用户名: 密码: 验证码:
MFI型取向分子筛膜的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛膜具有可调控的微孔结构、可调变的催化活性、优良的稳定性,被广泛应用于分离、催化、光电材料、化学传感器等诸多领域。MFI型分子筛具有三维孔道结构,孔径约为0.55 nm,适于分离许多重要的工业原料;且具有优良的择形催化性能,可以催化大多数C6以下烃类物质的部分氧化反应,因而MFI型分子筛膜是最具开发潜力的分子筛膜之一。由于MFI型分子筛具有各向异性的孔道结构,其不同取向分子筛膜内的纳米级孔道结构的差异较大,会严重影响分子筛膜的分子筛分效果和催化性能,因而近年来MFI型取向分子筛膜的制备与应用越来越受到人们的重视。
     本文以纯硅MFI型取向分子筛膜和含过渡金属杂原子的Fe-MFI型取向分子筛膜的制备为核心,重点研究了分子筛膜微观纳米结构的差异对其宏观分离性能和催化作用的影响。首先考察了多孔载体表面结构和化学性质对原位合成纯硅MFI型分子筛膜的影响,证实分子筛膜的取向和完备性主要受载体表面化学性质影响。采用壳聚糖进行表面化学改性可使载体表面富集功能基团,诱导分子筛晶体的定向生长,有利于b-轴取向分子筛膜的形成。实验中采用高分辨TEM和原位高压DSC技术,考察在壳聚糖薄膜上生长b-轴取向分子筛膜的过程,全面地阐释了纯硅MFI型分子筛膜的原位成膜机理。进而从成膜机理出发,开发出新型两步法二次合成工艺,该法可直接在大孔α-Al_2O_3载体上实现分子筛膜取向的调控。采用这种合成方法,在随机取向silicalite-1晶种层上,在150℃条件下可制备出硅铝比极高的h0h取向silicalite-1分子筛膜,在180°C条件下则合成出c-轴取向silicalite-1分子筛膜。实验中发现在合成液中引入Fe3+离子有利于分子筛膜的面内定向生长,分别在随机取向和b-轴取向的silicalite-1或Fe-ZSM-5晶种层上,制备出h0h取向和b-轴取向的Fe-silicalite-1或Fe-ZSM-5分子筛膜。采用新发明的低温煅烧脱除模板剂工艺可有效避免分子筛膜缺陷的形成,显著提高Fe-silicalite-1分子筛膜对乙醇/水混合液的渗透蒸发性能。与b-轴取向分子筛膜相比,h0h取向分子筛膜更有利于乙醇/水混合液的分离,该膜可突破乙醇/水共沸点的限制,在60℃下直接将5 wt.%的乙醇水溶液提纯至乙醇浓度至96.4 wt.%,其乙醇/水分离因子高达530。此外,本文还将h0h取向的Fe-ZSM-5分子筛膜应用于相接触式膜反应器,针对苯酚羟基化反应,考察了传统浆化床反应器和催化膜反应器在催化性能上的差异。实验证实了催化膜反应器可以充分利用分子筛孔道内的活性中心,这种接触方式和反应路径的改变可以极大提高反应的转化率和选择性。
Zeolite membranes have advantages such as precisely defined pore structure,controllable catalysis-based characteristics and high stability, which could enable applications in gas or liquid separations, catalytic membrane reactors, photoelectric materials, and host for chemical sensors. MFI zeolite crystal (ZSM-5) has a two -dimensional system of intersecting channels with subnanometer pore size (0.55nm). Because of its unique molecular sieving effect and selectively catalytic performances, MFI zeolite membrane can be used for separation of many industrially important compounds and catalysis of the partial oxidation of C1 to C6 hydrocarbons. Thus, MFI zeolite membranes are considered as one of the most potential zeolite membranes. Thanks to its anisotropic pore structure, the oriented nanometer-sized pore network of constituent microcrystals in a MFI zeolite membrane can significant- ly affect its molecular sieving effect, and permeation and catalytic performances, which are crucial for practical applications in various fields. In recent years, therefore, there has been growing interest in the preparation and applications of oriented MFI zeolite membranes.
     The core of this thesis is to prepare the oriented pure-silica MFI and the oriented transition metal hetero-atom Fe-MFI zeolite membranes. Much attention has been paid to the relation between the nanometer-sized zeolitic pore network in a MFI zeolite membrane and its permeation and catalytic performances. The effect of the microstructure and chemistry of the porous substrate surface on the growth of zeolite film was firstly invesitigated in detail, which confirmed that the orientation and microtructure of Si-MFI zeolite films onα-Al2O3 supported silica-zirconia layers were dominantly controlled by the chemical nature of the substrate surface. The abundance of organic functional groups could be successfully seeded onto the substrate surface by modification, where the functional groups served as the structure-directing matrix to induce the orientation and growth of the zeolite crystals with their b-axes perpendicular to the substrate surface.
