of carbon bed was higher than 800mm, which was the optimal height of activated carbon adsorption column, the imput water quality was kept constant. Under the above condition, the re-circle water after ozone treatment can be sterilized, and the harmful effect produced during the ozone disinfection was avoided.
     5. The experimental results show that there is a quantitative relation between TRO and ORP. Therefore, a simple and reliable mehtod to monitor the ORP was obtained, by determination of ORP tracing the TRO concentration in the water after treatment. The method gives guiding role and applied value in the practical production.
     6.This experiment contrasts three different substrates. The granular ceramics media BAF is the best on COD removal,and the bamboo media BAF is the worst ;In the first term of this experiment the granular ceramics media BAF and the suspended media BAF is same on NH3-N removal,and the water quality can achieve the standard of mariculture effluent,but in the last term the granular ceramics media BAF is better than the suspended media BAF on NH3-N removal; The bamboo media BAF has a good effect on the removal of NH3-N and NO2-N. Because of the high price and normal removal on NH3-N and COD, we throw the suspended media. In this experiment, the COD and NH3-N concentrations of the effluent increase with the COD and NH3-N charge increasing. The optimum HRT、media hight and air:liquid in three different media BAF is 1h、60cm and 3:1 respectively.
     The innovations of the study are the following:
     1. The pilot study on application of Protein Foam Fractionation and Ozone Disinfection Technology in circle water system of mariculture for young seashell was carried. Some parameters of protein foam separator for certain quality of water were obtained. The harmful effect of ozone produced oxidant on mariculture recirculating water quality was first found, and the approach to eliminating the harmful effect was fist studied. The technique parameters of the circle water treatment of mariculture for young seashell by foam fractionation-ozone disinfection-activated carbon adsorption coupled treatment technique were obtained.
     2. The influence of ozone and its oxidants in seawater on the growth of Marine Microalgae was discussed, based on study on improvement of recirculating mariculture water quilaty by the treatment of ozone.
     3. A simple method to determination of harmful components was proposed, and it can give guiding role and applied value in the practical production.
     4.This experiment studies the Start—up of different medias BAF in the seawater, the possible thing effecting Start—up,and the effect of NH3-N charg、COD charg、HRT、media hight、water temperature、pH and gas:liquid on the removal of NH3-N and COD.
引文
[1]张明华,杨菁.海水工厂化养殖水处理系统的装备技术研究.海洋水产研究2003,24(2):30~34;
    [2]丁永良.世界养鱼工业的技术进步与问题[J].渔业机械仪器, 1995.1:6;
    [3]刘兴国.工厂化养鱼水处理中具有重要意义的几个指标[J].水产科技21;
    [4]严煦世,范谨初.给水工程(第四版)[M].北京:中国建筑工业出版社1999:316;
    [5]陈家鑫.集约化水产养殖系统中的水质管理[J] ;
    [6]章静晨.浅谈铵氮对养殖水体的影响[J].河北渔业,2003,3:49;
    [7]孙国铭,万夕和,许璞,等.海水循环式养殖系统NH3-N、NO3-N转化及其水质管理[J].水产养殖.1999.4:14;
    [8]张自杰,林荣忱,金儒霖.排水工程(下册)(第二版)[M]北京:中国建筑工业出版社1997:102;
    [9]顾国维,何以亮.膜生物反映器——在污水处理中的研究和应用[M]北京):化学工业出版社2002:36;
