用户名: 密码: 验证码:
基于大磨粒金刚石砂轮的光学玻璃高效精密磨削技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学玻璃的高精度、高效率磨削加工已经成为国家光学工业以及国家重大工程项目比如“神光Ⅲ”的重要发展方向。目前,光学玻璃的精密超精密磨削主要采用细磨粒金刚石砂轮(树脂基和金属基)进行,但是频繁的修整过程大大降低了加工效率。而大磨粒金刚石砂轮的耐磨损能力强,加工工件的面形精度高,磨削比值较大,但其高效精密的修整是实现精密磨削的关键技术。本课题采用大磨粒电镀金刚石砂轮,以BK7、熔凝石英、熔融石英光学玻璃为加工对象,为实现高精度、高效率加工,主要进行了以下研究工作:
     通过单颗粒金刚石刻划BK7光学玻璃实验,对尖锐金刚石与钝化金刚石的磨损状态以及工件表面塑性流动的情况进行分析,并且根据测得的法向磨削力对平面磨削后玻璃的机械残余应力进行仿真分析。结果表明,与尖锐磨粒相比,钝化磨粒具有更强的耐磨损能力,加工玻璃表面产生塑性流动的区域面积更大;在塑性域去除条件下,大磨粒砂轮磨削加工后工件表层的机械残余应力值更低。该研究为大磨粒金刚石砂轮在光学玻璃精密加工领域的应用奠定了理论基础。
     提出了适用于大磨粒金刚石砂轮的高效精密修整方法,并利用金刚石表面微观磨损形貌及拉曼光谱分析揭示了修整的机理。首先,通过仿真分析选用Cr12钢对电镀金刚石砂轮进行干磨粗修整,修整区域聚集的热量加快了金刚石磨损速度,使砂轮圆跳动误差快速收敛至10μm以内。粗修整之后金刚石表面有石墨和C60生成,其磨损形式主要表现为钝化磨损、氧化及扩散磨损,并伴有少量的微破碎。其次,采用杯形金刚石滚轮对砂轮进行精修整,注入的冷却液减小了砂轮的热变形量,磨粒磨损形式主要表现为热应力磨耗磨损及少量的微小断裂。最终,砂轮的圆跳动误差及轴向梯度误差分别降低至5μm和3μm以内。
     运用修整后的电镀金刚石砂轮对光学玻璃进行平面磨削实验,结果表明,加工后工件表面粗糙度Ra值低于25nm,亚表层损伤深度约为2μm。然后分别采用电镀金刚石砂轮、细磨粒树脂基及金属基金刚石砂轮,对大尺寸BK7光学玻璃进行磨削。根据加工表面检测结果得知,电镀金刚石砂轮磨削工件的表面粗糙度值高于细磨粒砂轮,但是沿着平行及垂直于磨削轨迹的两个方向,电镀砂轮加工工件表面的PV值分别为2.28μm、4.17μm,都明显低于其他两种细磨粒砂轮。
     基于最新提出的砂轮磨损量测量方法,对大磨粒及细磨粒金刚石砂轮磨削光学玻璃时的磨削比进行比较。结果表明,当平面磨削大尺寸BK7光学玻璃时,它的磨削比高达350左右,为细磨粒砂轮的50-70倍。可见大磨粒金刚石砂轮具有极高的磨削比值,这将降低砂轮磨损率,并大大提高加工效率。
     运用多传感器(力传感器、声发射传感器)监测技术,分析工艺参数及工件表面质量对于作用力及声发射信号的映射关系。结果表明,材料硬度值、单颗磨粒未变形切屑厚度以及砂轮-工件接触面积越大,法向磨削力就越高;材料塑性去除能力及砂轮相对于工件的加载速度越大,声发射信号就越强。另外,采用小波包变换技术,提取对应于砂轮磨损的频段信号,得出修整及磨削过程中声发射信号特征的阈值判据,为实现砂轮修整及磨削加工的监测提供了技术支撑。
High-precision and high-efficiency grinding of optical glasses has become animportant development orientation for the national optical industry and major projects,such as "Shenguang Ⅲ". Generally, fine-grained diamond wheels (resin/metal bonded)have been used for precision/ultra-precision grinding of optical glasses. But the frequentwheel truing process greatly reduces the machining efficiency. Coarse-grained diamondwheels can implement a better surface accuracy machining with the greater abrasionresistance and the larger grinding ratio. However, efficient precision truing is verycritical to achieve precision grinding. In this paper, the coarse-grained electroplateddiamond wheel is used to grind BK7, fused quartz, fused silica glasses. In order torealize the high-precision and high-efficiency machining, the research works are mainlycarried out as following:
     By single diamond grit scratching test for BK7optical glasses, wear state of thesharp and passivated diamond grits and plastic flow on the workpiece surface wereanalyzed. According to the measured normal grinding forces, the mechanical residualstress of the ground BK7glasses was simulated. The results showed that compared withthe sharp grain, the passivated grain had a greater abrasion resistance, producing alarger area of plastic flow region. And under the premise of plastic removal mode, withthe coarse-grained diamond wheels, the mechanical residual stress of the ground opticalglasses surface was lower. These results lay a theoretical foundation for the applicationof the coarse-grained diamond wheels in the field of precision grinding optical glasses.