     In the present study, we firstly fabricated a close-packed b-oriented monolayer Si-MFI film supported by a thin chitosan film, and provided the direct, specific high-resolution TEM and high-press DSC evidence to illustrate the true evolution of zeolite films during in-situ hydrothermal synthesis. This approach gives us a unique opportunity to explain the self-assembly mechanism of pure-silica MFI crystals on the surface of the chitosan film during in-situ crystallization.
     Based on the formation mechanism of zeolite membrane, a novel twice seeded growth synthesis procedure was proposed to fabricate oriented zeolite films onα-Al2O3 substrates directly. On the randomly oriented silicalite-1 seed layers, thin, continuous and h0h-oriented silicalite-1 membranes with an extremely high Si/Al ratio could be prepared at 150℃, and thick, dense and c-oriented silicalite-1 membranes could be obtained at 180℃. It was found that Fe~(3+) ions in the synthesis solution could be favourable to the intergrowth of MFI zeolite crystals along the in-plane direction. We have fabricated h0h-oriented and b-oriented Fe-silicalite-1 or Fe-ZSM-5 membranes on randomly oriented and b-oriented silicalite-1 or Fe-ZSM-5 seed layers, respectively.
     A unique low-temperature calcination technique was adopted in this thesis, which could quite efficient to restrain the formation of open grain boundaries and cracks during the template removal. This method can dramatically improve the pervaporation performance of Fe-silicalite-1 membranes for ethanol/water mixtures. Compared with the b-oriented membrane, the h0h-oriented Fe-silicalite-1 membrane was more suitable to the separation of ethanol/water mixtures. It could exceed the ethanol/water azeotropic point, directly concentrate the 5 wt.% ethanol/water fermentation broths to over 96 wt.% bio ethanol, and the ethanol/water separation factor could reach to as high as 530 at 60oC.
     In order to investigate the advantage of catalytic membrane reactions, the highly h0h-oriented Fe-ZSM-5 membranes were utilized in a modified interphase membrane reactor. The hydroxylation of phenol catalyzed by Fe-ZSM-5 using H2O2 as oxidant was investigated in the traditional slurry reactor and the interphase membrane reactor, respectively. Compared with the catalytic performance of Fe-ZSM-5 crystal grains loaded in the traditional slurry reactor, the use of the h0h-oriented Fe-ZSM-5 membrane in the interphase membrane reactor gives rise to a pretty high conversion for phenol and 100% selectivity for catechol and hydroquinone.
引文
[1]郑领英,袁权,展望21世纪的膜分离技术,水处理技术,1995,21 (3):125~131
    [2]徐南平,刑卫红,赵宜江,无机膜分离技术与应用,北京:化学工业出饭社,2003,1~10
    [3]黄仲涛,曾昭槐,钟邦克等,无机膜技术及其应用,北京:中国石化出版社,1998,1~14
    [4]孟广耀,董强,刘杏芹等,无机多孔分离膜的若干新进展,膜科学与技术, 2003,23 (4):261~268
    [5]徐如人,庞文琴,屠昆岗等,沸石分子筛的结构与合成,长春:吉林大学出版社,1987,1~47
    [6]中国科学院大连化学物理研究所分子筛组,沸石分子筛,北京:科学出版社,1978,1~30
    [7]徐如人,庞文琴等,分子筛与多孔材料化学,北京:科学出版社,2004,1~10
    [8] Davis M E, Ordered porous materials for emerging applications, Nature, 2002, 417 (6891): 813~821
    [9] Baerloher C, Meier W M, Olson D H, Atlas of Zeolite frameworks Type, Elsevier (5th Ed), 2001, 190~191
    [10] Thomas J M, Design, synthesis, and in situ characterization of new solid catalyst, Angewandte Chemie Internationl Edition, 1999, 38 (24): 3588~3628
    [11] Chu C T W, Chang C D, Isomorphous substitution in zeolite frameworks,1. Acidity of surface hydroxyls in[B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5, Journal of Physical Chemistry, 1985, 89 (8): 1569~1571
    [12] Hagen A, Roessner F, Weingart I et al, Synthesis of iron-containing MFI type zeolites and its application to the conversion of ethane into aromatic compounds, Zeolites, 1995, 15 (3): 270~275
    [13] Pérez-Ramírez J, Gallardo-Llamas A, Daniel C et al, N2O-mediated propane oxidative dehydrogenation over Fe-zeolites, Chemical Engineering Science, 2004, 59 (22-23): 5535~5543
    [14] Kritchayanon N, Thanabodeekij N, Jitkarnka S et al, Synthesis of Fe-loaded MFI zeolite using silatrane as precursor and its CO activity, AppliedOrganometallic Chemistry, 2006, 20 (2): 155~160
    [15] Long R Q, Yang R T, Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia, Journal of Catalysis, 1999, 188 (2): 332~339
    [16] Michalkiewicz B, Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5, Applied Catalysis A, 2004, 277 (1-2): 147~153
    [17] Panov G I, Advances in oxidation catalysis, CATTECH, 2000, 4 (1): 18~32
    [18] Villa A L, Caro C A, de Correa C. M, Cu- and Fe-ZSM-5 as catalysts for phenol hydroxylation, Journal of Molecular Catalysis A, 2005, 228 (1-2): 233~240
    [19] Pérez-Ramírez J, Mul G, Physicochemical Characterization of Isomorphously Substituted Fe-ZSM-5 during Activation, Journal of Catalysis, 2002, 207 (1): 113~126
    [20] Shannon R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, 1976, 32 (1): 751~767
    [21] Burkett S L, Davis M E, Mechanisms of Structure Direction in the Synthesis of Pure-Silica Zeolites.1.Synthesis of TPA/Si-ZSM-5, Chemistry of Materials, 1995, 7 (5): 920~928
    [22] Burkett S L, Davis M E, Mechanism of Structure Direction in the Synthesis of Pure-Silica Zeolites.2.Hydrophobic Hydration and Structural Specificity, Chemistry of Materials, 1995, 7 (8): 1453~1463
    [23] Mintova S, Olson N H, Valtchev V et al, Mechanism of zeolite a nanocrystal growth from colloids at room temperature, Science, 1999, 283 (5404): 958~960
    [24] Kirschhock C E A, Ravishankar R, Verspeurt F et al, Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system, Journal of Physical Chemistry B, 1999, 103 (24): 4965~4971.
