用户名: 密码: 验证码:
基于废物最小的O,S-二甲基硫代磷酰胺连续生产过程开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境与能源关注程度的越来越强烈,近年来从源头上减少污染与进行污染预防控制已成为人们研究的热点,也成为企业可持续发展的必然选择。间歇反应或分批操作过程是精细化工领域的一个常见的生产方式,主要具有简单、灵便、投资少等特点。但是,一般都存在设备效率低、生产能力小、劳动强度大、反应结果易波动以及废物处理难度大等问题。开发连续生产过程具有:更有效的利用能量与原料,回收反应热,强化混合过程以提高选择性降低废物产生,最大限度地减少反应过程的失控,减少工厂的场地和降低工厂的投资,易于实现自动化等特点。提出利用环境影响指标原料利用率(BA)与单位潜在废物产率(MB)对O,S-二甲基硫代磷酰胺及其中间体O-甲基硫代磷酰二氯、O,O-二甲基硫代磷酰氯、O,O-二甲基硫代磷酰胺等连续反应过程进行废物最小化分析,研究上述过程连续生产的实现方式以及相关的理论,对于降低产品的能耗,稳定提高产品的质量与收率,实现清洁化生产,具有十分重要的理论意义与实际应用价值。
     以文献报道的O-甲基硫代磷酰二氯合成的动力学为基础,基于废物最小化分析,建立循环管式反应器串联管式反应器连续合成O-甲基硫代磷酰二氯的反应器模型。适当缩短循环管式反应器的停留时间,降低反应温度,可提高O-甲基硫代磷酰二氯的质量与收率。减少甲醇与三氯硫磷的摩尔配比,可有效减少过程的废物产生量。在模拟计算的基础上,建立一套12000吨/年循环管式反应器串联管式反应器连续生产O-甲基硫代磷酰二氯的工业生产装置。工业生产装置连续运行表明:O-甲基硫代磷酰二氯的收率比现有工艺收率提高1.5%,单套装置的生产能力是现有单套装置生产能力的5倍。
     在O,O-二甲基硫代磷酰氯合成反应动力学研究的基础上,提出多级循环管式反应器串联连续合成O,O-二甲基硫代磷酰氯的反应器网络。以O,O-二甲基硫代磷酰氯的总收率为优化目标,以MATLAB为编程语言,采用复形法优化等温下各级循环管式反应器内的加碱量。适当增加串联级数、减少循环比、降低反应温度有利于O,O-二甲基硫代磷酰氯收率与产品质量的提高。模拟计算结果表明,6级循环管式反应器串联,在优化的条件下,O,O-二甲基硫代磷酰氯的收率为93.86%,产品摩尔质量达到94.35%。工业单级循环反应器的中试结果与模型计算结果比较吻合,可为工业规模连续生产装置的设计与优化提供理论指导。
     研究O,O-二甲基硫代磷酰氯液相非催化氨解的反应动力学。在反应前期,酰氯浓度对速率影响很小,但在反应后期,反应速率呈明显的二级反应特征。氨与酰氯的起始摩尔比以及氨浓度对反应速率影响显著。基于废物最小化分析与反应动力学研究,提出循环管式反应器连续合成O,O-二甲基硫代磷酰胺的绿色过程新工艺,并对循环管式反应器进行模拟与仿真。在模拟计算的基础上,建立一套25000吨/年O,O-二甲基硫代磷酰氯连续氨解的工业生产装置。工业连续生产新工艺的产品质量提高了0.74%,收率提高了2.93%。单套装置生产能力是分批间歇搅拌反应釜单套装置生产能力的7倍,且可大幅度降低产品的能源消耗。
     采用单纯形优化法研究O,O-二甲基硫代磷酰胺异构的反应动力学。反应速率对硫酸二甲酯浓度与O,O-二甲基硫代磷酰胺浓度分别为一级反应。对全混釜串联管式反应器连续合成O,S-二甲基硫代磷酰胺的模拟计算标明,采用优化的方案,可使产品收率达到83.7%,比现有间歇生产工艺提高1.2%~1.7%左右。以最大总收率与最大单位潜在废物产率为多目标优化,利用线性加权和法将多目标优化问题转化为单目标优化问题,以MATLAB为编程语言,采用复形法优化反应-分离-再循环(RSR)系统的工艺参数。较低的蒸馏压力有利于提高总收率与提高单位潜在废物的产率。提高O,O-二甲基硫代磷酰胺的质量,可明显提高单位潜在废物的产率。模拟结果表明:采用RSR系统可使产品O,S-二甲基硫代磷酰胺的质量分数达到85%以上,总收率达到96%。在此基础上,提出异构-分子蒸馏分离的绿色集成工艺,具有良好的应用前景。
There is currently a great deal of interest in the development of methods that can be used to prevent or at least minimize the generation of pollution w-ith the people caring about the environment and energy. It has been the neces-sary option for the sustainable development of factory. Batch chemical process is the usual process in producing fine chemical product.It is simple, convenientand small investment in producing many products.But its production capacity issmall, labouring extent is great and it depends on worker’s experience. So the quality and the yield of product is unstable and there is always much waste todeal with.In contrast,the benefits of continuous process include: More efficient utilization of energy and raw materials. Recovery of heats of reaction.High-int-ensity mixing, enhancing process selectivity, minimised risk of runaway reaction,smaller plant, cheaper plant,process automation.The enviroment impact assessme-nt(EIA):efficiency of raw material (BA) and the ratio of product mass to unde-sirable material mass (MB) was proposed to be used to analyse the minimizati-on of waste in the continuous producing O,S-dialkyl phosphoroamidothioate and its intermediate O-miethyl dichlorothiophosphate, O,O-dimethyl phosphorochori-dothioate,O,O-dimethyl phosphoroamidothioate. It has important signifycance th-eoretically and practical application to develop continuous producing process to replace traditional batch chemical process when the production capacity is enl-arged. It can rise the quality and yield of product, decrease the rate of equip-ment size to production capacity, decrease energy consumption, bring about cle-aner production.
     The model of continuous producing O-miethyl dichlorothiophosphate reactor was based on the kinetics of synthesizing O-miethyl dichlorothiophosphate which was proposed by previous literature.The retention time of recycle tubular reactor is shorter and the temperature of reaction is lower, the quality and the yield of product is rised.The mole ratio of thiophosphoryl chloride to methanol is decreased ,the waste of the process is reduced.12000 ton/y of recycle reactor series connection tubular reactor was built in a factory.It indicates that the quality and the yield of product is rised about 1.5% and the production capacity of one set equipment is 5 times compared with one set batch reactor.