     The efficient precision truing method for coarse-grained diamond wheels wasproposed, and the abrasive wear morphology and Raman spectra analysis revealed thetruing mechanism. Firstly, according to the simulation results, Cr12steel was chosen forrough truing of the electroplated diamond wheel, with no coolant. The gathering heatspeeded up the diamond wear rate, making the wheel run-out error quickly reduced tobelow10μm. Graphite and C60generated on the wheel surface, as well as the diamondabrasives were worn in the form of passivation, oxidation and diffusion wear, with lightmicro-broken. Secondly, the cup-shaped diamond wheel was applied to precision truingof the electroplated diamond wheel. The injecting cooling liquid reduced the wheelthermal deformation. The abrasives were worn mainly in the form of abrasion wear dueto thermal stress, incidentally with a little micro fracture. Eventually, the wheel run-outerror and the axial gradient error could respectively drop to within5μm and3μm.
     Optical glasses were surface ground by the trued electroplated diamond wheel. Itwas found that the ground surface roughness Ra value was less than25nm, and sub- surface crack depth was about2μm. Then, the electroplated diamond wheel, thefine-grained resin bonded and metal bonded diamond wheels were respectively used togrind large-sized BK7glasses. The workpiece quality inspection results showed that forthe electroplated diamond wheel, the ground surface roughness was the highest.However the ground PV values were respectively2.28μm,4.17μm parallel andperpendicular to the direction of grinding traces, significantly less than the other twofine-grained wheels.
     Based on the newly proposed measurement method for wheel wear volume, thegrinding ratio of coarse-grained and fine-grained diamond wheels was compared. Theresults showed that during grinding large-sized BK7glasses using the coarse-graineddiamond wheel, the grinding ratio was up to about350, being50-70times higher thanfine-grained diamond wheels. Evidently the coarse-grained diamond wheel wasprovided with extremely high grinding ratio, which helped to reduce the wheel wear rate,and greatly improve the processing efficiency.
     With the multi-sensors (force sensor and acoustic emission sensor) integratedmonitoring technology, the impact of the machining parameters and ground quality onthe force and acoustic emission (AE) signals were investigated. Results showed that, thehigher material hardness, single grit un-deformed chip thickness and the wheel-workpiece contact area were, the greater normal grinding force was. And when theductile removal capacity and the wheel loading velocity relative to workpiece weregreater, AE signal was stronger. In addition, wavelet packet transform method was toextraction frequency band signal corresponding to the wheel wear. Consequently, duringthe truing and grinding process, the solved AE signal characteristics threshold couldprovide technical support for achieving the purpose of monitoring wheel dressing andgrinding.
引文
[1]王耀祥.光学玻璃的发展及其应用[J].应用光学,2005,26(5):61-66.
    [2] Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision Grinding[J]. CIRPAnnals-Manufacturing Technology,2010,59:652-671.
    [3] Eda H, Yamamoto Y, Akiyama T, et al. Development of Multi-purpose Ductile-Regime Machining System for Ceramics and Glasses[J]. Journal of the JapanSociety for Precision Engineering,1996,62(2):236-241.