    [25] Kirschhock C E A, Ravishankar R, van Looveren L et al, Mechanism of transformation of precursors into nanoslabs in the early stages of MFI and MEL zeolite formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O mixtures, Journal of Physical Chemistry B, 1999, 103 (24): 4972~4978
    [26] Mintova S, Olson N H, Senker J et al, Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite, Angewandte Chemie Internationl Edition, 2002, 41 (14): 2558~2561
    [27] Yang S Y, Navrotsky A, In situ calorimetric study of the growth of silica TPA-MFI crystals from an initially clear solution, Chemistry Materials, 2002, 14 (6): 2803~2811
    [28] Piccione P M, Yang S Y, Navrotsky A et al, Thermodynamics of Pure-Silica Molecular Sieve Synthesis, Journal of Physical Chemistry B, 2002, 106 (14): 3629~3638
    [29] Yang S Y, Navrotsky A, Wesolowski D J et al, Study on synthesis of TPA- silicalite-1 from initially clear solutions of various base concentrations by in situ calorimetry, potentiometry, and SAXS, Chemistry Materials, 2004, 16 (2): 210~219
    [30] Yang S Y, Navrotsky A, Early-stage Reactions in Synthesis of TPA-Silicalite-1: Studies by in Situ Calorimetry, SAXS, and pH Measurements, Chemistry Materials, 2004, 16 (19): 3682~3687
    [31] Davis T M, Drews T O, Ramanan H et al, Mechanistic principles of nanoparticle evolution to zeolite crystals, Nature materials, 2006, 5 (5): 400~408
    [32] Kumar S, Davis T M, Ramanan H et al, Aggregative Growth of Silicalite-1, Journal of Physical Chemistry B, 2007, 111 (13): 3398~3403
    [33]郎林,原位法制备b-轴取向silicalite-1分子筛膜:[硕士研究生论文],天津;天津大学,2006,42~47
    [34] Tavolaro A, Drioli E, Zeolite membranes, Advanced Materials, 1999, 11 (12): 975~996
    [35] Jiang H Y, Zhang B Q, Lin Y S et al, Synthesis of zeolite membranes, Chinese Science Bulletin, 2004, 49 (24): 2547~2554
    [36] Zhou M, Zhang B Q, Liu X F, Oriented growth and assembly of zeolite crystals on substrates, Chinese Science Bulletin, 2008, 53 (6): 801-816
    [37] Lai Z P, Tsapatsis M, Nicolich J R, Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers, Advanced Functional Materials, 2004, 14 (7): 716~729
    [38] Lai Z P, Bonilla G, Diaz I et al, Microstructural optimization of a zeolite membrane for organic vapor separation, Science, 2003, 300 (5618): 456~460
    [39] Flanigen E M, Bennett J M, Grose R W et al, Silicalite, a new hydrophobic crystalline silica molecular sieve, Nature, 1978, 271 (5645): 512~516
    [40]王晓东,钛硅分子筛(TS-1)膜的制备、结构引导及应用:[博士研究生论文],天津;天津大学,2008,5~11
    [41] Li S, Demmelmaier C, Itkis M et al, Micropatterned oriented zeolite monolayer films by direct in situ crystallization, Chemistry of Materials, 2003, 15 (14): 2687~2689
    [42] Li S, Wang X, Beving D et al, Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film, Journal of the American Chemical Society, 2004, 126 (13): 4122~4123
    [43] Wang X D, Zhang B Q, Liu X F et al, Synthesis of b-oriented TS-1 films on chitosan-modifiedα-Al2O3 substrates, Advanced Materials, 2006, 18 (24): 3261~3265
    [44] Zhang F Z, Fuji M, Takahashi M, In situ growth of continuous b-oriented MFI zeolite membranes on porous alpha-alumina substrates precoated with a mesoporous silica sublayer, Chemistry of Materials, 2005, 17 (5): 1167~1173
    [45] Feng S, Bein T, Growth of oriented molecular sieve crystals on organo -phosphonate films, Nature, 1994, 368 (6474): 834~836
    [46] Gouzinis A, Tsapatsis M, On the preferred orientation and microstructural manipulation of molecular sieve films prepared by secondary growth, Chemistry of Materials, 1998, 10 (9): 2497~2504
    [47] Lai S M, Au L T Y, Yeung K L, Influence of the synthesis conditions and growth environment on MFI zeolite film orientation, Microporous and Mesoporous Materials, 2002, 54 (1-2): 63~77
    [48] Lee J S, Lee Y J, Tae E L et al, Synthesis of zeolite as ordered multicrystal arrays, Science, 2003, 301 (5634): 818~821
    [49] Wang Z B, Yan Y S, Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization, Chemistry of Materials, 2001, 13 (3): 1101~1107
    [50] Wang Z B, Yan Y S, Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization, Microporous and Mesoporous Materials, 2001, 48 (1-3): 229~238