     The reaction kinetics of O,O-dimethylphosphorochloridothioate synthesis wasstudied.Multistage recycle tubular reactors in series was founded to produce O,O-dimethyl phosphorochloridothioate continuously. The amount of alkali was optimized on the objective of the total yield of O,O-dimethylphosphorochlorido-thioate with complex methods optimization by MATLAB.When the stage of ser-ies is increased, the ratio of recycle is reduced, the reaction temperature is do-wn,the quality and the yield of product is rised. The quality can reach 94.35%and the yield can reach above 93.86% in optimal conditions when six stages recycle tubular reactors in series. The pilot-scale experimental result of one re-cycle tubular reactor agrees well with the calculation value by model. It provi-des guide for designing and optimizing the equipment in industrial producing process.
     The ammonolysis reaction kinetics of O,O-dimethylphosphorochloridothioate without catalyst was studied. The model showes that the effects of the initial mole ratio between ammonia and acyl chloride, concentration of ammonia and temperature on the reaction rate are very obvious. In addition, the effect of concentration of acyl chloride on the rate of ammonolysis is very small.The reaction rate demonstrates the pseudo-first order to ammonia during early period of reaction and the second order to ammonia and acyl halide during the late period. A new green process is proposed to produce O,O-dialkyl phosphoroamidothioate continuously by recycle tubular reactor with the analysis of waste minimization and the study of reaction kinetics. 25kt/y of recycle tubular reactor was built .It is indicated that the quality and the yield of product is rised 0.74% and 2.93% individually. The production capacity of one set equipment is 7 times compared with batch reactor.It can decrease a great deal of energy consumption.
     The isomerization reaction kinetic of O,O-dialkyl phosphoroamidothioate was studied by simplex optimization.The rate of isomerization behaves the firstorder to dimethyl sulphate and O,O-dialkyl phosphoroamidothioate individually.A model of CSTR seried tubular reactor was founded to produce O,S-dimethyl phosphorochloridothioate continuously. It is indicated that the yield of product is rised 1.2%~1.7% in optimal conditions contrast to batch process.A questionof mult-objective optimization was built about reaction-separtion-recycle system.It was optimized to maximize the total yield and the ratio of product mass towaste mass. The mult-objective optimization was converted to simple objective optimization by linear synthesis.The lower distillation pressure can increase the total yield and the ratio of product mass to undesirable material mass. When the quality of O,O-dialkyl phosphoroamidothioate is rised, the ratio of product mass to undesirable material mass can be increased obviously. It indicates that the quality can reach above 85% and the total yield of O,S-dialkyl phosphoro-amidothioate can reach 96%. The green integration flowsheet of isomerization-molecular distillation-recycle is proposed. It has good application foreground in industrial process.
引文
[1]成俊然.邵瑞链.毕富春等.用分子内环化反应合成蔬果磷的研究[J].农药,1998,37(10):15-16.
    [2]田忠江.水胺硫磷合成新工艺的研究[J].广西化工,2000,29(4):13-15.
    [3]沈德隆.孙娜波.谭成侠.甲基嘧啶磷的合成研究[J].广东化工,2001,(3):31-32.
    [4] Gatling S C,Karl L. Process for preparing phosphorothioate and phosphate pesticides[p].US, 4814448. 1989-5-21.
    [5] Moyle C L. O-2,4,5-trichlorophenyl O,O-dialkylthiophosphates[P].GB, 699064. 1953-10-28.
    [6] Nanba T, Yamato M. Method for controlling reaction [P]. JP, 2003286291,2003-10-10.
    [7] Kawada M, Morimune K, Kanai S. Hapten compound for bustamifos, antibody and a-ssay[P]. JP, 2000095787. 2000-04-04.
    [8] Tawada S, Touyama K, Kohamoto N. Citronellolderivative,its production and organismpest controlling agent for agriculture and horticultural purposes[P]. JP, 93223998. 1997-12-16.
    [9] Lee Y T, Lee H S. Kim Y J. Process for preparing haptens for immunoassay of pho-sphorothioate pesticides[p]. US, 2005033038. 2005-02-10.
    [10] Reichelt P, Kitter F, Schelle R. Thiophosphoryl chloride by conversion of phosp-horus trichloride with sulfur[P]. DD, 218757 A3. 1985-2-13.
    [11] Yumatov V D, Mazalov L N, Okotrub A V.X-ray spectra and electronic structureof a thiophosphoryl chloride molecule[J]. Zh. Strukt. Khim., 25(5),63-70,1984.
    [12] Ermolaev V V, Kravchenko. Improving the technology for producing methyl dich-lorothiophosphate[J]. S.I.Khim.Promst.1977, 8:577~579.
    [13] Avetisov Y K, Kalachik B S, Savchenko B M.Process for preparing O-Alkyl dic-hlorothiophosphates[P]. SU, 1081168. 1983-3-25.
    [14] Richard H F, Manske and Marshall K G. Preparation of O-alkyl dichlorothiophos-phates[P]. US, 2575225, 1948-9-29.
    [15] Nargund P K, Mehta S R. O,O-Dimethyl phosphorochoridothioate[P]. IN 143267,1977-8-22.
    [16]许世祥.柴方坤.赵国华等.甲胺磷生产中氯化物工段降耗实验[J].石家庄化工, 1993, (2):13-14.
    [17] Tabor E J. Method for the manufacture of O-loweralkyl phosphorodichloridothioa-tes[P]. US, 3005005. 1961-8-17.
    [18] Grimmer F. Giese H. Reichelt P. Process for continuous preparation of methyl d-ichlorothiophosphate[P]. DD, 282916A5. 1990-9-26.
    [19]张文.强化反应传热提高甲胺磷质量[J].农药, 1995, 34(12):8-9.
    [20] Magee R J, Lovell J B. O,O-Dimethyl phosphorothioate esters of methylpyrazino-ls[P]. GB, 1254028. 1971-11-17.
    [21] Kroposki L M. Yoshimine Masao preparation of O-aryl O,O-Dimethyl phosphorot-hioates[P].US3887659,1975-06-03.
    [22] Cutie Z G,Halpern M. Process for preparing phosphorothioates and phosphonoatesin a three-phase system[P]. US, 5120846. 1992-06-09.
    [23]沈剑仕.周坤英.卢源禧等.甲胺磷的合成P2S5法新工艺[J].浙江化工, 1998, 29(2):13-14.
    [24] Imamura K, Nabekawa S, Takeuchi K. Preparation of O,O-Dialkyl phosphorochlo-ridothioate[P]. JP, 56046892. 1981-04-28.
