用户名: 密码: 验证码:
球轴承套圈沟道ELID成形磨削试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球轴承的套圈沟道是滚动轴承的基本工作面,该沟道除了要求具有特殊的材料及热处理性能外,还应具有良好的几何精度及加工精度,而沟道加工质量的好坏将直接影响到轴承的旋转精度和寿命。ELID(Electrolytic in-process dressing)磨削是以电化学加工及电解磨削的原理为基础发展起来的一项磨削新技术,该技术具有加工精度高、加工表面质量好、砂轮廓形保持性好等优点,同时由于采用该技术进行磨削时砂轮锋利且不易堵塞,非常适用于硬脆材料的磨削。本文将ELID技术应用于套圈沟道的超精加工,系统研究了基于工件阴极和氧化膜状态主动控制的ELID磨削机理、圆弧砂轮修整及ELID成形磨削的砂轮耐用度等关键科学问题。在提高沟道的几何精度、改善沟道的表面质量的基础上,旨意降低轴承噪音,提高轴承的承载能力和寿命,本文主要研究的内容有以下几个方面。
     数控改造现有磨床,开发了球轴承套圈沟道的ELID成形磨削系统。该系统包括砂轮整形、砂轮修锐、氧化膜状态的监测和控制及磨削力的监测等四个子系统。
     推导获得了两个沿支承方向的单向力与法向和切向磨削力之间的关系式,提出了内圆磨削磨削力的法向力和切向力的监测方法。试验研究指出,该检测方法性能稳定且可靠。
     采用基于工件阴极和氧化膜状态主动控制的ELID磨削方法,开展了内圆磨削试验研究。主要考察了磨削参数和电解参数对磨削力、材料去除率、加工表面粗糙度和波纹度的影响规律。研究结果表明,随着轴向进给量和电解电流的增加,磨削力增大;随着磨粒粒度的增加,磨削力下降;随着电解电流的增加,材料去除率增大;随着电解电流和磨粒粒度的增加,加工表面粗糙度和波纹度降低。
     在分析ELID成形磨削中砂轮廓形变化规律的基础上,提出了工件的沟形偏差可良好衡量砂轮廓形变化程度这一重要结论。以该结论为基础,研究了进给速度对砂轮耐用度的影响规律,结果表明随着进给速度的增加,砂轮耐用度降低。此外,研究了磨削用量对表面粗糙度和波纹度的影响规律。结果表明,随着砂轮转速和工件转速的增加,表面粗糙度减小,波纹度增大;随着进给速度的增加,表面粗糙度和波纹度均增大。
The ball bearing raceway is a fundamental area of rolling bearing. Aiming for themachining of ring raceway of ball bearing, it not only has a need for materials andheat treatment, but also has a need for geometrical precision and machining precision.So the machining quality of ring raceway of ball bearing will directly affect rotaryprecision and the life of bearing. ELID (electrolytic in-process dressing) is a newgrinding technology based on principles of electrochemical etching and electrolyticgrinding. It not only has high precision, sound quality, and high shaping precision, butalso has wheel sharpness and high resistance to block. Thus, it is used in the grindingprocess of hard brittle material. This dissertation investigated critical scientific issuesduring a grinding principle of shaping machining based on a state control of oxidelayer without an electrode, wheel life, and forming wheel dressing. And it canimprove geometrical precision and machining precision for the machining quality ofring raceway of ball bearing with ELID grinding technology to reduce noise, improveload capacity and life of the ball bearing. The specific contents are as follows.
     Based on a numerical control machine tools, a grinding system for studyingforming machining a ring raceway of ball bearing with ELID process was developed.This system consists of wheel truing, wheel dressing, monitoring and controlling foroxide layer state, and monitoring for grinding force.
     In order to more easily research ELID internal cylindrical grinding process, aforce measurement device with two unidirectional force sensors was developed. Andtwo unidirectional force sensors have been used to detect the grinding forces in thegrinding process to analyze a relationship between normal and tangential grindingforce and force of two one-way. Based on the above analysis, the theoretical formulasof grinding force were derived. The results demonstrate that the system was reliableand stable.