    [51] Julbe A, Farrusseng D, Jalibert J C et al, Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes, Catalysis Today 2000, 56 (1-3): 199~209
    [52] Guan N, Han Y, et al. Monolithic TS-1/cordierite catalyst synthesis by in-situ method, Chemistry Letters, 2000, 29 (9): 1084~1085
    [53] Zhang X F, Li Y S, Wang J Q et al, Synthesis and characterization of Fe-MFI zeolite membrane on a porousα-Al2O3 tube, Separation and Purification Technology, 2001, 25 (1-3): 269~274
    [54] Au L T Y, Chau J L H, Ariso C T, et al. Preparation of supported Sil-1, TS-1 and VS-1 membranes Effects of Ti and V metal ions on the membrane synthesis and permeation properties, Journal of membrane science, 2001, 183 (2): 269~291
    [55]陈晓辉,蔡丽蓉,魏可镁,钛硅分子筛膜的合成及其催化性能的研究,化工进展,2004,23 (11):1222~1226
    [56] den Exter M J, van Bekkum H, Rijn C J M et al, Stability of oriented silicalite-1 films in view of zeolite membrane preparation, Zeolites, 1997, 19 (1): 13-20
    [57] Koegler J H, van Bekkum H, Jansen J C, Growth model of oriented crystals of zeolite Si-ZSM-5, Zeolites, 1997, 19 (4): 262~269
    [58] Nakazawa T, Sadakata M, Okubo T, Early stages of MFI film formation, Microporous Mesoporous Materials, 1998, 21 (4-6): 325~332
    [59] Lai R, Yan Y S, Gavalas G R, Growth of ZSM-5 films on alumina and other surfaces, Microporous and Mesoporous Materials, 2000, 37 (1-2): 9~19
    [60] Li Y S, Shi J L, Wang J Q et al, The formation mechanism of ZSM-5 zeolite membranes, Studies in Surface Science and Catalysis, 2002, 142 (Part 2): 1529~1536
    [61] Vilaseca M, Mateo E, Palacio L et al, AFM characterization of the growth of MFI-type zeolite films on alumina substrates, Microporous Mesoporous Materials, 2004, 71 (1-3): 33~37
    [62] Li S A, Li Z J, Bozhilov K N et al, TEM investigation of formation mechanism of monocrystal-thick b-oriented pure silica zeolite MFI film, Journal of the American Chemical Society, 2004, 126 (34): 10732~10737
    [63]张廷风,许中强,陈庆龄,分子筛膜制备技术,化工进展,2002,21 (4):270~274
    [64] Chau J L H, Tellez C, Yeung K L et al, The role of surface chemistry in zeolite membrane formation, Journal of Membrane Science, 2000, 164 (1-2): 257~275
    [65] Lee Y, Ryu W, Cho G et al, Oriented growth of TS-1 zeolite ultrathin films on poly(ethylene oxide) monolayer templates. Langmuir, 2005, 21 (13): 5651~ 5654
    [66]郎林,张宝泉,刘秀凤,在玻璃上合成有取向的silicalite-1分子筛膜及其生长机理,化工学报,2006,57 (9):2229~2232
    [67]刘秀凤,郎林,张宝泉等,在壳聚糖改性的硅锆复合中间层上原位水热合成b-轴取向的silicalite-1分子筛膜,化工学报,2006,57 (4):1019~1021
    [68]周明,张宝泉,刘秀凤,原位法合成有取向无过渡区域的MFI分子筛膜,无机化学学报,2006,22 (10):1750~1754
    [69] Lovallo M C, Tsapatsis M, Preferentially oriented subicron silicalite membranes, AIChE Journal, 1996, 42 (11): 3020~3029
    [70] Lovallo M C, Gouzinis A, Tsapatsis M, Synthesis and characterization of oriented MFI membranes prepared by secondary growth, AIChE Journal, 1998, 44 (8): 1903~1913
    [71] Mabande G T P, Ghosh S, Lai Z P et al, Preparation of b-oriented MFI films on porous stainless steel substrates, Industry & Engineering Chemistry Research, 2005, 44 (24): 9086~9095
    [72] Choi J, Ghosh S, Lai Z P et al, Uniformly a-oriented MFI zeolite films by secondary growth, Angewandte Chemie Internationl Edition, 2006, 45 (7): 1154 ~1158
    [73] L Lang, X F Liu, B Q Zhang, Synthesis and characterization of h0h-oriented silicalite-1 films onα-Al2O3 substrates, Applied Surface Science, 2008, 254 (8): 2353~2358
    [74]成岳,李健生,王连军等,ZSM-5分子筛膜的研究进展,化学进展,2006,18 (2-3):221~229
    [75] Jansen J C, Kashchiev D, Erdem-Senatalar A, Preparation of coatings of molecular sieve crystals for catalysis and separation, Studies in Surface Science and Catalysis, 1994, 85: 215~250
    [76] Geus E R, van Bekkum H, Calcination of large MFI-type single crystals, Part 2: Crack formation and thermomechanical properties in view of the preparation of zeolite membranes, Zeolites, 1995, 15 (): 333~343
    [77]张雄福,李邦民,王金渠,ZSM-5沸石膜的有机胺焙烧过程对膜性能的影响,石油化工,2005,31 (1):10~14
    [78] Dong J H, Lin Y S, Hu M Z-C et al, Template-removal-associated micro- structural development of porous-ceramic-supported MFI zeolite membranes, Microporous and Mesoporous Materials, 2000, 34 (3): 241~253
    [79] Xomeritakis G, Gouzinis A, Nair S et al, Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth, Chemical Engineering Science, 1999, 54 (15-16): 3521~3531