    [25] Matsubrara H, Imamura K, Sogabe Y. Process for producing dialkyl phosphoroch-loridothioate[P]. US, 3887659. 1975-06-03.
    [26] Bound C, Focht G, Harrod B. Waste treatment in dialkyl phosphorochloridothioateproduction[P]. US, 5278331. 1994-01-11.
    [27] Bergeron C R, Anderson A P, Walter T J. Process for the purification of dialkylphosphorochloridothioates[P]. US, 4247490. 1981-01-27.
    [28] Diveley W. Separation of amorphous sulfur and O,O-Dialkyl phosphorochloridothi-oate[P]. US, 3856898. 1974-12-24.
    [29] Nargund P K, Mehta S R, Mehra R K. O,O-Dialkyl phosphorochloridot-hioate[P].IN, 143267. 1977-08-22.
    [30] Nanba T, Fujikawa T. Preparation of chloridothiophosphates as intermediates for pesticides[P]. JP, 2002-15299. 2002-06-24.
    [31] Philip S, Magee, San RC. Insecticidal compositions containing O-alkyl-s-alkyl ph-osphoroamidothioates and methods for killing insects therewith[P]. US, 3309266. 1967-03-14.
    [32] Magee P S. Method for preparing O-methyl-S-methyl Phosphoroamidothioate[P]. US, 36939547. 1972-02-01.
    [33]冯纪涛.李汝芝. O,O-二甲基硫代磷酰胺工艺改进[J].精细与专用化学品, 2003,11(22):13-14.
    [34]张永钦.袁华.禹宗沅.甲胺磷合成方法及工艺述评[J].湖北化工, 1997, 14(3): 7-10.
    [35]诸锡云.甲胺磷合成工艺及其进展[J].农药, 1991, 30(6): 13-16.
    [36] Kittler F, Grimme F, Hesse B. O,O-Dimethyl thiophos-phoric acid amide[P]. DD, 161069. 1984-09-19.
    [37] Teichmann H, Schnell M, Kochmann W. O,O-Dimethyl thiophosphoric acid amide[P]. DD, 224600. 1985-07-10.
    [38]曹广宏.甲胺磷合成工艺研究进展[J].广西化工, 1992, 21(1):44-48.
    [39]雷进海.国内甲胺磷生产技术进展[J].现代化工, 1994, (11):22-25.
    [40] Sakito Y, Shirahata M. Process of O,O-dimethyl phosphorroamidothioate[P]. JP, 100007691. 1998-01-03.
    [41] Prasad, Vidyanatha A S, Donald K al. An improved process for the synthesis of O,O-dimethyl phosphoroamidothioate[P]. US, 6127566. 2000-03-16.
    [42]佘金林.生产高纯度精胺的方法研究[J].农药, 2002, 41(10):20.
    [43]罗和安.王良芥.从乙酰甲胺磷原油中提取高纯度乙酰甲胺磷原粉的方法(2)[P].中国, 1277201. 2000-12-20.
    [44]罗和安.王良芥.从乙酰甲胺磷原油中提取高纯度乙酰甲胺磷原粉的方法(2)[P].中国, 1133638C. 2004-1-7.
    [45]罗和安.王良芥.刘平乐等.高纯度乙酰甲胺磷原粉的制备方法(2)[P].中国,1169817C. 2004-10-6.
    [46]罗和安.王良芥.刘平乐等.高纯度乙酰甲胺磷原粉的制备方法[P].中国, 1169817C. 2004-11-24.
    [47]毛毓琴.高含量乙酰甲胺磷原药的合成[J].农药, 2000, 8(39):8~9.
    [48] Yoji S, Mamoru S, Yujiro K et al. Method for purying O,S-dimethyl N-acetylph-osphoramidothioate[P]. US, 5616769. 1997-04-01.
    [49] Atukazu I. Method for purifying O,S-dimethyl N-acetylphosphoramidothioate[P]. Mx, 99007019. 2004-08-31.
    [50]李坚. 0,S-二甲基(2、2、2、三氯-1-羟基-乙基)硫代磷酰胺[P].中国, 1203237.1998-12-30.
    [51]刘平乐. O,S-二甲基硫代磷酰胺异构化过程的研究、开发和优化[D].湘潭大学硕士论文, 1997.
    [52] Lonsinger J J, Halbleib C W.Preparation of O,S-Dialkyl Phosphoroamdothioates[P].CA, 1183146. 1985-02-26.
    [53] Prasad V A,Jelich K, Smith D K. An improved process for making O,S-dimethylphosphoramidothioate[P]. CA, 2254516. 1999.
    [54] Jelich K, Prasad V A. Purification of O,S-Dimethyl Phosphoramidothioa-te[P]. CA,2280110. 2000-02-17.
    [55]李坚.高含量甲胺磷的制备方法[P].中国, 1727352A. 2006-02-01.
    [56]杨志才.化工生产过程中的间歇过程[M].北京:化学工业出版社, 2001:14.
    [57] Hearn S J and Grath G M. Compact reactor heat exchangers[C]. Research needs and commercial opportunities, paper presented at 10thinternation Heat Transfer Confer-ence.Industrial session on process optimization and fouling. Icheme:Brighton,UK,1994.
    [58] Butcher M and Grath GM.Reactor-heat exchangers [J].Process industry,1993-09-21.
    [59] Schutzt J. Agitated thin-film reactors and tubular reactors with static mixers for a rapid exothermic multiple reaction[J]. Chem. Engng Sci.1988, 43(8):1975.
    [60] Singh J. Assessing semibatch reaction hazards[J]. The Chemical Engineer, 1993,25:21.
    [61] Kletz T A. Make plants inherently safe[J]. Hydrocarbon Processing.1985, 9:172.
    [62] Cabezas H, Bare J C, Mallick S K. Pollution prevention with chemical process simulations:The generalized waste reduction(WAR)Algorithm[J].Comtuters and ChemicalEngineering, 1997, 21(supplment1):s305-310.
    [63] Calderon Z,Espuna A, Puigjaner L. Waste analysis and minimization in batch andsemibatch reactor operation through dynamic simulation and neural networks[J]. 1998,22(supplment1):s977-980.
    [64] Tsangaris D M, Baltzis B C.Evaluation of batch and semibatch reactor operation for enzymatic reactions with inhibitory kinetics[J]. Chemical Engineering Science,1996,51(11):2757-2762.
    [65]王建华.化学反应工程基本原理[M].成都:成都科技大学出版社. 1988:6-7.
    [66]朱炳辰.化学反应工程[M].北京:化学工业出版社, 2001:3-5,250-252.