    [10]布乔·罗斯脱.养鲑苗的循环水养殖车间[J].渔业机械仪器, 1990.17( 88):12;
    [11]R.Pujol,M.Hamon,X.Kandel.Biofilters:Flexible,ReliableBiologicalReactors.Water Science & Technology.1994,29(10-11):33~38;
    [12]J.P.Canler,J.M.Perret.Biological Aerated Filters:Assessment Based on Sewage Treatment Plants.Water Science & Technology.1994,29(10~11):13~22;
    [13]F.Rogalla,J.Sibony.BiocarboneAeratedFilters-TenYearsafter,Past,PresentandPlential.Water Science&Technology.19942,26(9~11):97~101;
    [14]R.Pujol.ProcessImprovementsforUpflowSubmergedBiofilters.Water21.April.2000:25~29
    [15]刘雨,赵庆良等编著.生物膜法污水处理技术.中国建筑工业出版社, 47;
    [16]周云,戴婕,王占生.曝气生物滤池在上海周家渡水厂的应用[J].中国给水排水,2002,(10):6~8;
    [17]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社,2002;
    [18]Suzuki, L., Dular, U., Kwok, S.C., 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120, 556~558;
    [19]R.Pujol,M.Hamon,X.Kandel.Biofilters:Flexible,Reliable Biological Reactors.Water Science & Technology.1994,29(10~11):33~38;
    [20]齐兵强,王占生。曝气生物滤池在污水处理中的应用.给水排水.2000,26(10):5~8
    [21]R.Pujol.Process Improvement for Upflow Submerged Biofilter.Water 21.April.2000:25~29;
    [22]J.J.Chen,D.McCarty,D.Slack,et al.Full Scale Studies of a Simplified Aerated Filter(BAF) for Organic and a Nitrogen Removal.Water Science & Technology.2000,41(4-5):1~4;
    [23]张忠波,陈吕军,胡纪萃.新型曝气生物滤池-Biostyr.给水排水.2000,20(10):15~18;
    [24]王飞际.一种新的污水处理技术-Biopur法.给水排水。2001,27(1):11~14;
    [25]郑俊,吴浩汀编著.曝气生物滤池工艺的理论与工程应用.北京:化学工业出版社,2005:59;
    [26]Pujol R . A keypoint of nitrification in an upflow biofiltration reaction[J ] . Wat Sci Tech ,1998 , 38 (3) :43~49;
    [27]Frank Rogalla . New development in complete nitrogen removal with biological aerated filters[J ] . Wat Sci Tech ,1990 ,22 (2) :273~280;
    [28]Seguret F. Hydrodynamic behavior of a full2scale submerged biofilter and its possible influence on performances[J ] . Wat Sci Tech ,1998 , 38 (8–9) :249~256;
    [29]T.D.Kent ,C.S.B.Fitzpatrick,S.C.Williams. Testing of biological aerated filter (BAF) media[J].Wat.Sci.Tech., 1996,34(3–4):363~370;
    [30]萧泽民,陈明辉,李展荣.蛋白除沫器在水族维生系统的运用[J]中国水产月刊(台湾)570:3~4;
    [31]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社2002:885~901;
    [32]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社;
    [33]姜国良.刘云.扬栋,等.用臭氧处理海水对鱼虾急性毒性效应研究[J]海洋科学2001.25(3):12;
    [34]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社,2003.10;
    [35]白敏冬等.取得高溶解率和高浓度臭氧水的方法[J].水处理技术,Vol. 27 Nol Feb.,2001,4,2~44;
    [36]陈淑吟等.臭氧水处理在水产养殖中的应用研究[J].水产养殖,2001第2期;
    [37]许建华等.水的特种处理技术[M].上海:同济大学出版社,1989,9;
    [38]陈文等.臭氧水在水处理中副产物的论述[J].怀化学院报,2003年第2期;
    [39]于瑞海等.臭氧处理水技术原理及在水产养殖中的应用[J].海洋湖沼通报,1997,(3);
    [40]R G.赖斯,A.涅泽尔编.臭氧技术及应用.朱光等译.北京:中国建筑工业出版社,1991;
    [41]哈晓翔、邓君明.臭氧在水产养殖处理水中的应用[J].畜禽业,2002年第6期;
    [42]周云等.新臭氧技术及应用[J].净水技术,2001,(3):26~28;
    [43]孙国铭等.海水循环式养殖系统NH4—N、NO3—N转化及水质管理[J].水产养殖,1999,10(4):12~14;
    [44]P.J.Colberg and A.J. Lingg Effect of ozonation on microbial fish pathogens, ammonia, nitrate, and BOD in simulated reuse hatchery water. J. Fish Res. Board Can, 1978, 35:55~62;
    [45]Hirayama, K. Influence of nitrate accumulated in culturing water on Octopus vulgaris. 1996a, Bull. Jap. Soc Scient. Fish. 36, 26~27;
    [46]Goldizen,V.C.Management of closed-system marine aquariums, Helgolaner wiss. Meeresunters. 1970, 20: 637~641;