    [80] Hedlund J, Sterte J, Anthonis M et al, High-flux MFI membranes, Microporous and Mesoporous Materials, 2002, 52 (3): 179~189
    [81] Jansen J C, Koegler J H, van Bekkum H et al, Zeolitc coatings and their potential use in catalysis, Microporous and Mesoporous Materials, 1998, 21 (4-6): 213~226
    [82] Geus E R, van Bekkum H, Bakker W J W et al, High-temperature stainless steel supported zeolite (MFI) membranes: Preparation, module construction, and permeation experiments, Microporous Materials, 1993, 1 (2): 131~147
    [83] Bonilla G, Tsapatsis M, Vlachosl D G et al, Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth, Journal of Membrane Science, 2001, 182 (1-2): 103~109
    [84] Gualtieri M L, Andersson C, Jareman F et al, Crack formation inα-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction, Journal of Membrane Science, 2007, 290 (1-2): 95~104
    [85] Bowen T C, Noble R D, Falconer J L, Fundamentals and applications of pervaporation through zeolite membranes, Journal of Membrane Science, 2004, 245 (1-2): 1~33
    [86] Noack M, K?lsch P, Sch?fer R et al, Molecular Sieve Membranes for Industrial Application: Problems, Progress, Solutions, Chemical Engineering & Technology, 2002, 25 (3): 221~230
    [87]庞先杰,钟邦克,多孔无机膜孔径大小和分布的测定,石油化工,1997,26 (5):337~341
    [88] Cuperus F P, Bargeman D, Smolders C A, Permporometry: the determination of the size distribution of active pores in UF membranes, Journal of Membrane Science, 1992, 71 (1-2): 57~67
    [89] Tsuru T, Hino T, Yoshioka T et al, Permporometry characterization of micro- porous ceramic membranes, Journal of Membrane Science, 2001, 186 (2): 257 ~265
    [90] Tsuru T, Takata Y, Kondo H, Characterization of sol-gel derived membranes and zeolite membranes by nanopermporometry, Separation and Purification Technology, 2003, 32 (1-3): 23~27
    [91] Jareman F, Hedlund J, Creaser D et al, Modelling of single gas permeation in real MFI membranes, 2004, 236 (1-2): 81~89
    [92] Zhang B Q, Wang C, Lang L et al, Selective defect-patching of zeolite membranes using chemical liquid deposition at organic-aqueous interface, Advanced Functional Materials, 2008, 18 (21): 3434~3443
    [93]王聪,MFI分子筛膜孔径分布与缺陷修复的研究:[博士研究社论文],天津;天津大学,2008,35~56
    [94]李永生,王金渠,沸石膜的合成、表征与应用,化学通报,2001,64 (l2):755~768
    [95]程志林,晃自胜,万惠霖,气体分离分子筛膜,化学进展,2004,16 (l):61~67
    [96]成岳,李健生,刘媚等,分子筛膜的研制进展与应用前景,中国陶瓷工业,2004,11 (1):40~44
    [97] Bai C S, Jia M D, Falconer J L, Preparation and separation properties of silicalite composite membranes, Journal of Membrane Science, 1995, 105 (1-2): 79~87
    [98] Bakker W J W., Kapteijn F, Poppe J et al, Permeation characteristics of a metal-supported silicalite-1 zeolite membrane, 1996, 117 (1-2): 57~78
    [99] Hedlund J, Noack M, K?lsch P et al, ZSM-5 membranes synthesized without organic templates using a seeding technique, 1999, 159 (1-2): 263~273
    [100] Lai R, Gavalas G R, ZSM-5 membrane synthesis with organic-free mixtures, Microporous and Mesoporous Materials, 2000, 38 (2-3): 239~245
    [101] Arruebo M, Coronas J, Menéndez M et al, Separation of hydrocarbons from natural gas using silicalite membranes, Separation and Purification Technology, 2001, 25 (1-3): 275~286
    [102] Bernal M P, Coronas J, Menéndez M et al, Separation of CO2/N2 mixtures using MFI-type zeolite membranes, AIChE Journal, 2004, 50 (1): 127~135
    [103] Coronas J, Noble R D, J L Falconer, Separations of C4 and C6 Isomers in ZSM-5 Tubular Membranes, Industrial & Engineering Chemistry Research, 1998, 37 (1): 166~176
    [104] Hasegawa Y, Ikeda T, Nagase T et al, Preparation and characterization of silicalite-1 membranes prepared by secondary growth of seeds with different crystal sizes, Journal of Membrane Science, 2006, 280 (1-2): 397~405
    [105] Nair S, Lai Z P, Nikolakis V et al, Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth, 2001, 48 (1-3): 219~228
    [106] O’Brien D J, Roth L H, McAloon A J, Ethanol Production by Continuous Fermentation-Pervaporation: a Preliminary Economic Analysis, Journal of Membrane Science, 2000, 166 (1): 105~111