    [4] Namba Y, Abe M, Kobayashi A. Ultra-precision Grinding of Optical Glasses toProduce Super-smooth Surface[J]. CIRP Annals-Manufacturing Technology,1993,42(1):417-420.
    [5]李伯民,赵波,李清.磨料、磨具与磨削技术[M].化学工业出版社,2010.
    [6]李力均,傅杰才.磨削原理[M].湖南大学出版社,1988:56-58.
    [7]李伯民,赵波.实用磨削技术[M].机械工业出版社,1996.
    [8] Kern D. Face Grinding of Optical Glass with Diamond Cup Wheels [D]. GermanPh. D. Thesis, Technical University Brunswick,1969.
    [9] Pahlitzsch G, B ckem J. Influence of Setting Variables in the Surface Grinding ofOptical Glasses with Diamond Cup Wheels[J]. Industrial Diamond Review,1972,(7):138-142.
    [10]Pahlitzsch G, B ckem J. Grindability for Surface Grinding of Optical Glass withDiamond Cup Wheels[J]. Industrial Diamond Review,1973,(7):157–167.
    [11]Pahlitzsch G, B ckem J. Flat Grinding of Optical Glass with Diamond CupGrinding Wheels with Different Binding. Industrial Diamond Review,1973,(7):200-207.
    [12]Bifano T G, Dow T A, Scattergood R O. Ductile-Regime Grinding of BrittleMaterials: Experimental Results and the Development of a Model[C]. Proceedingsof SPIE,1988,(966):108-115.
    [13]Sun X, Stephenson D J, Baldwin A. An Investigation into Parallel and CrossGrinding of BK7Glass[J]. Precision Engineering,2006,(30):145–153
    [14]Namba Y, Abe M, Kobayashi A. Ultraprecision Grinding of Optical Glasses toProduce Super-Smooth Surfaces[J]. CIRP Annals-Manufacturing Technology,1993,42(1):417-420.
    [15]Ball M J, Murphy N A, Shore P. Electrolytically Assisted “Ductile” ModeDiamond Grinding of BK7and SF10Optical Glasses[C]. Proceedings of the SPIE,1991,(1573):30-38.
    [16]Stephenson DJ, Sun X, Zervos C. A Study on ELID Ultra Precision Grinding ofOptical Glass with Acoustic Emission[J]. International Journal of Machine Toolsand Manufacturing,2006,(46):1053-1063.
    [17]Yin S H, Ohmori H, Uehara Y, et al. ELID Grinding Characteristics of Glass-Ceramic Materials[J]. International Journal of Machine Tools and Manufacture,2009,49:333-338.
    [18]Yin S H, Ohmori H, Uehara Y, et al. Ultra-precision Finishing Process IntegratedELID-grinding and MRF for BK7Glass[C]. Proceedings of SPIE. The InternationalSociety for Optical Engineering,2009,72-82.
    [19]仇中军,张飞虎,谢大纲.应用ELID技术进行微晶玻璃超精密磨削[J].金刚石与磨料磨具工程,2012,1(127):37-39.
    [20]Zhao Q L, Liang Y C, Stephenson D J, et al. Surface and Subsurface Integrity inDiamond Grinding of Optical Glasses on Tetraform‘C’[J]. International Journal ofMachine Tools&Manufacture,2007,47(14):2091-2097.
    [21]Zhou L B, Shiina T, Qiu Z J, et al. Research on Chemo-mechanical Grinding ofLarge Size Quartz Glass Substrate[J]. Precision Engineering,2009,33(4):499-504.
    [22]Yasui H, Sawa T. An Investigation on Ultra-smoothness Grinding Conditions ofSilicon Carbide Ceramic Using Coarse Grain Diamond Wheel[C]. The JapanSociety of Mechanical Engineers, Japan,2003,295-296.
    [23]Yasui H, Sawa T. Ductile-mode Grinding of Fine Ceramics Using Coarse GrainSize Diamond Wheel-Inflluence of Grinding Fluid on the Ductile-mode GrindingCondition[C]. The Japan Society of Mechanical Engineers, Japan,2002,77-78.