    [67] Attilio B, Robert L, Kabel. Scaleup of chemical processes[M].New York, John Wiley and sons, 1985.
    [68] Bruce E N,朱开宏.李伟.张元兴译. Chemical reactor design, optimization and scaleup, USA[M]. McGraw-Hill Companies, inc.2002:94-96.
    [69]谢芳宁.潘勤敏.潘祖仁. CSTR中苯乙烯本体热聚合过程模型化和仿真分析[J].化工学报,1996,47(5):563-569.
    [70]陈欠平.王弘轼.宋维端.连续搅拌釜式丙烯聚合反应器的模拟[J].化学反应工程与工艺, 1994, 10(1):32-39.
    [71] Kai T L, Luo K M, Peng C L.Critical runaway conditions and stability criterion of RDX manufacture in continuous stirred tank reactor[J]. Journal of loss prevention in the process industries. 2005,18(1):1-11.
    [72]吴倩.王弘轼.朱炳辰.甲醇催化重整制氢反应器的二维模拟及管径的选择[J].华东理工大学学报, 2004, 30(1):6-10.
    [73]范兆磬.候秋实.王弘轼.乙酸乙酯合成管式反应器填装环柱形催化剂工况分析[J].石油化工, 2002, 31(9):745-748.
    [74]王烨.高峰.乙氧基化管式反应器的数学模拟[J].化学反应工程与工艺, 1999, 15(1):38-43.
    [75]徐聪.袁章福.用于四氯化钛生产的组合式流化床的模拟[J].化工学报, 2004, 55(9):1459-1468.
    [76]刘期崇.夏代宽.段天平.外环流氨化反应器数学模型及其放大[J].2000,51(1):77-83.
    [77] Schild A, Gutsch A, Mühlenweg H, et al. Simulation of nanoparticle productionin premixed aerosol flow reactors by interfacing fluid mechanics and particle dyna-mics[J]. Nanoparticle Res. 1999,(1 ): 305–315.
    [78] Muroyama K, Norieda T, Morioka A ,et al. Hydrodynamics and computer simul-ation of an ozone oxidation reactor for treating drinking water[J]. Chemical Engineering Science,1999, 54:5285–5292.
    [79] De Groote A M, Froment G F. Reactor modeling and simulation in synthesis gasproduction. Reviews in Chemical Engineering 1995, 11 (2):145–183.
    [80] Jose A D, Munoz I E, Jorge A. Scale-up of experimental data from an isotherm-al bench-scale hydrotreatment plant to adiabatic reactors[P]. Available online at www.sciencedirect.com.
    [81] Andreas B, Franz N, Tim P,etal. Industrial experience in the scale-up of reactivedistillation with examples from C4-chemistry[J]. Chemical Engineering Science, 2002,57(9):1525-1530.
    [82]谢芳宁.潘勤敏.潘祖仁.管式反应器中苯乙烯连续本体热聚合过程模型化和数值模拟[J].化工学报, 1997, 48(3):304-314.
    [83]刘期崇.夏代宽.段天平.外环流氨化反应器数学模型及其放大[J].2000, 51(1):77-83.
    [84]谢声礼.赵海峰.袁向前.氯醇化管式反应器的设计方法[J].化学反应工程与工艺,1997, 13(4), 364-368.
    [85] Alexander S,Bahram Y, Marek M. Mathematical modelling for supporting scale-upof an anaerobic wastewater treatment in a fluidized bed reactor[J]. Water Science andTechnology, 1996, 34(5-6):501-508.
    [86]赵文.周传光.韩方煜等.基于废物最小的反应器网络综合(I)[J].化工学报, 2001,52(1):35-39.
    [87]赵文,周传光,韩方煜等.基于废物最小的反应器网络综合(Ⅱ)[J].化工学报, 2001, 52(1):39-44.
    [88]张治山,赵文,周传光等.反应器网络综合分区法中的简捷计算[J].化工学报,2004, 55(1):69-73.
    [89]陈启石,冯霄.反应过程中的污染削减方法[J].化工学报,2004,55(2):317-320.
    [90] Dahlke T, Chen Y H, Franzreb M. Continuous removal of copperions from dilutefeed streams using magnetic weak-base anionexchangers in a continuous stirred tankreactor (CSTR)[J] . Reactive and Functional Polymers, 2006, 66(10):1062-1072.
    [91] Marroquín J O,Laredo G C, Ochoa-Tapia J A. Particle size distribution effect oncatalytic conversion in a CSTR[J].Chemical Engineering Journal,2006,116(3):233-236.
    [92] Robert S, Anne T, Roman N. Refolding of proteins in a CSTR[J]. Chemical Eng-ineering Science, 2005, 60(21):5770-5780.
    [93] Abhijart K, Sunun L, Kanokwan N. Mathematical modeling and simulation for g-as–liquid reactors[J]. Computers& Chemical Engineering, 29(11-12):2461-2473.
    [94]陈德荣.罗生香.涡轮搅拌桨混合过程流热耦合有限元分析[J].石油化工与设备, 2005, 8(6):1-4.
    [95] Allgower and Georg K. Numerical continuation methods[M]. An introduction, Spr-inger Verlag, Berlin,1990.
    [96] Kubíek M and Marek M. Computational methods in bifurcation theory and diss-ipative structures [M]. Springer-Verlag, New York,19 83.
    [97] Van H.Autothermic processes[J].Industrial Engineering Chemistry,1953,45:1242-1247.
    [98] Schmitz R A.Multiplicity stability and sensitivity of states in chemically reactingsystems-a review [E]. 3rd International Congresson Chemical Reaction Engineering, Evanston, III.In: Advancesin chemistry series 148, 1974.
    [99] Fogler H S. Elements of chemical reaction engineering [M]. London:Prentice Hall,Inc, 1999.
    [100] Westerterp K R, Swaaij W P M V and Beenackers A A C M. Chemical reactor design and operation [M]. Amsterdam: Netherlands University Press, 1984.
    [101] Farr W W and Aris R. Yet who would have thought the oldman tohave had so much blood in him? Reflections on the multplicity of steady states of the stirred tan-k reactor [J]. Chemical Engineering Science, 1986, 41(6):1385–1402.
    [102] Molnár A, Marko J and Jelemensky L. Safety analysis of CSTR towards changesin operating conditions [J]. Journal of Loss Prevention in the Process Industries, 2003, 16(5):373-380.
    [103] Sabine B, Michael B, Moritz G. Tubular reactor synthesis of styreneme-thacrylatecopolymers in solution withsupercritical carbon dioxide [J]. The Journal of Supercrit-ical Fluids, 2006, 39(2): 246-252.