    [107] McDonnell A M P, Beving D, Wang A et al, Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation, Advanced Functional Materials, 2005, 15 (2): 336~340
    [108] Morigami Y, Kondo M, Abe J et a1, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Separation and Purification Technology, 2001, 25 (1-3): 251~260
    [109] T Sano, M Hasegawa, Y Kawakami et al, Separation of methanol/rmmethyl-tert -butyl ether mixture by pervaporation using silicalite membrane, Journal of Membrane Science, 1995, 107 (1-2): 193~196
    [110] Flanders C L, Tuan V A, Noble R D, Falconer J L, Separation of C6 isomers by vapor permeation and pervaporation through ZSM-5 membranes, Journal of Membrane Science, 2000, 176 (1): 43~53
    [111] Yuan W H,Lin Y S,Yang W S,Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers, Journal of the American Chemical Society, 2004, 126 (15): 4776~4777
    [112]伍川,王净依,陆俊跃等,对二甲苯分离提纯进展,南京工业大学学报,2002,24 (3):106~l10
    [113]颜正朝,宋军,林晓等,沸石分子筛膜的合成与应用,石油化工,2004,33 (9):891~900
    [114] McLeary E E, Jansen J C, Kapteijn F, Zeolite based films, membranes and membrane reactors: Progress and prospects, Microporous and Mesoporous Materials 2006, 90 (1-3): 198~220
    [115] Coronas J, Santamaria J, State-of-the-art in zeolite membrane reactors, Topics in Catalysis, 2004, 29 (1–2): 29~44
    [116] Bernal M P, Coronas J, Menéndez M et al, Coupling of reaction and separation at the microscopic level: esterification processes in a H-ZSM-5 membrane reactor, Chemical Engineering Science, 2002, 57 (9): 1557~1562
    [117] Pantazidis A, Mirodatos C, Mechanistic approach of the oxidative dehydrogenation of propane over VMgO catalysts by in situ spectroscopic and kinetic techniques, Studies in Surface Science and Catalysis, 1996, 101 (Part 2): 1029~1038
    [118] van de Graaf J M, M Zwiep, Kapteijn F et al, Application of a silicalite-1 membrane reactor in metathesis reactions, Applied Catalysis A: General, 1999, 178 (2): 225~241
    [119] Illgen U, Sch?fer R, Noack M et al, Membrane supported catalytic dehydrogenation of iso-butane using an MFI zeolite membrane reactor, Catalysis Communications, 2001, 2 (11-12): 339~345
    [120] Ikegami T, Yanagishita H, Kitamoto D et al, Production of highly concentrated ethanol in a coupled fermentation/pervaporation process using silicalite membranes, Biotechnology Techniques, 1997, 11 (12): 921~924
    [121] Wu S Q, Gallot J-E, Bousmina M, Bouchard C, Zeolite containing catalytic membranes as interphase contactors, Catalysis Today, 2000, 56 (1-3): 113~129
    [122] Julbe A, Farrusseng D, Cot D et al, The chemical valve membrane: a new concept for an auto-regulation of O2 distribution in membrane reactors, Catalysis Today, 2001, 67 (1-3): 139~149
    [123] Jung K T, Shul Y G, Chemistry Materials, 1997, 9 (2): 420~422
    [124] Mizukami F, Application of zeolite membranes, films and coatings, Studies in Surface Science and Catalysis, 1999, 125: 1~12
    [125] Kim H S, Lee S M, Yoon K B et al, Aligned inclusion of hemicyanine dyes into silica zeolite films for second harmonic generation. Journal of the American Chemical Society, 2004, 126 (2): 673~682
    [126] Mass H, Calzaferri G, Trapping energy from and injecting energy into dye-zeolite nanoantennae, Angewandte Chemie Internationl Edition, 2002, 41 (13): 2284~2288
    [127] Calzaferri G, Huber S, Maas H et al, Host-guest antenna materials, Angewandte Chemie Internationl Edition, 2003, 42 (32): 3732~3758
    [128] Ruiz A Z, Li H, Calzaferri G, Organizing supramolecular functional dye-zeolite crystals, Angewandte Chemie Internationl Edition, 2006, 45 (32): 5282~5287
    [129] Li Z, Li S, Yan Y et al, Effects of crystallinity in spin-on pure-silica-zeolite MFI low-dielectric-constant films, Advanced Functional Materials, 2004, 14 (10): 1019~1024
    [130] Li Z, Johnson M C, Yan Y et al. Mechanical and dielectric properties of pure-silica-zeolite low-k materials. Angewandte Chemie Internationl Edition, 2006, 45 (38): 6329~6332
    [131] Chen Z, Holmberg B, Yan Y et al. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chemistry Materials, 2006, 18 (24): 5669~5675
    [132] Wang C, Liu X F, Cui R L et al, In situ evaluation of defect size distribution for supported zeolite, Journal of Membrane Science, 2009, in press.