     The ELID grinding strategy based on the state control of oxide layer which awork piece acting as the dressing electrode was developed, avoiding the destruction ofthe quality of the machined surface in the grinding process caused by dulled wheel.The influences of the grinding and electrical parameters on force characteristics,material removal rate, surface roughness and surface waviness of internal machiningof bearing steel were investigated in detail. The experimental results show that thegrinding forces increase with increasing feed rate and dressing current, and the normal and tangential forces increase with decrease of wheel grit size. The material removalrate increases as the dressing current increases. Surface roughness and surfacewaviness increase as the dressing current increases. The experimental results alsoshow that surface roughness and surface waviness increase with increasing wheel gritsize.
     According to a change rule of wheel shape in ELID grinding process,groove-shaped deviation of workpiece was used to be an index for wheel wear. Anexperiment of the shape accuracy of a machined workpiece was carried out on anELID CNC grinding machine, The experimental results show that grinding wheeldurability decreases as feed rate increases. Furthermore, the influences of the grindingparameters on surface roughness and surface waviness were investigated in detail.The test results show that surface roughness decreases with increasing grinding wheelspeed and workpiece speed, and increases with increasing feed rate. And surfacewaviness increases with increasing grinding wheel speed, workpiece speed, and feedrate.
引文
[1]李兴林,张仰平,曹茂来等,滚动轴承故障监测诊断技术应用进展,工程与试验,2009,49(4):1~5,42.
    [2]铮译,球轴承套圈毛坯沟位置不对称量对其超精研加工时的切除量和质量的影响,国外轴承,1981,(4):43~47.
    [3]杨耀青,深沟球轴承径向游隙的控制,轴承,2003,(11):12~14.
    [4]中国轴承工业协会,人力资源职工教育工作委员会,轴承套圈磨工工艺,河南郑州:河南人民出版社,2006.410~415.
    [5]张光宙,超精密级微型轴承沟道超精加工,轴承,1999,(9):7~13.
    [6]刘桥方,轴承套圈磨工工艺,河南郑州,河南人民出版社,2006.39~351.
    [7] Ohmori H, Takahashi I, Bandyopadhyay B P. Ultra-precision grinding ofstructural ceramics by electrolytic in-process dressing (ELID) grinding. Journalof Materials Processing Technology,1996,57:272~277.
    [8] Bandyopadhyay B P, Ohmori H, Takahashi I. Efficient and stable grinding ofceramics by electrolytic in-process dressing (ELID). Journal of MaterialsProcessing Technology,1997,66(1-3):18~24.
    [9] Dai Y, Ohmori H, Lin W, et al.. A Fundamental Study on Optimal Oxide Layer ofFine Diamond Wheels during ELID Grinding Process. Key EngineeringMaterials,2006,304-305:176~180.
    [10] Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers withElectrolytic in-process dressing. Ann. CIRP,1990,39(1):329~332.
    [11]夏新涛,马伟,颉谭成等,滚动轴承制造工艺学,北京:机械工业出版社,2007.252~258.
    [12]李伯民,赵波,实用磨削技术,北京:机械工业出版社,1996.380~390.
    [13]官承准,梁式,磨削表面波纹度的若干影响因素,广西大学学报,1989,(4):39~44.
    [14]曹硕生,赖玉明,熊焕庭,高速低粗糙度外圆切入磨削表面波纹度的试验研究,中国机械工程,1997,8(2):85~87.
    [15]刘寿祥,油石硬度对超精研工艺的影响,轴承,2002,(9):27~28.
    [16]王世锋,球面滚子超精研工艺及装备的研究:[博士学位论文],安徽;合肥工业大学,2004.
    [17]陈毅宜,韩克宪,圆锥滚子轴承内圈滚道凸度超精研分析,轴承,2001,(9):21.
    [18]李春菊,李茹,套圈沟道切入式磨削分析,轴承,1999,(9):20~21.
    [19]刘宏业,夏新涛,李旭东,轴承磨削表面圆度误差的诊断与控制,轴承,2005,3:14~16.
    [20] Ohmori H, Nakagawa T. Analysis of Mirror Surface Generation of Hard andBrittle Materials by ELID (Electronic In-Process Dressing) Grinding withSuperfine Grain Metallic Bond Wheels. Annals of the CIRP,1995,44(1):287~290.
    [21]关佳亮,张代军,王凡,实用新型ELID磨削电源的开发,现代制造工程,2006,6:109~111.
    [22]舒展,脉冲电源改进及ELID磨削技术实验研究:[硕士学位论文],天津;天津大学,2006.