    [104] Abayomi A, Ahmed A, Raphael I. Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a coprecipitated Ni-Al2O3 catalyst in a packedbed tubular reactor[J]. International Journal of Hydrogen Energy, 2006, 31(12):1707-1715.
    [105] H?fele M, Kienle A, Boll M. Dynamic simulation of a tubular reactor for the p-roduction of low-density polyethylene using adaptive method of lines [J]. Journal ofComputational and Applied Mathematics, 2005, 183(2), 15: 288-300.
    [106] Peter S, Adrian W and Philipp RR. Tubular reactor for liquid reactions with gasrelease [J]. Catalysis Today, 2003, 79-80(30): 89-95.
    [107] Bahadir K, K?rbahti and Abdurrahman T. Continuous electrochemical treatment ofphenolic wastewater in a tubular reactor [J]. Water Research, 2003, 37(7):1505-1514.
    [108]张瑞生.张家庭.宋宏宇.应用管式反应器制备丙二醇的方法[P].CN1050868A,1991-4-24.
    [109] R?nnholm M R, W?rn? J and Salmi T. Comparison of three phase reactor perf-ormances with and without packing elements[J].Catalysis Today, 2003, 79-80:285-291.
    [110] Johannes G, Khinast A B, David B, etal. Mass transfer enhancement by static m-ixers in a wall-coated catalytic reactor [J]. Chemical Engineering Science, 2003, 58(3-6):1063-1070.
    [111] Fourcade E, Hoefsloot H C J, Vliet G V. The influence of micromixing on mol-ecular weight distribution during controlled Polypropylene degradation in a static mix-er reactor [J]. Chemical Engineering Science. 2001, 56(23):6589-6603.
    [112] Bourne J R and Maire H. Micromixing and fast chemical reactions in static mi-xers [J]. Chemical Engineering and Processing, 1991, 30(1):23-30.
    [113] Cheng A, Tat Y. Process for intensifying fast plug flow reactions using a high intensity tubular reactor [P]. CA, 2287149. 2000-04-21.
    [114] Chrisochoou A, Demuth R, Linn T etal. Tubular reactor for heatinsulating nirrati-on [P]. JP2003160543, 2003-06-03.
    [115] Agar D W. Multifunctional reactors: old preconceptions and new dimensions [J]. Chem. Eng. Sci. 1999, 54:1299–1305.
    [116] Friedle U and Verser G. A counter-current heat-exchange reactor or high tempera-ture partial oxidation reactions[J]. Chem.Eng. Sci.1999, 54:1325–1332.
    [117] Harmsen G J and Chewter L A. Industrial applications of multifunctional multip-hase reactors[J]. Chem. Eng. Sci. 1999, 54:1541–1545.
    [118] Dmitry V B, Alexei A, Lapkin S T etal. Selective oxidation of alcohols in a co-ntinuous multifunctional reactor: Ruthenium oxide catalysed oxidation of benzyl alco-hol[J]. Applied Catalysis A: General, 2005, 288(1-2):175-184.
    [119] Anthony G, Dixon M N and Hugh E S. Packed Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics[J]. Advances in Chemical Engi-neering, 2006, 31:307-389.
    [120] Manglik R M and Bergles A E. Heat transfer and pressure dropcorrelations for rectangular offset strip fins compact heat exchanger[J]. Exp. Thermal Fluid Sci.1995, 10:171–181.
    [121] Xi G, Futagami S, Hagiwara Y, etal. Flow and heat transfer characteristics of of-fset-fins array in the middle Reynolds number range, ASME/JSME Thermal Eng. Proc.1991, 3: 151–156.
    [122] Ferrouillat S, Tochon P, Della D V,etal. Open loop thermal control of exothermalchemical reactions in multifunctional heat exchangers[J]. International Journal of Heatand Mass Transfer, 2006, 49(15-16):2479-2490.
    [123] Haut B, Halloinand V, Ben Amor H. Development and analysis of a multifunctio-nal reactor for equilibrium reactions: benzene hydrogennation andmethanol synthesis[J].Chemical Engineering and Processing, 2004, 43(8):979-986.
    [124] Grigorios K,J?rg F and Gerhart E.Efficient reactor concepts for coupling of endo-thermic and exothermic reactions[J].Chemical Engineering Science,2002,57(9):1505-1510.
    [125] Ismagilov Z R, Pushkarev V V, Yu O, etal. A catalytic heat-exchanging tubular reactor for combining of high temperature exothermic and endothermic reactions [J]. Chemical Engineering Journal, 82(1-3): 355-360 .
    [126] Dile F B, Anderson G K and Bloor J. Investigation into the microbiology of a high rate jet-loop activated sludge reactor treating brewery wastew-ater[J]. Water Sci-ence Technology. 1996, 34(5–6):107–112.
    [127] Meyer T and Renken A. Characterization of segregation in a tubular polymerizat-ion reactor by a new chemical method [J]. Chemical Engineering Science, 1990, 45(8):2793–2800.
    [128] Mangold M, Kienle A, Gilles E D etal. Coupled reaction zones in a circulationloop reactor[J]. Chemical Engineering Science, 1999, 54(13–14):2597–2607.
    [129] Zacca J and Ray W H. Modelling of the liquid phase polymerrization of olefinsin loop reactors[J]. Chemical Engineering Science, 1993, 48(22):3743–3765.
    [130] Meyer T and Renken A. Characterization of segregation in a tubular polymerizat-ion reactor by a new chemical method [J]. Chemical Engineering Science, 1990, 45(8):2793–2800.
    [131] Lehtonen J,Kaplin J, Salmi T, etal. Modelling and scale-up of a loop reactor forhydrogenation processes[J]. Chemical Engineering Science,1999,54(13–14):2793–2798.
    [132] Van Sonsbeek H M, Tuin S P and Tramper J. Mixing in liquid-impelled loop re-actors[J]. Biotechnology and Bioengineering, 1992, 39(7):707–716.
    [133] Berezowski M.Spatio-temporal chaos in tubular chemical reactors with the recycleof mass[J]. Chaos, Solitons & Fractals, 2000, 11:1197–1204.
    [134] Berezowski M and Grabski A. Chaotic and nonchaotic mixed oscillations in a lo-gistic system with delay and heat-integrated tubular chemical reactor[J]. Chaos, Solit-ons & Fractals, 2002, 14:97–103.
    [135] Jacobsen E W and Berezowski M. Chaotic dynamics in homogeneous tubular rea-ctors with recycle[J].Chem Eng Sci, 1998, 53:4023–4029.