    [133]徐黎明,氧化锆复合膜的制备与高温稳定性研究:[硕士研究社论文],天津;天津大学,2005,17~32
    [134]胡明亮,Fe-ZSM-5分子筛的制备及其在苯酚完全氧化反应中的应用:[硕士研究社论文],天津;天津大学,2008,25~27
    [135]蒋挺大,壳聚糖,北京:化学工业出版社,2001,16~18
    [136]周明,取向沸石晶体单层和薄膜的制备:[博士研究社论文],天津;天津大学,2008,80~90
    [137] Zhang B Q, Zhou M, Liu X F et al, Monolayer assembly of oriented zeolite crystals onα-Al2O3 supported polymer thin films, Advanced Materials, 2008, 20 (11): 2183~2189
    [138] Yu Y, Wang X, Cao Y et al, Study on the structure and properties of ZrO2 buffer layers on stainless steel by XRD, IR and AES, Applied Surface Science, 2001, 172 (1-2): 260~264
    [139] del Monte F, Larsen W, Mackenzie J D, Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides, Journal of the American Ceramic Society, 2000, 83 (6): 1506~1512
    [140] Parashar V K, Raman V, Bahl O P, Thermal evolution of sol-gel derived zirconia and binary oxides of zitconia-silica, Journal of Materials Science Letters, 1996, 15 (18): 1625~1629
    [141] Kongwudthiti S, Praserthdam P, Tanakulrungsank W et al, The influence of Si–O–Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method, Journal of Materials Processing Technology, 2003, 136 (1-3): 186~189
    [142] Shen J, Wu L, Qiu J et al, Pervaporation separation of water/isopropanol mixtures through crosslinked carboxymethyl chitosan/polysulfone hollow-fiber composite membranes, Journal of Applied Polymer Science, 2007, 103 (3): 1959~1965
    [143] Christy A A, Ozaki Y, Gregoriou V G, Modern fourier transform infrared spectroscopy, Amsterdam: Elsevier, 2001, Chapter 3~8
    [144] Yoon K B, Organization of zeolite microcrystals for production of functional materials, Accounts of Chemical Research, 2007, 40 (1): 29~40
    [145]陈宗琪,胶体与界面化学,北京:高等教育出版设,2001,101~115
    [146] Hemminger W, Sarge S M, Brown M E, Handbook of Thermal Analysis and Calorimetry, Vol. 1: Principles and Practice, Amsterdam: Elsevier, 1998, Chapter 1
    [147] Szostak R, Molecular Sieves: Principles of Synthesis and Identification (2nd Ed.), London: Blackie Academic and Proffessional, 1998, 234~312
    [148] Bordiga S, Buzzoni R, Geobaldo F et al, Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods, Journal of Catalysis, 1996, 158 (2): 486~501
    [149] Ribera A, Arends I W C E, de Vries S et al, Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O, Journal of Catalysis, 2000, 195 (2): 287~297
    [150] Malero J A, Calleja G, Martinez F et al, Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: Role of iron species in Fenton-like processes, Microporous and Mesoporous Materials, 2004, 74 (1-3): 11~21
    [151] Goldfarb D, Bernardo M, Strohmaier K G et al, Characterization of Iron in Zeolites by X-band and Q-Band ESR, Pulsed ESR, and UV-Visible Spectroscopies, Journal of the American Chemical Society, 1994, 116 (14): 6344~6353
    [152] Liu Q, Noble R D, Falconer J L et al, Organics/water separation by pervaporation with a zeolite membrane, Journal of Membrane Science, 1996, 117 (1-2): 163~174
    [153] Yang J Z, Liu Q L, Wang H T, Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation, Journal of Membrane Science, 2007, 291 (1-2): 1~9
    [154] Li S G, Tuan V A, Noble R D et al, ZSM-11 membranes: Characterization and pervaporation performance, AIChE Journal, 2002, 48 (2): 269~278
    [155]刘旭光,郎林,张宝泉等,一种低温煅烧脱除分子筛模板剂的方法,中国专利:200810151236.X,2008.