    [23]杨黎健,基于氧化膜状态主动控制的ELID磨削及其应用研究:[博士学位论文],天津;天津大学,2011.
    [24]吴敏镜,金刚石和超硬材料的应用与展望,航空精密制造技术,1999,35(2):1~4.
    [25] Itoh N, Ohmori H, Moriyasu S, et al.. Finishing characteristics of brittlematerials by ELID-lap grinding using metal-resin bonded wheels. InternationalJournal of Machine Tools&Manufacture,1998,38:747~762.
    [26]王平,张飞虎,张春河等,铸铁纤维、铸铁结合剂超硬磨料砂轮在ELID超镜面磨削中的应用,工具技术,1994,28(5):36~38.
    [27] ITOH N, NEMOTO A, KATOH T, et al.. Eco-Friendly ELID Grinding UsingMetal-Free Eectro-Conductive Resinoid Bonded Wheel. JSME InternationalJournal, Series C,2004,47(1):72~78.
    [28] Itoh N, Ohmori H. Decelopment of Metal-free Conductive Bonded DiamondWheel for Environmentally-Friendly Electrolytic In-process Dressing (ELID)Grinding. New Diamond and Frontier Carbon Technology,2004,14(4):227~238.
    [29] Hasegawa Y, Itoh N, Itoh G, et al.. Development of conductive Rubber-BondWheel by ELID Grinding (Nanoprecision ELID Grinding). Proceedings ofInternational Conference on Leading Edge Manufacturing in21st Century,2005:231~236.
    [30]根本昭彦,环保型ELID磨削用RB陶瓷结合剂金刚石砂轮的开发,超硬材料工程,2005,17(4):40~47.
    [31]关佳亮,范晋伟,黄旭东,塑性材料专用ELID磨削金属结合剂砂轮的研制,精密制造与自动化,2004,4:36~38,21.
    [32] Ohmori H, Yamagata Y, Moriyasu S, et al.. Decelopment of large ultraprecisionaspheric optics elid-grinder integrated and computerized:“L-UAOE-GIC”system.Abrasives Magazine,2000,(4-5):31~32,34~36.
    [33] Ohmori H, Lin W, Katahira K, et al.. Developmental History and Variation ofPrecision and Efficient Machining assisted with Electrolytic Process Principleand Applications. The World Advances in ELID-Grinding Technologies–Trendson High Efficiency and Essential Processing, Changsha China,2008.1~5.
    [34] Qian J, Li W, Ohmori H. Precision internal grinding with a metal-bondeddiamond grinding wheel. Journal of Materials Processing Technology,2000,105:80~86.
    [35] Qian J, Ohmori H, Lin W. Internal mirror grinding with a metal/metal-resinbonded abrasive wheel. International Journal of Machine Tools&Manufacture,2001,41:193~208.
    [36] Katahira K, Watamabe Y, Ohmori H, et al.. ELID grinding and tribologicalcharacteristics of TiAlN film. International Journal of Machine Tools&Manufacture,2002,42:1307~1313.
    [37] Qian J, Li W, Ohmori H. Cylindrical grinding of bearing steel with electrolyticin-process dressing. Precision Engineering,2000,24:153~159.
    [38] Ohmori H, Li W, Makinouchi A, et al.. Cylindrical parts by the centerlessgrinding process combined with electro-discharge truing and electrolyticin-process dressing. Journal of Materials Processing Technology,2000,98:322~327.
    [39]关佳亮,郭东明,袁哲俊,ELID镜面磨削中砂轮生产氧化膜特性及其作用的研究,机械工程学报,2000,36(5):89~92.
    [40] Ma B J, Zhu Y Q, Stephenson D J. Experimental Study on the Growth Behaviorsof Oxide Layers in ELID Pre-Dressing Process. Materials Science Forum,2006,532-533:588~591.
    [41]高大晓,ELID磨削砂轮的电火花精密整形与氧化膜状态识别:[博士学位论文],天津;天津大学,2008.
    [42]朱育权,马保吉,Stephenson D.J., ELID超精密磨削砂轮表面氧化膜形成过程的建模和仿真,工具技术,2008,42(5):11~14.
    [43] Fathima K, Senthil Kumar A, Rahman M, et al.. A study on wear mechanism andwear reduction strategies in grinding wheels used for ELID grinding. Wear,2003,254:1247~1255.