    [24]Yasui H, Matsunaga K, Tsurusaki M, et al. Ductile-mode High SmoothnessGrinding of Fine Ceramics by Diamond Wheel of Coarse Grain Size (2nd Report)-Influence of Wheel Speed on Ductile-mode Griding of Fine Ceramics[J]. The JapanSociety for Precision Engineering,2003,69:1595-1599.
    [25]Yasui H, Arino Y, Matsunaga K. Ductile-mode High Smoothness Grinding of FineCeramics by Diamond Wheel of Coarse Grain Size (1st Report)-Ductile-modeGrinding of Fine Ceramics by Metal Bond Diamond Wheel of Grain Size of#140[J]. The Japan Society for Precision Engineering,1997,63:1270-1274.
    [26]Yasui H, Yamazaki G. Possibility of Ultra-Smoothness Grinding of Fine CeramicsUsing a Coarse Grain Size Diamond Wheel[J].The Japan Society for PrecisionEngineering,2003,69:115-119
    [27]Brinksmeier E, Rickens K, Grimme D. Ductile Material Removal During GrindingBrittle Materials[J]. Annual Grinding Honing Lapping and Polishing,2001,60:50-67.
    [28]Brinksmeier E, Rickens K, Riemer O, et al. Engineered Diamond Wheels forPrecision Ductile Grinding[J]. Production Engineering,2006,13(2):275-280.
    [29]Heinzel C, Rickens K, Grimme D, et al. Dressing of Coarse-Grained DiamondWheels for Ductile Machining of Brittle Materials[M]. Springer,2004:305-307.
    [30]Rickens K. Deterministic Grinding of Optical Glasses with Coarse DiamondGrinding Wheels[D]. German Ph. D. Thesis, University Bremen,2010.
    [31]H wang T W, Evans C J, Malkin S. An Investigation of High Speed Grinding withElectroplated Diamond Wheels[J]. Annals of the ClRP,2000,49(1):245-248.
    [32]Chen J Y, Shen J Y, Huang H, et al. Grinding Characteristics in High SpeedGrinding of Engineering Ceramics with Brazed Diamond Wheels[J]. Journal ofMaterials Processing Technology,2010,(210):899-906.
    [33]张宾,沈剑云,徐西鹏.钎焊金刚石砂轮修整实验研究[J].金刚石与磨料磨具工程,2007,12(6):19-22.
    [34]Zhang B, Xu H J, Fu Y C, et al. Experiment Research on Grinding of Optical Glasswith Indigenously Developed Monolayer Brazed Diamond Grinding Wheel[J].Advanced Materials Research,2010,(136):279-283.
    [35]Li S Y, Wang Z, Wu Y L. Relationship Between Subsurface Damage and SurfaceRoughness of Optical Materials in Grinding and Lapping Processes[J]. Journal ofMaterials Processing Technology,2008,(205):34-41.
    [36]Zhang F H, Liu L F, Li C H. Experimental Research on Surface Roughness ofUltrasonic Assisted Grinding in Face Grinding Process[J]. Advanced MaterialsResearch,2012,565:154-159.
    [37]Zhao Q L, ChenJ Y, YaoJ. ELID Assisted Grinding of Optical Glass with Fine andCoarse Grained Copper-resin Bonded Diamond Wheels[J]. Advanced MaterialsResearch,2009,76:76-81.
    [38]赵清亮,于光,Brinksmeier E.应用超硬大磨粒金刚石砂轮实现BK7光学玻璃的超精密磨削[J].机械工程学报.2006,42(10):95-101.
    [39]李孟源等.声发射检测及信号处理[M].科学出版社,2010:23-27.
    [40]Hundt W, Leuenberger D, Rehsteiner F. An Approach to Monitoring of theGrinding Process Using Acousitic Emission (AE) Technique[J]. Annals of theCIRP,1994,43(1):295-298.
    [41]穆雷,魏杰等.声发射(AE)技术及其特征参数在机械工程领域的研究应用[J].精密制造与自动化,2005,3:21-25.