    [156] Leland M V, A review of pervaporation for product recovery from biomass, Journal of Chemical Technology and Biotechnology, 2005, 80 (6): 603~629
    [157] Nomura M, Bin T, Nakao S, Selective ethanol extraction from fermentation broth using a silicalite membrane, Separation and Purification Technology, 2002, 27 (1): 59~66
    [158] Lin X, Chen X, Kita H et al, Synthesis of silicalite tubular membranes by in situ crystallization, AIChE Journal, 2003, 49 (1): 237~247
    [159] Matsuda H, Yanagishita H, Negishi H et al, Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating, Journal of Membrane Science, 2002, 210 (2): 433~437
    [160] Sano T, Yanagishita H, Kiyozumi Y et al, Separation of ethanol–water mixture by silicalite membrane on pervaporation, Journal of Membrane Science, 1994, 95 (3): 221~228
    [161] Lin X, Kita H, Okamoto K, A novel method for the synthesis of high performance silicalite membranes, Chemical Communications, 2000, 19: 1889~ 1890
    [162] Lin X, Kita H, Okamoto K, Silicalite membrane preparation, characterization, and separation performance, Industrial & Engineering Chemistry Research, 2001, 40 (19): 4069~4078
    [163] Tuan V A, Li S G, Falconer J L et al, Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes, Journal of Membrane Science, 2002, 196 (1): 111~123
    [164] Bowen T C, Kalipcilar H, Falconer J L et al, Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports, Journal of Membrane Science, 2003, 215 (1-2): 235~247
    [165] Dixit S, Crain J, Poon W C K et al, Molecular segregation observed in a concentrated alcohol–water solution, Nature, 2002, 416 (6883) 829~832
    [166] Wakisaka A, Komatsu S, Usui Y, Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: Preferential solvation in water-alcohol mixtures, Journal of Molecular Liquids, 2001, 90 (1-3): 175~184.
    [167] Franks F, Water-A Comprehensive Treatise, Berlin: Springer, 1979, Vol. 2.
    [168] Jia W, Murad S, Molecular dynamics simulation of pervaporation in zeolite membranes, Molecular Physics, 2006, 104 (19) 3033~3043
    [169] Adna?evi? B, Mojovi? Z, Rabi A A, The kinetics of ethanol adsorption from the aqueous phase onto zeolite NaZSM-5, Adsorption, 2008, 14 (1): 123~131
    [170] From Wikipedia (a free encyclopedia) at http://en.wikipedia.org/wiki/Diphenol
    [171] Tang H L, Ren Y, Yue B et al, Cu-incorporated mesoporous materials: Synthesis, characterization and catalytic activity in phenol hydroxylation, Journal of Molecular Catalysis A, 2006, 260 (1-2) 121~127
    [172] Esposito A, Taramasso M, Neri C, Hydroxylating aromatic hydrocarbons, US Patent, 1983, 4396783
    [173] Liu M, Guo X W, Wang X S, Highly effective phenol hydroxylation over Ti-ZSM-5 catalyst prepared using B-ZSM-5 as precursor, Chinese Journal of Catalysis, 2004, 25 (3): 169~170
    [174] Rakshe B, Ramaswamy V, Hegde S G et al, Crystalline, microporous zirconium silicates with MFI structure, Catalysis Letters, 1997, 45 (1-2) 41~50
    [175] Reddy J S, Kumar R, Ratnasamy P, Titanium silicalite-2: Synthesis, characteri- zation and catalytic properties, Applied Catalysis, 1990, 58 (1): L1~L4
    [176] Camblor M A, Corma A, Martinez A et al, Synthesis of a titaniumsilico- aluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules, Chemical Communications, 1992, 8: 589~590
    [177] Liu H, Lu G Z, Guo Y L et al, Synthesis of framework-substituted Fe-HMS and its catalytic performance for phenol hydroxylation, Nanotechnology, 2006, 17 (4): 997~1003
    [178] van der Pol A J H P, Verduyn A J, van Hooff J H C, Why are some titanium silicalite-1 samples active and others not? Applied Catalysis A, 1992, 92 (2): 113~130
    [179] Wilkenhoner U, Langhendries G, van Laar F, Influence of pore and crystal size of crystalline titanosilicates on phenol hydroxylation in different solvents, Journal of Catalysis, 2001, 203 (1): 201~212
    [180] Dubbeldam D, Beerdsen E, Calero S et al, Molecular path control in zeolite membranes, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (35): 12317~12320
    [181] Fajerwerg K, Debellefontaine H, Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst, Applied Catalysis B, 1996, 10 (4): L229~L235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700