    [44] Kato T, Ohmori H, Katahira K, et al.. Friction and Wear Properties of anELID-grinding Wheel based on CCD Microscope Observation. Key EngineeringMaterials,2003,238-239:307~314.
    [45] Kato T, Itoh N, Ohmori H, et al.. Estimation of tribological characteristics ofelectrolyzed oxide layers on ELID-grinding wheel surfaces. Key EngineeringMaterials,2004,257-258:257~262.
    [46] Zhang C, Ohmori H, Marinescu I, et al.. Grinding of Ceramic Coatings with CastIron Bond Diamond Wheels. A Comparative Study: ELID and Rotary Dresser.The International Journal of Advanced Manufacturing Technology,2001,18:545~552.
    [47]朱波,钢结硬质合金及钛合金ELID磨削技术及机理的研究:[博士学位论文],哈尔滨;哈尔滨工业大学,2001.
    [48] Boland R. Computer Control and Process Monitoring of Electrolytic In-ProcessDressing of Metal Bond Fine Diamond Wheels for NIF Optics. Proceedings ofSPIE,1999,3782:61~69.
    [49] Kim H Y, Ahn J H, Seo Y H. Study on the estimation of wheel state inelectrolytic in-process dressing (ELID) grinding. ISIE2001, Pusan, KOREA:1615~1618.
    [50]袁立伟,任成祖,舒展,ELID超精密镜面磨削钝化膜状态变化的研究,航空精密制造技术,2006,42(1):5~8.
    [51] Yang L J, Ren C Z, Jin X M. Experimental study of ELID grinding based on theactive control of oxide layer. Journal of Materials Processing Technology,2010:1748~1753.
    [52] Ren C Z, Guo X J, Yuan L W. A Study on the Mechanism of the ElectrolyticIn-process Dressing (ELID) Grinding Using Molecular Dynamics (MD)&FiniteElement (FE). Key Engineering Materials,2007,329:123~130.
    [53]袁立伟,在线电解修整磨削分子动力学仿真研究:[硕士学位论文],天津;天津大学,2006.
    [54]仲吉武,任成祖,氮化硅材料的ELID精密磨削试验研究,湖南工程学院学报,2008,18(2):26~29.
    [55]金卫东,硬脆材料氮化硅陶瓷的ELID超精密磨削技术研究:[博士学位论文],天津;天津大学,2005.
    [56] Suzuki T, Ohmori H, Dai Y, et al.. Ultraprecision Fabrication of Glass CeramicAspherical Mirrors by ELID-grinding with a Nano-level Positioning HydrostaticDrive System. Key Engineering Materials,2003,238-239:49~52.
    [57] Ohmori H. Ultraprecision grinding of optical materials and components applyingELID (electrolytic in-process dressing). Proceedings of the SPIE-TheInternational Society for Optical Engineering,1995,2576:26~45.
    [58] Ohmori H, Doy T K, Nakagawa T. High-speed, high-quality tinning processes ofGaAs wafers for high-power FETs. Proceedings of the IEEE/CPMT InternationalElectronics Manufacturing Technology (IEMT) Symposium, Japan IEMTSymoposium,1995.373~378.
    [59] Yin S H, Ohmori H, Dai Y T, et al.. ELID grinding characteristics ofglass-ceramic materials. International Journal of Machine Tools and Manufacture,2009,49(3-4):333~338.
    [60]关佳亮,范晋伟,马春敏,ELID磨削技术在硬脆材料精密超精密加工中的应用,北京工业大学学报,2001,27(4):486-488.
    [61]关佳亮,范晋伟,马春敏,ELID精密镜面磨削技术的应用,北京工业大学学报,2001,27(4):420~421,429.
    [62]周曙光,关佳亮,徐中耀,陶瓷喷涂层精密镜面磨削技术的实验研究,航空精密制造技术,2001,37(1):15~21.
    [63]仇中军,张飞虎,谢大纲,应用ELID技术进行微晶玻璃超精密磨削,金刚石与磨料磨具工程,2002:37~39,36.
    [64] Kim J D, Nam S R. A piezoelectrically driven micro-positioning system for theductile-mode grinding of brittle materials. Journal of Mateials ProcessingTechnology,1996,61(3):309~319.