    [42]Dornfeld D, Cai H G. An Investigation of Grinding and Wheel Loading UsingAcoustic Emission[J]. Transactions of the ASME,“Journal of Engineering forIndustry”,1984,106:28-33.
    [43]Stephenson D J, Sun X, Zervos C. A Study on ELID Ultra Precision Grinding ofOptical Glass with Acoustic Emission[J]. International Journal of Machine Toolsand Manufacturing,2006,46:1053-1063.
    [44]Griffin J, Chen X. Characteristics of the Acoustic Emission during HorizontalSingle Grit Scratch Tests: Part1Characteristics and Identification[J]. InternationalJournal of Abrasive Technology,2009,2(1):25-42.
    [45]Griffin J, Chen X. Characteristics of the Acoustic Emission during HorizontalSingle Grit Scratch Tests: Part2Classification and Grinding Tests[J]. InternationalJournal of Abrasive Technology,2009,2(1):43-59.
    [46]Chen X, Griffin J. Grinding Acoustic Emission Classification in Terms ofMechanical Behaviours[J]. Key Engineering Materials,2007,329:15-20.
    [47]Chen X, Griffin J, Liu Q. Mechanical and Thermal Behaviours of GrindingAcoustic Emission[J]. International Journal of Manufacturing Technology andManagement,2007,12(1-3):184-199.
    [48]Chen X, Mohamed A, Oluwajobi A. Investigation of AE Features in Grinding[J].Journal of Physics: Conference Series,2012,364(1):1-9.
    [49]Liu Q, Chen X, Gindy N. Investigation of Acoustic Emission Signals under aSimulative Environment of Grinding Burn[J]. International Journal of MachineTools and Manufacture,2006,46(3-4):284-292.
    [50]Liu Q, Chen X, Gindy N. Fuzzy Pattern Recognition of AE Signals for GrindingBurn[J]. International Journal of Machine Tools and Manufacture,2005,45(7-8):811-818.
    [51]Chen X, Liu Q, Gindy N. Signal Analysis of Acoustic Emission for Laser ImitatingGrinding Burn[J]. Key Engineering Materials,2005,(291-292):91-96.
    [52]Mohammed A, Folkes J, Chen X. Detection of Grinding Temperatures using LaserIrradiation and Acoustic Emission Sensing Technique[J]. Materials and Manufactu-ring Processes,2012,27(4):395-400.
    [53]Chen X, Mohamed A, Folkes J. Grinding Monitoring Through Thermal AcousticEmission Signatures[J]. Advanced Materials Research,2011,325:287-293.
    [54]Guo L, Sheng X M, Chen X. Investigation of Acoustic Emission Signals FeaturesUnder a Simulative Environment of Grinding Burn[J]. Journal of Hunan UniversityNatural Sciences,2010,37(1):155-159.
    [55]Griffin J M, Chen X. Multiple Classification of the Acoustic Emission SignalsExtracted During Burn and Chatter Anomalies Using Genetic Programming[J].International Journal of Advanced Manufacturing Technology,2009,45(11-12):1152-1168.
    [56]Hwang T W, Whitenton E P, Hsu N N, et al. Acoustic Emission Monitoring ofHigh Speed Grinding of Silicon Nitride[J]. Ultrasonics,2000,38:614–619.
    [57]Amin AM, Maksoud T M. Monitoring of the Condition of Diamond GrindingWheels Using Acoustic Emission Technique[J]. Journal of Materials ProcessingTechnology,2000,101(1):292-297.
    [58]穆玉海,袁哲俊.声发射监测技术在磨削加工中的应用[J].磨料模具与磨削,1994,2(80):19-22.
    [59]李波,银翔,郭力.工程陶瓷高效深磨声发射实验研究[J].精密制造与自动化,2007,1:14-21.
    [60]郭力.工程陶瓷高效深切磨削加工中声发射的实验研究[J].湖南文理学院学报,2008,20(2):78-84.
    [61]巩亚东,王宛山.磨削加工的声发射信号分析[J].东北大学学报,1998,2:72-74.
    [62]刘贵杰,巩亚东,王宛山. AE信号归原处理法在砂轮磨钝监测中的应用[J].机械制造,2002,7:59-60.