    [47]Miklosz, J.C. Biological filtration. 1970 Mar. Aquarist 1, 22~29;
    [48]M.A.谢甫钦柯,B.B利荣诺夫.臭氧化法水处理工艺学.刘存礼译,北京:清华大学出版社,1987,4;
    [49]孙德智主编.环境工程中的氧化技术.北京:化学工业出版社,2002,4;
    [50]储金域、吴春笃、陈万金、陈志刚编.臭氧技术及应用.北京:化学工业出版社;
    [51]裴海燕等.臭氧杀藻特性的实验研究[J].工业水处理,2003,Vol.23.100.9: 55~59;
    [52]彭海涛,谭辛荣等.给水处理中藻类去除[J].中国给水排水,2002,18(2);
    [53]宫晓明.臭氧在海水养殖中应用效果的初步研究[D].中国海洋大学,2002: 12~25;
    [54]李怀恩等.臭氧对室内空气与物体表面消毒的实验观察[J].中国消毒学杂志,1998,15(2):124;
    [55]BurlesonG,Murray TM,Polland M. Inactivation of viruses and bacteria by Ozone,with and without sonication [J].Appl Environ Microbiol 1975,29(3):340;
    [56]白希尧等.臭氧溶液杀菌研究.中国消毒学杂志,1993,106(1):7;
    [57]欧阳川,王富玉等.臭氧杀灭水中枯草杆菌变种芽胞的实验效果观察[J].消毒与杀菌,1985,2:87;
    [58]Finch GR, Black EK, Laratiuk CW, et al. Comparison of Giardia and Giardia muris cyst inactivation bt ozone. Applied and environmental Microbiol, 1993; 59(14): 3674;
    [59]Pryor W. A., Dooley M. M. and Church D. F. Mechanisms for the reaction of ozone with biological molecules: the source of toxic effects of ozone. In Advance in modern Environmental Toxicology, 1983, Ann Arbor, Mich;
    [60]Scott D.M. and Lesher E.C. Effect of ozone on survival and permeability of Escherichia Coli. J.Bact., 1963, 85:567~576;
    [61]Kozo Ishizaki. Effect of ozone on plasmid DNA of Escherichia Coli in situ. Wat. Res. 1987,Vol. 21. No. 7. pp. 823~827;
    [62]Hamelin C., Sarhan F. and Chung Y. S. Induction of deoxyribounceleis in Escherichia Coli by ozone. Experientia, 1978, 34:1578~1579;
    [63]D. Roy. Mechanism of enterviral inactivation by ozone. Applied and Environmental Microbiology, Mar. 1981, pp.718~723;
    [64]Kim CK, Gentile DM, Sporoul OJ. Mechanism of ozone inactivation of bacteriophage f2. Applied Environ Microbiol,1980, 39 (1):210;
    [65]Mudd, J. B., R. Leavitt, A. Ongun, and T. T. Mcmanus. Reaction of ozone with amino acids and proteins. Atmos. Envirn.1969, 3 : 669~682;
    [66]史江等.臭氧消毒实验研究[J].消毒与杀菌,1989,6(3):143;
    [67]孙广明,李宝华,杨建军等.臭氧水处理原理及在水产养殖中的运用[J].内陆水产,1998,4:5~4;
    [68]朱福庆,冯守明,孙光明等.河蟹臭氧水育苗的正交实验[J].海洋科学,1999,1:17-18,26;
    [69]Blogoslawski WJ, Farrell L, Garceau R, et al. Production of oxidants in ozonized sea water [C].Proceeding of the second international symposium on Ozone Technology NY: Ozone PressInternational Jamesville,1976: 671~681;
    [70]Crecelius E A. Measurement of oxidants in chlorinated seawater and some biological reactions [J] . Fish Res Bd Can,1979,36:1006~1008;
    [71]Kosak_Channing L, Helz G R. Ozone reactivity with seawater components [J] .Int Ozone Ass,1979,1:39~46;
    [72]Stewart ME, Blogoslawski WJ,Hsu RY,et al. By-product of oxidative biocides:toxicity tooyster larvae [J] .Mar Pollu, bull. 1979,10:166~169;
    [73]Williams P M.Baldwin R J, Robertson K J. Ozonation of seawater: Preliminary observation on the oxidation of bromide, chloride and organic carbon [J] . Water research, 1978, 12:385~388;
    [74]Leonard B Richardson, Dennis T Burton, George R Helz,et al. Residual oxidant decay and bromate formation in chlorinated and ozonated sea-water [J] . Water research,1981,15:1067~1074;
    [75]姜国良等.用臭氧处理海水对鱼虾的急毒性效应的研究[J].海洋科学,2001,Vol.25.NO.3:11~12;