    [65] Iton N, Ohmori H. Grinding characteristics of hard and brittle materials by finegrain lapping wheels with ELID. Journal of Materials Processing Technology,1996,62(4):315~320.
    [66] Bandyopadhyay B P, Ohmori H. The effect of ELID grinding on the flexuralstrength of silcon nitride. International Journal of Machine Tools andManufacture,1999,39(5):839~853.
    [67] Shen J Y, Lin W M, Ohmori H, et al.. Mechanism of surface formation fornatural granite grinding. Key Engineering Materials,2006,304-305:161~165.
    [68]康桂文,栾殿荣,张飞虎,氧化铝陶瓷ELID高效磨削技术的研究,金刚石与磨料磨具工程,2004,1:70~72.
    [69] Zhang C H, Ohmori H, Li W. Small-hole machining of ceramic material withelectrolytic interval-dressing (ELID-II) grinding. Journal of Mateials ProcessingTechnology,2000,105(3):284~293.
    [70]朱波,张飞虎,袁哲俊,低温ELID磨削钛合金磨削力的实验研究,机械工艺师,2000,12:44~45.
    [71] Zhang F H, Qiu Z J, Kang G W, et al.. High efficiency ELID grinding of garnetferrite. Journal of Materials Processing Technology,2002,129,41~44.
    [72]郐会才,张飞虎,纳米硬质合金的ELID磨削,东北林业大学学报,2008,36(12):57~58.
    [73]罗先义,任敬心,磨削过程中砂轮耐用度的试验研究,磨料磨具与磨削,1994,1(79):12~15.
    [74]孙捷,田艳红,改进结合剂提高砂轮耐用度,轴承,1994,(9):19~21.
    [75]聂建武,宁广庆,夏粉玲,金属切削与机床,陕西西安:西安电子科技大学出版社,2006.179-180.
    [76]张飞虎,张春河,欧海涛等,在线电解修整镜面磨削中砂轮耐用度的研究,哈尔滨工业大学学报,1999,31(6):9~11.
    [77]王世锋,轴承套圈磨超加工技术发展状况,机械制造,2006,44(503):54~56.
    [78]文秀兰,林宋,谭昕等,超精密加工技术与设备,北京:化学出版社,2006.141~143.
    [79] Katahira K, Ohmori H, Uehara Y, et al.. Study on ELID ground micro-tool andits applications. IEEE International Conference on Industrial Technology,2002,2:1138~1141.
    [80]郐会才,张飞虎,纳米硬质合金的ELID磨削,东北林业大学学报,2008,36(12):57~58.
    [81]郐会才,纳米硬质合金刀具材料的ELID磨削机理及其切削性能研究:[博士学位论文],哈尔滨;哈尔滨工业大学,2009.
    [82]周曙光,关佳亮,徐中耀,陶瓷喷涂层精密镜面磨削技术的实验研究,金刚石与磨料磨具工程,2000:23~24,27.
    [83] Matsuzawa T, Ohmori H, Zhang C, et al.. Micro-Spherical Lens MoldFabrication by Cup-Type Metal-Bond Grinding Wheels Applying ELID(Electrolytic In-Process Dressing). Key Engineering Materials,2001,196:167~176.
    [84] Ebizuka N, Dai Y, Eto H, et al.. Development of SiC ultra light mirror for largespace telescope and for extremely huge ground based telescope. Proceedings ofSPIE-The International Society for Optical Engineering,2003,4842:329~334.
    [85]康桂文,栾殿荣,张飞虎,氧化铝陶瓷ELID高效磨削技术的研究,金刚石与磨料磨具工程,2004,1:70~72.
    [86]沈剑云,徐西鹏,ELID磨削后石材的表面微观特性研究,超硬材料工程,2005,17(1):22~25,30.
    [87] Lee H, Kasuga H, Ohmori H, et al.. Application of electrolytic in-processdressing (ELID) grinding and chemical mechanical polishing (CMP) process foremerging hard-brittle materials used in light-emitting diodes. Journal of CrystalGrowth,2011,326:140~146.
    [88]温烜熊,油石对轴承滚道自动超精研的问题,山东机械,1982,(2):13~15.
    [89]尹成湖,磨工工作手册,北京:化学工业出版社,2007.649~650.
    [90]文秀兰,林宋,谭昕等,超精密加工技术与设备,北京:化学出版社,2006.141~143.