    [63]刘贵杰,唐婷,刘立静,等.基于声发射信号的砂轮钝化在线检测方法[J].仪器仪表学报,2005,26(8):13-14.
    [64]刘贵杰,巩亚东,王宛山.基于神经网络的磨削砂轮状态的在线监测[J].东北大学学报,2002,23(10):984-987.
    [65]吕洋,巩亚东,王宛山.基于多传感器融合的砂轮状态监测方法研究[J].机械设计与制造,2001,6:90-91.
    [66]巩亚东,吕洋,王宛山,朱晓峰.基于多传感器融合的磨削砂轮钝化的智能监测[J].东北大学学报,2003,24(3):248-250.
    [67]刘贵杰,巩亚东,王宛山.基于小波网络的砂轮状态监测方法[J].金刚石与磨料磨具工程,2003,3:21-24.
    [68]吴晓京,吴子京,蒋宾.纳米压痕试验在纳米材料研究中的应用[J].复旦学报,2008,1:1-7.
    [69]Schulman J, Fang T, Lambropoulos J. Brittleness: Ductility Database for OpticalGlasses[R]. Center for Optics Manufacturing, Rochester,1996.
    [70]Jones J T. Engineered Materials Handbook[M]. Mich: ASM International.Handbook Committee,1991.
    [71]Oliver W C, Pharr G M. An Improved Technique for Determining Hardness andElastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. Journal of Materials Research,1992,7:1564-1583.
    [72]黄勇力,章莎,赵冠湘,等.用纳米压痕法表征薄膜的应力-应变关系[J].湘潭大学自然科学学报,2006,28(2):46-51.
    [73]李伯民,赵波.现代磨削技术[M].机械工业出版社,2004.
    [74]Dao M, Chollacoop K J. Computational Modeling of the Forwad and ReverseProblems in Instrumented Sharp Indentation[J]. Acta Materialia,2001,49:3899-3918.
    [75]尹韶辉,曾宪良,范玉峰,等. ELID镜面磨削加工技术研究进展[J].中国机械工程,2010,21(6):750-755.
    [76]张飞虎,康桂文,罗辉,等.金属基圆弧成形砂轮的电火花修整[J].航空精密制造技术,2005,41(6):1-7.
    [77]陈根余,陈冲,卜纯,等.激光修整青铜金刚石砂轮石墨变质层的研究[J].中国激光,2012,39(3):1-7.
    [78]Paul E, Evans C J. Mangamelli A, et al. Chemical Aspects of Tool Wear in SinglePoint Diamond Turning[C]. Precision Engineering,1996,18(1):4-19.
    [79]Kinoshita N. Diamond Tool[M]. Nikkei Technical Books, Ltd., Osaka,1987:91-188.
    [80]Kitagawa T, Maekawa K, Shirakhashi T, et al. Analytical Prediction of Flank Wearof Carbide Tools in Turning Plain Carbon Steels Part1. Characteristic equation offlank wear[J]. Bulletin of the Japan Society of Precision Engineering,1988,22(4):263-269.
    [81]Kitagawa T, Maekawa K, Shirakhashi T, et al. Analytical Prediction of Flank Wearof Carbide Tools in Turning Plain Carbon Steels Part2. Prediction of Flank Wear[J]. Bulletin of the Japan Society of Precision Engineering,1989,23(2):126-134.
    [82]Thornton A G, Wilks J. Clean Surface Reactions Between Diamond and Steel[J].Nature,1978,(274):792-793.
    [83]Davis J R. Metals Handbook [M]. American Society for Metals,1970.
    [84]Verkerk J, Pekelharing A J. The Influence of the Ressing Operation on Productivityin Precision Grinding[J]. Annals of the CIRP,1979,28(2):487-495.
    [85]费拉里,罗伯逊.碳材料的拉曼光谱-从碳纳米管到金刚石[M].化学工业出版社,2007:156-157.
    [86]Jackson M J. Modelling of Fracture Wear in Vitrified CBN Grinding Wheels[J].Journal of Achivements in Materials and Manufacturing Engineering,2007,24(1):230-236.
    [87]王宗英,李力.现代陶瓷氮化硅断裂韧性强度测量计算-直接压痕法[J].沈阳建筑工程学院学报,1991,7(4):403-408.