    [76]Nasir Kureshy,D Davis Allen,Arnold CR Effect of ozone treatment on culture of Nannochloropsis oculata.Isochrysis galbana,an Chaetoceros gracilis[J]. Journal of the World Aquaculture Society,1999,(30)4:473~480;
    [77]臧维玲等.臭氧对罗氏沼虾育苗池水净化作用的研究[J] .水产科技情报,2000,27(5):195~199;
    [78]P.M.Willams et al. Ozonation of seawater: Preliminary observation on the oxidation of bromide, chloride and organic carbon. [J]Water Research , 1978 , 12: 385~388;
    [79]Laurent Pilon Andreil G.Fedorov Raymond Viskanta , Analysis of transient thickness of pneumatic foams, Chemical Engineering Science 57(2002)997—977:980
    [80] Wheaton. F.W.,Aquacultural Engineering ,Wiley, New York, USA.1977
    [81]陈明耀.生物饵料的培养[M] .北京;中国农业出版社,1995.10:29~30;
    [82]罗国芝谭洪新施正峰等,泡沫分离技术在水产养殖水处理中的应用,水产科技情报1999,26(5):204;
    [83]中华人民共和国城镇建设行业标准(CJ/T3028.2-94),中华人民共和国建设部,1994;
    [84]海洋监测规范;水质监测与分析,国家海洋局发布(1991);
    [85]Singer,P.C.,and W.V.Zilili.Ozone of ammonia in wastewater.Water Res. 1975,9:127~134;
    [86]P.J.Colberg and A.J.Lingg Effect of ozonation on microbial fish pathogens, ammonia nitrate,and BOD in simulated resue hatchery water.J.Fish.Res.Board Can.,1978,Vol.35:1290~1296;
    [87]于瑞海,孔令锋.臭氧处理海水对扇贝卵的孵化及幼虫生长的影响[J].动物学杂志,2003,38(4):76~79; 153
    [88]孙广明,李宝华,李汉忠.臭氧特性及对水质的净化作用[J].渔业现代化,2000(4):23~31;
    [89]李宝华,孙广明等.臭氧净化培育单细胞藻的实验[J].内陆水产,1999年第8期;
    [90]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社2000:292~293;
    [91]严煦业,范瑾初.给水工程[M].北京:中国建筑工业出版社,1995;
    [92]兰淑澄.活性炭水处理技术[M].北京:中国环境科学出版社,1991;
    [93]刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用[J].给水排水,2001,12~15;
    [94]陈卫欣,.生物活性炭处理[J].公用科技,1994,10(3):15~21;
    [95]许保玖.给水处理理论[M].北京:中国建筑工业出版社,2000;
    [96]丁桓如,闻人勤.水处理活性炭的选择指标问题[J].中国给水排水,2000,16(14):19~22;
    [97]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1991;
    [98]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002;
    [99]谢锦辉,罗文连.活性炭在给水处理中的应用[J].冶金矿山设计与建设,2000,32(3):34~37;
    [100]杉田治男.臭氧用于养育海水的灭菌[J].养殖,1992.5:80~83;
    [101]刘雨,赵庆良等编著.生物膜法污水处理技术.中国建筑工业出版社,39 ;
    [102] FENG Zhihua(冯志华),YU Zhiming,LIU Ying, et al.2004.Application of biofilter in close recirculation seawater seeds nursery system.China Environmental Science(中国环境科学), 24(3) :350~354 (in Chinese);
    [103]Nicolella C,Loosdrecht M C M van,Heijnen J J.Wastewater treatment with particulate biofilm reactors[J].Journal of Biotechology 2000,80:1~33;
    [104]Bacquet G,Joret C,Rogalla F.Biofilm start-up and control in aerated filter[J].Envir Tech,1991,12:747~756;
    [105]Park J W,Granczar,Czyk J J.Grsvity separation of biomass washed out from aerated submerged filter [J].Envir Tech,1994,15:945~955;
    [106]Allan T Mann,Lepoldo Mendoza-Espinosa.Tom Stephenson.Performance of floating and sunken media biological aeated filters under unsteady state conditions [J].Wat Sci Tech,1999,33(4):1108~1113;
    [107]Simonet I S,Gregory D B,Barnaby J W ,et al. 2002.Factors influencing the nitrificationefficiency of fluidized bed filter with a plastic bead medium.Aquacultural Engineering,26(1):41~59;
    [108]Westerman P W,Losordo T M,Wildhaber M L.1996.Evaluation of various biofilters in all intensive recirculating fish production facility.Trans Am-Soc Agile Fag,39(3):723~727;
    [109]Turk O,Mavinic D S.Maintaining nitrie build-up in a system acclimated to free ammonia.Wat.Res.,1989,23(11):1383~1388;