    [136] Jacobsen EW, Berezowski M. Dynamics of heat-integrated homogeneous tubular reactors.In:5th IFAC symposium on dynamics and control of process systems[C]. Cor-fu, Greece, June 8–10, 1998.
    [137] Berezowski M and Bizon K. Fractal structure of iterative time profiles of a tub-ular chemical reactor with recycle[J].Chaos, Solitons & Fractals.2006,28(4):1046-1054.
    [138] Luss D and Amundson N R. Stability of loop reactors[J]. AIChE J, 1966, 13:279–290.
    [139] Jacobsen and Berezowski E W. Chaotic dynamics in homogeneoustubular reactorswith recycle[J]. Chemical Engineering Science, 1998, 53:4023–4029.
    [140] Marek B.Fractal character of basin boundaries in a tubular chemical reactor withmass recycle[J]. Chemical Engineering Science, 2006, 61(4):1342-1345.
    [141] Jacobs RA. Desigh your process for waste minimization[J].Chemical Engineering Process, 1991, 87(6):55-59.
    [142] Buxton A, Livingston AG, Pistikopoulos EN. Reaction path synthesis for environ-mental impact minimization[J]. Computers and Chemical Engineering, 1997, 21(suppl):s959-964.
    [143]尹清华.换热网络的最优合成及结构调优研究[D].华南理工大学博士论文, 1992.
    [144]藏福录.石油化工工艺工程师必读[M].北京:中国石化出版社, 1998:290.
    [145]金涌.李有润.冯久田等.生态工业原理与应用[M].北京:清华大学出版社,2003.
    [146] Douglas J M. A hierarchical decision procedure for progress synthesis[J]. Journalof the American Institute of Chemical Engineering, 1985, 31(3):353-362.
    [147] Douglas J M. Process synthesis for waste minimization[J]. Industrial and Engine-ering Chemistry Research, 1992, 31:238-243.
    [148] Derya D, Funsun S. Waste minimization study in a solve-based paint manufactur-ing plant[J]. Resources and Conservation and Recycling, 2006, 47:316-331.
    [149] Smith R, Petela E A. Waste minimization in the process industry [J]. Chemical Engineering, 1994, (10):24-25.
    [150] Drabkin M. The waste minimization assessment:a useful tool for the reduction ofindustrial hazardous waste[J]. JAPCA, 1988, 38:1530.
    [151] Chang JI, Chen CH, Liu GSY. The experience of waste minimization at a nitroc-ellulose manufacturing plant[J].Resource,Conservation and recycling, 2000, 30:333-351.
    [152] Irina K, Jurgis KS. The evaluation of cleaner production performance in Lithuan-ian industries[J]. Journal of cleaner production, 2006, 14:1561-1575.
    [153] Cabezas H, Bare JC, Mallick SK. Pollution prevention with chemical process si-mulator: the generalized waste reduction(WAR)algorithm[J]. Computers and Chemical Engineering, 1997, 21:s305-s310.
    [154] Cabezas H, Bare JC, Mallick SK. Pollution prevention with chemical process si-mulator :the generalized waste reduction(WAR)algorithm-full version[J].Computers andChemical Engineering, 1999, 23:623-634.
    [155] Yong DM. Cabezas H. Designing sustainable processes with simulation: the wastereduction (WAR)algorithm[J].Computers and Chemical Engineering,1999,23:1477-1491.
    [156] Fava J, Dennison R, Jones B, etal. A technical framework for Life-Cycle Assess-ment[R]. SETAC and Foundation for Environmental Education, Washington, DC,1991.
    [157] Adisa A.Life Cycle assessment and its application to process selection,design andoptimization[J]. Chemical Engineering Journal, 1999, 73:1-21.
    [158] Golonka KA, Brennan DJ. Application of Life Cycle Assessment to process sele-ction for pollutant treatment: A case study of sulphur dioxide emissions from Austra-lian metallurgical smelters, Trans[J]. IChemE, 74(partB):105-119.
    [159] Pesso C. Life cycle methods and applications:Issues and perspectives[J]. Journal Cleaner Poduction, 1993, 1(3/4):139-142.
    [160] Azapagic A, Clift R. Linear programming as a tool in Life Cycle Assessment [J].Int. J.LCA, 1998, 3(6):305-316.
    [161] Linhoff B. Pinch analysis in pollution prevention[M]. New York:McGrawhill,1995.
    [162] Ei-Halwagi MM. Solve design puzzles with mass integration[J].Chemical Enginee-ring Progress, 1998, 94(8):25-43.
    [163] Dunn RF, Bush GE. Using process integration technology for cleaner production[J]. Journal of Cleaner Production, 2001, 9:1-23.
    [164]杨友麒.石磊.绿色过程系统工程进展[J].化工进展, 2004, 23(1):17-22.
    [165] Mauricio MD,Karen AH.Evaluation alternatives under uncertainty: a multiobjectiveoptimization approach[J].Computers and Chemical Engineering,1999,23(10):1493-1508.
    [166] Gao Y, Shi L,Yao P J. Waste minimization through process integration and multi-objective optimization[J].Chinese Journal of Chemical Engineering, 2001, 9(3):267-272.
    [167]陈启石.反应过程环境影响最小化[D].西安:西安交通大学,2003-9.
    [168]龚俊波.杨友麒.王静康.可持续发展时代的过程集成[J].化工进展,2006,25(7):721-727.
    [169]吴巍.闵恩泽.绿色可持续发展石油化工生产技术的新进展[J].化工进展, 2004,23(3):231-237.
    [170]王静康.陈建新.可持续发展与现代化工科学[J].化工进展, 2004, 23(1):1-8.
    [171]张懿.绿色过程工程[J].过程工程学报,2001,1(1):10-15.
    [172] Paul T A, John C W. Green chemistry theory and pratice[M].Oxford: Oxford uni-versity press, 1998.
    [173] Bastian B, Haberer, Knepper TP. Invesigation on the adsorption and degradation of aromatic sulfonic acids(in german)[J].Vom Wasser, 1995, 84:369-378.
    [174] Lange FT, Redin C, Brauch H J,etal. Synthesis of sulfonated naphthaleneformald-ehyde condensates and their trace-analytical determination in wastewater and river w-ater[J]. Vom Wasser, 1998, 90:121-134.
    [175] Abou-Elela SI.Pollution prevention and waste minimization in Egyptian industriesEPCOWM 2002[C].Conference, Tunisia, 2002.
    [176] Abou-Elela SI, Zaher F. Pollution prevention in oil and soap industry(case study)[J].Water Science and Technology, 1998, 38(4/5):139-144.