    [91]李伯民,赵波,现代磨削技术,北京:机械工业出版社,2003.1~70.
    [92]任敬心,康仁科,史兴宽,难加工材料的磨削,北京:国防工业出版社,1999.85~97.
    [93]冯宝富,蔡光起,盖全文,CBN砂轮的修整方法及其应用,工具技术,2001,35(12):8~11.
    [94]李继贤,张飞虎,成形砂轮修整技术研究现状,机械工程师,2006,(10):19~22.
    [95]李良福,切入无心磨削后回转表面形状误差的评估,磨床与磨削,1999,(2):37~38.
    [96]李春生,李葆生,王新安,电磁无心夹具的原理及参数调整,机械工程师,2001:51~53.
    [97] Ohmori H, Katahira K, Akinou Y, et al.. Investigation on GrindingCharacteristics and Surface-Modifying Effects of Biocompatible Co-Cr Alloy.CIRPAnnals–Manufacturing Technology,2006,55(1):597~600.
    [98] Ohmori H, Katahira K, Nagata J, et al.. Improvement of Corrosion Resistance inMetallic Biomaterials using a New Electrical Grinding Technique. CIRP Annals–Manufacturing Technology,2002,51(1):491~494.
    [99]关佳亮,郭东明,袁哲俊,ELID镜面磨削中砂轮生成氧化膜特性及其作用的研究,机械工程学报,2000,36(5):89~92.
    [100]林彬,张春河,徐燕申,ELID超精密镜面磨削砂轮磨损规律的研究,天津大学学报,1999,32(1):74~76.
    [101]王黎晖,高杰,宋亚峰等,新型轴承材料的开发,第二届层压金属复合材料生产技术开发与应用学术研讨会,2010:27~31.
    [102]田欣利,于爱兵,工程陶瓷加工的理论与技术,北京:国防工业出版社,2006.232~235.
    [103]任敬心,华定安,磨削原理,陕西西安:西北工业大学出版社,1988.1~9.
    [104]李力钧,付杰才,磨削力的数学模型的研究,机械工程学报,1981,17(4):31~41.
    [105]Tonshoff H K, Peters J, Inasaki I, et al.. Modeling and Simulation of GrindingProcesses.Annals of the CIRP,1992,1(2):677~688.
    [106]Malkin S. Grinding Technology: Theory and Applications of Machining withAbrasives. New York, SME:1996.
    [107]Shu Y, Lou N, Marinescu I D. Experimental investigation of bond oxidationkinetics in the ELID process. The World Advances in ELID-GrindingTechnologies, Changsha, China,2008.6~11.
    [108]任敬心,华定安,磨削原理,北京:电子工业出版社,2011.80~120.
    [109]刘蒲生,砂轮耐用度,磨料磨具与磨削,1984,(1):44~47.
    [110]张幼桢,金属切削理论,北京:航空工业出版社,1988.50~150.
    [111]庄司克雄,磨削加工技术,北京:机械工业出版社,2007.100~160.
    [112]何秀寿,砂轮耐用度及其判断方法,磨料磨具与磨削,1987,1(37):41~44,30.
    [113]谢晋,党希敏,圆弧形金刚石砂轮的数控对磨成形修整试验,机械工程学报,2008,44:102~107.
    [114]孔令叶,阎秋生,宋军辉,基于表面粗糙度均匀性的曲面磨削研究,中国机械工程,2008,19(21):2557~2560.
    [115]Xie J, Xu J,Tang Y.3D graphical evaluation of micron-scale protrusiontopography of diamond grinding wheel. International Journal of MachineTools&Manufacture,2008,48:1254~1260.
    [116]Mohammad Saeed SePasy Zahmaty. A new grinding method for axisymmetricaspheric surfaces of brittle materials. Tohoku University, Sendai, Japan,1998.
    [117]Kim H S,Kim E J, Song B S. Diamond turning of large off-axis aspheric mirrorsusing a fast tool servo with on-machine measurement. Journal of MaterialsProcessing Technology,2004,146:349~355.
    [118]Xie J,Wei F, Zheng J H.3D laser investigation on micron-scale grain protrusiontopography of truncated diamond grinding wheel for precision grindingperformance. International Journal of MachineTools&Manufacture,2011,(51):411~419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700