    [110]Abeling U,Seyfried C F.Anaerobic treatment of high-strength ammonium wastewater:nitrogen removal via nitrite.Wat.Sci.Tech.,1992,26(5-6):1007~1015;
    [111]Fdz-Polanco F,Garcia P,Villaverde S.Temperature effect over nitrifying bacteria activity in biofilters:activation and free ammonia inhibition. Wat.Sci.Tech.,1993,30(11):121~130;
    [112]任南琪等编著.污染控制微生物学.哈尔滨工业大学出版社,2002.10 116页;
    [113]R .Pujol,H.Lemmel,M.Goudsilles.(1998).A keypiont of nitrification in an up flow biofiltration reactor.Water Sci.Tech.Vol 38(3),43~49;
    [114]J.-G.Peladan,H.Lemmel and R.Pujo1(1996).High nitrification with upflow biofiltration. Water Sci.Tech.Vol 34 (1/2),347~353;
    [115]Wijeykoon S.Mino T.Satoh H,et al.Fixed bed biological aerated filtration for secondary effulent polishing-dffect of filtration rate on nitrifying biological activity distribution[J].Wat.Sci.Tech.,2000,41(4-5):187~195;
    [116]李汝琪.污水处理新技术---BAFsR曝气生物滤池[J].中国环保产业,1999,(12):38~39
    [117]Malone R E Chitta B S,Drennan D G.Optimizing nitrification bead filters for warm water recirculating aquaculture [A].Techniques for modem aquaculture [M]. St. Joseph,MI:American Society of Agricultural Engineers,1993.315~325;
    [118]Songming Zhu *, Shulin Chen , An experimental study on nitrification biofilm performances using a series reactor system Aquacultural Engineering 20 (1999) 245~259;
    [119]Holmes, R.M., Aminot, A., Ke′rouel, R., Hooker, B.A.et al.1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci, 56:1801~1808;
    [120] Zheng Ping(郑平),Xu Xiangyang (徐向阳),Hu Baolan(胡宝兰)编著. The new theory and technology used biology to remove nitrogen(新型生物脱氮理论与技术).Beijing(北京):Science punishing company (科学出版社),2004,27~28;
    [121]刘雨,赵庆良等编著.生物膜法污水处理技术.中国建筑工业出版社, 124~125;
    [122]刘雨,赵庆良等编著.生物膜法污水处理技术.中国建筑工业出版社, 125;
    [123]Zheng Ping(郑平),Xu Xiangyang (徐向阳),Hu Baolan(胡宝兰)编著. The new theory and technology used biology to remove nitrogen(新型生物脱氮理论与技术).Beijing(北京):Science punishing company (科学出版社),2004, 28~29;
    [124] Zheng Ping(郑平),Xu Xiangyang (徐向阳),Hu Baolan(胡宝兰)编著. The new theory and technology used biology to remove nitrogen(新型生物脱氮理论与技术).Beijing(北京):Science punishing company (科学出版社),2004,15~16;
    [125]Zheng Ping(郑平),Xu Xiangyang (徐向阳),Hu Baolan(胡宝兰)编著. The new theory and technology used biology to remove nitrogen(新型生物脱氮理论与技术).Beijing(北京):Science punishing company (科学出版社),2004,19~20;
    [126]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.化学工业出版,103~104
    [127]Wheaton, F.W., Hochheimer, J.N., Kaiser, G.E., Krones, M.J., Libey, G.S., Easter, C.C., 1994a.Nitrification filter principles. In: Timmons, M.B., Losordo, T.M. (Eds.), Aquaculture Water Reuse Systems: Engineering design and management. Elsevier, pp. 101~126;
    [128]Painter, H.A., 1970. A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4, 393~450;
    [129]Jones, G.L., Paskins, A.R., 1982. Influence of high partial pressure of carbon dioxide and:or oxygen on nitrification. J. Chem. Tech. Biotechnol. 32, 213~223;
    [130]Kumar, S., Nicholas, D.J.D., 1983. Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis. J. Bacteriol. 154 (1), 65~71;
    [131]刘雨,赵庆良等编著.生物膜法污水处理技术.中国建筑工业出版社,123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700