    [177] Sbou-Elela SI, Nasr FA, Doma SH,etal.Cleaner production and waste minimizationin adhesive production industry[J]. Egyptian Journal of Applied Science,2004,19:313.
    [178] Abou-Elela SI, Hesham AH, Enas AT,etal. Application of cleaner production tech-nology in chemical industry: a near zero emission[J]. Journal of Cleaner Production,2006, www.lsevier.com/locate/jclepro.
    [179] Abou-Elela SI, El-Kamah HM,Abdel-Moneam NM. Reuse of wasted material fromAcetylene production plant[C].In:Second international specialized conference of pretre-atment of industrial wastewaters.1996, 8, Athens, Greece.
    [180] Abou-Elela SI, El-Kamah HM, El-Awady RA. Waste minimization in electroplate-ng industry(case study)[J]. International Journal Environmental Studies, 1998, 55:287-296.
    [181] Chang JI, Chen CH, George SY, etal. The experience of waste minimization at anitrocellulose manufacturing plant[J]. Resources, Conservation and Recycling, 2006(47):316-331.
    [182] Derya D, Fusun S. Waste minimization study in a solvent-based paint manufactu-reing plant[J]. Resources, Conservation and Recycling, 2000, (30):333-351.
    [183] Sheldon RA .Atom utilization, E factors and the catalytic solution[J]. Chimie/Ch-emistry, 3(7):541-551.
    [184] Ulrike K, Marcel A L. Pollution prevention through solvent selection and waste minimization[J]. Ind. Eng.Chem.Res, 2002, 41:4534-4542.
    [185] Wang Y, Feng X.Energy analysis involving resource utilization and environmentalinfluence[J]. Computers and Chemical Engineering, 2000, 24:1243-1246.
    [186] Coetheer E V, Vorstman M A G, Keurentjes J T F. Opportunities for process int-ensification using reverse micelleles in liquid and supercritical carbondoxide[J]. Che-mical engineering science, 1999, 54(13-14):2859-2864.
    [187] Tom W. Ionic liquids in catalysis[J]. Coordination Chemistry Reviews, 2004, 248(21-24):2459-2477.
    [188] Stankiewicz A I and Moulijn J A, Process intensification: transforming chemical engineering[J]. Chem.Eng.Prog, 2000, (1):22~34.
    [189] Ferrouillat S, Tochon P, Della Valle D, etal. Open loop thermal control of exot-hermal chemical reactions inmultifunctional heat exchangers [J]. International journal of heat and masstransfer. 2006, 49(15-16):2479-2490.
    [190]张永强.闵恩泽.杨克勇等.化工过程强化对未来化学工业的影响[J].石油炼制与化工, 2001, 32(6):1-6.
    [191] Li H Z, Fasol CH, Choplin L. Hydrodynamics and heat transfer of rheologicallycomplex fluids in a sulzer SMX static mixer[J]. Chemical Engineering Science, 1996,51(10):1947-1955.
    [192] Green A, Johnson B, John A. Process intensification magnifies profits[J].ChemicalEngineering, 1999, (12):66-73.
    [193] Stankiewicz A I, Moulijin J A. Process intensification:transforming Chemical Eng-ineering[J]. Chemical Engineering progress, 2000, (1):22-34.
    [194] Smits H A,Stankiewicz A, Gasz W CH, et al. Selective three-phase hydrogenationof unsaturated Hydrocarbons in a monolithic reactor[J]. Chemical Engineering Science,1996, 51(11):3019-3025.
    [195] Tak K, Calis H P, Cerritsen A W,et al. The selective catalytic reduction of nitricoxide in bead string reactor[J]. Chemical Engineering Science, 1996, 51(10):1789-1798.
    [196] Parkinson G. Falling-film microreactor facilitates hazardous reaction. Chemical E-ngineering, 2000, (4):23.
    [197] Arunabha K, Ji E A ,Sang S P,et al. Process intensification by microchannel rea-ctor for steam reforming of methanol[J]. Chemical Engineering Science, 2007, availa-ble online.
    [198] Ramshaw C. Process intensification and green chemistry. green chemistry, 1999, 1(1):15-17.
    [199] Parag M, Kanthale P R. Gogate and Aniruddha B. Modeling aspects of dual fre-quency sonochemical reactors[J]. Chemical Engineering Journal, 127(1-3):71-79.
    [200] Anand G, Chakinala P R, Gogate A E, et al. Intensification of hydroxyl radical production in sonochemical reactors[J].Ultrasonics Sonochemistry,2006,available online.
    [201] Clifffford Y,Tai C T and Hwai S L. Synthesis of submicron barium carbonate us-ing a high-gravity technique[J]. Chemical Engineering Science,2006,61(22):7479-7486.
    [202] Deshmukh SARK, Heinrich S, M?rl L, et al. Membrane assisted fluidized bed re-actors: Potentials and hurdles[J]. Chemical Engineering Science, 62(1-2):416-436.
    [203] Matros Y S, Bunimovich G A. Reverse-flow operation in fixed bed catalytic rea-ctors[J]. Catalysis review-science and engineering, 1996, 38(1):1-68.
    [204] Solokhin A V, Blagov S A. Reactive-distillation is an advanced technique of rea-ction process operation[J]. Chemical engineering science, 1996, 51(11):2559-2564.
    [205] Schlowsky G J, Loftus B J. Recovering and recyling low-boiling alcohols and k-etones[J]. Chemical Engineering, 2000, 81(1):19.
    [206]杨村.冯武文.于宏奇.分子蒸馏技术与绿色精细化工[J].精细化工, 2005, 22(5):321-323.
    [207]杨得坡.朱宝璋.韩亚明等.分子蒸馏用于中药有效成分精制的关键技术[J].中国现代应用药学杂志, 2006, 23(3):193-196.
    [208] Coetheer E V, Vorstman M A G, Keurentjes J T F. Opportunities for process in-tensification using reverse micelleles in liquid and supercritical carbon doxide[J]. Ch-emical engineering science, 1999, 54(13-14):2859-2864.
    [209]吴剑.环己烷羧酸-环己酮肟联产己内酰胺反应动力学与工艺[D].广州:华南理工大学博士论文, 2005.4.
    [210]陈敏恒.袁渭康.工业反应过程的开发方法[M].北京:化学工业出版社,1985.30
    [211] Levenspiel O. Chemical reaction engineering[M]. 3rd ed. New: John Wiley and Sons Inc, 1999.
    [212] Douglas JM. Hierarchical decision procedure for process synthesis[J]. AIChEJ, 1985, 31:353.