    [88]Jahanmir S, Ramulu M, Koshi P. Machining of Ceramics and Composites[M].Marcel Dekker Inc,1999,150-160.
    [89]Matsuno Y, Yamada H, Harada M, et al. Microtopography of the Grinding WheelSurface with SEM[J]. Annals of the CIRP,1975,(24):237-242.
    [90]Sutowski P, Plichta S. An Investigation of the Grinding Wheel Wear with the Useof Root-Mean-Square Value of Acoustic Emission[J]. Archives of Civil and Mech-anical Engineering,2006,5(1):87-98.
    [91]Weingaertner W L, Boaron A. A Quick-test Method to Determine the GrindingWheel Topography Based on Acoustic Emission[J]. Advanced Materials Research2011,(325):282-286.
    [92]Fan K C, Lee M Z, Mou J I. On-Line Non-Contact System for Grinding WheelWear Measurement[J]. The International Journal of Advanced ManufacturingTechnology,2002,19(1):14-22.
    [93]Xie J, Xu J, Tang Y, et al.3D Graphical Evaluation of Micron-scale ProtrusionTopography of Diamond Grinding Wheel[J]. International Journal of MachineTools and Manufacture,2008,(48):1254-1260.
    [94]Nguyen A T, Butler D L. Correlation of Grinding Wheel Topography and GrindingPerformance: a Study From a Viewpoint of Three-dimensional Surface Characteri-sation[J]. Journal of Materials Processing Technology,2008(208):14-23.
    [95]Xie J, Wei F, Zheng J H, et al.3D Laser Investigation on Micron-scale GrainProtrusion Topography of Truncated Diamond Grinding Wheel for PrecisionGrinding Performance[J]. International Journal of Machine Tools and Manufacture,2011,(51):411-419.
    [96]Yan L, Rong YM, Feng J, et al. Three-dimension Surface Characterization ofGrinding Wheel Using White Light Interferometer[J]. International Journal ofAdvanced Manufacturing Technology,2011,(55):133-141.
    [97]Zhang X, Xu H, Fu Y. Measurement Technique of Grinding Wheel TopographyBased on Binocular Stereo Vision[J]. Materials Science Forum,2006,(532):1132-1135.
    [98]Lim H S, Fathima K, Senthil K A, et al. A Fundamental Study on the Mechanism ofElectrolytic In-process Dressing (ELID) grinding[J]. International of MachineTools and Manufacture,2002,42(8):935-943.
    [99]Fine K R, Garbe R, Gip T, et al. Non-destructive Real Time Direct Measurement ofSubsurface Damage[J]. Proceedings of SPIE-The International Society for OpticalEngineering,2005,(5799):105-110.
    [100]Miller P E, Suratwala T I, Wong L L, et al. The Distribution of Subsurface Damagein Fused Silica[J]. Proceedings of SPIE-The International Society for OpticalEngineering,2005,5991:1-25.
    [101]Lawn B. Fracture of Brittle Solids[M]. Second Edition, Cambridge University Press,1993.
    [102]王春慧.亚表层损伤检测技术研究[D].西安工业大学硕士论文,2010:2~3.
    [103]李改灵,吴宇列,王卓,等.光学材料亚表面损伤深度破坏性测量技术的实验研究[J].航空精密制造技术,2006,42(6):19-22.
    [104]Arai S, Corbett J, Whatmore R W, et al. Surface Integrity Control of PiezoelectricMaterials in Ultra Precision Grinding-based on Tooling Design Analysis[C].Conference Proceedings of the Fourth International Conference and Sixth AnnualGeneral Meeting of the European Society for Precision Engineering andNanotechnology, Glasgow, May-June,2004,201-202.
    [105]Lee K M, Hsu M R, Chou J H, et al. Improved Differential Evolution Approach forOptimization of Surface Grinding Process[J]. Expert Systemswith Applications,2011,38(5):5680-5686.
    [106]Krajnik P, Kopa J. Adequacy of Matrix Experiment in Grinding[J]. Journal ofMaterials Processing Technology,2004,(157-158):566-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700