    [213]花开玲.李有润.胡山鹰等.反应器网络综合三分布参数通用模型[J].化工学报, 2002,53(2):184-189.
    [214] Kokosis CA, Floudas CA. Optimization of complex reactor networks(I)isothermal operation[J]. Chem. Eng.Sci., 1990, 45(3):595.
    [215] Schweiger CA,Floudas CA. Optimization framework for the synthesis of chemicalreactor networks[J]. Ind.Eng.Chem.Res., 1999, 38(3):744.
    [216] Balakrishna S, Biegler LT. A constructive targeting approach for the synthesis ofisothermal reactor networks[J]. Ind.Eng.Chem.Res., 1992, 31(1):300.
    [217] Lakshmanan A,Biegler LT. Synthesis of optimal chemical reactor networks[J]. Ind.Eng.Chem.Res., 1996, 35(4):1344.
    [218] Hildebrandt D, Glasser D, Crowe C. Geometry of the attainable region generatedby reaction and mixing:with and without constraints[J]. Ind.Eng.Chem.Res., 1992, 31(6):1541.
    [219]基于废料最少的反应器网络综合研究[D].北京:北京化工大学,1998.11.
    [220]陈念贻.模式识别方法在化学化工中的应用[M].北京:科学出版社. 2000,2-3.
    [221]陈守煌.陈晓冰.模糊模式识别及在化工中的应用[J].化工学报, 1991,42(6):666-668.
    [222] Howard D and Mar B. Neural network user’s guide[M]. Version 4.0.The MathWorks, inc..2002.
    [223]张堤.结合建模方法和先进控制技术在两个化工过程中的应用[D].南京:南京化工大学博士论文,2003:3-9.
    [224]胡九成,刘之定.催化裂化反应动力学参数识别与优化[J].化学反应工程与工艺, 1994, 10(2):124-130.
    [225]张淑华.李涛.王弘轼.新型催化剂C302—2作用下的三相床甲醇合成过程Ⅲ.本征反应动力学[J].华东理工大学:自然科学版,2004,30(2):219-222.
    [226]屈立业.鲁波.陈志荣.催化合成硫酰氟宏观反应动力学[J].化学反应工程与工艺,2005, 21(4):327~332.
    [227]顾坚.陈丰秋.戴擎镰等.遗传算法在复杂反应动力学模型参数估算中的应用[J].高校化学工程学报, 1999, 13(4):346~351.
    [228]刘平乐.环己烷氧化过程仿真与优化[D].湘潭大学博士论文, 2003.6.
    [229]颜学峰.陈德钊.混沌遗传算法估计反应动力学参数[J].化工学报, 2002, 53(8):810-814.
    [230]刘大壮.徐海丹.反应过程工艺条件优化[M].北京:化学工业出版社, 1993, 2.
    [231]高瑛.废物最小化的过程集成方法研究[D].大连理工大学博士论文, 2001, 4.
    [232] Loznikova N M, Sapozhkov Y N, Shvetsova-Shilovskaya K D. Kinetics of thiop-hosphoryl chloride with methyl alcohol[J]. ZH.Obshch.Khim.1976, 46(8), 1761-1765.
    [233]艾秋红.黄荣辉.吴剑等.遗传算法用于估值硫代磷酰氯合成动力学参数[J].计算机与应用化学, 2008,25(3):357-360.
    [234] Avetisov YK, Zatsepin VM, Zaripova VS. Kinetics of alcoholysis of thiophospho-ryl chloride[J]. ZH.Obshch.Khim, 1987, 57(10):2304~2310.
    [235] Laider K J.Theories of chemical reaction rates[M]. New York:R.E.Krieger,1979:38.
    [236] Bruce A. Finlayson.朱开宏译.化工计算导论[M].上海:华工理工大学出版社.2006:52-58.
    [237] Scott Fogler H, Elements of chemical reaction engineering[M]. Peiking, publishedby chemical Industry press, 2005:98,266,343.
    [238] Matsubara H, Imamura K, Sogabe Y. Process for producing dialkyl phosphorochl-oridothioate[P]. US, 3887659, 1975-06-03.
    [239] Cutie ZG, Halpern ME.Process for preparing phosphorothioates and phosphonoatesin a three-phase system[P]. US, 5120846, 1992-06-09
    [240] Fakhraian H, Moghimi A, Ghadiri H, etal. Reinvestigation of phase-transfer-catal-yzed chlorpyrifos synthesis[J]. Organic process research and development, 2004, 8(4):680-684.
    [241] Nanba T, Fujikawa T. Preparation of chlorothiophosphates as intermediates for p-esticides[P]. JP, 2002-15299, 2002-06-24.
    [242]童华. O,O-二甲基硫代磷酰氯的合成研究[D].湖南湘潭:湘潭大学硕士学位论文, 1999.
    [243]胡仰栋.华贲.韩方煜.基于导数分析的反应器网络综合方法[J].高校化学工程学报, 2002, 16(3).
    [244]张铸勇.精细有机合成单元反应[M](第二版).上海:华东理工出版社, 2003.
    [245] Charpentier J C,Mckenna T F. Managing compex systems:some trends for the fut-ure of chemical and process engineering[J]. Chemical Engineering Science., 2004, 59:1617-1640.
    [246]唐光传. O,O-二甲基硫代磷酰胺中甲基氯化物的色谱分析法探讨[J].宁波化工, 1996, 4 : 34-39.
    [247]朱志荣.乔雪琴. O,O—二甲基硫代磷酰胺的反相高效液相色谱分析[J].化学世界, 1996, 37(1):44-45.
    [248]王遵尧.翟志才.顾红.硫酸铜溶液和锌粉反应热效应的测定[J] .大学化学, 1998, 13(1):42-45,61.
    [249]丁双胜.安红纲.过氧化氢与硫酸亚铁反应热的测定[J].河西学院学报, 2004, 20(5),25-27.
    [250]赵小明.赵冠村.刘志刚等.绝热量热法测量比热容的实验研究[J].西安交通大学学报, 1995, 29(5):12-17.
    [251]张玉君.佘顺武.液体比热的简易测量[J].油田节能, 2004, 15(1):59-60.
    [252]喻凌.潘学军.液体比热容的测[J].四川师范大学学报, 2003, 26(3):306-308.
    [253] John A. Dean. Lange’s handbook of chemistry[M]. McGraw-Hill Companies, inc.Beijing, 1999.
    [254]彭盘英.罗逾兰.张剑敏等.甲胺磷中P-S键键能的估算[J].南京师大学报(自然科学版), 1999, 22(1):48-51
    [255] Zavitsas A A.Quantitative relationship between bond dissociation energies,infraredstretching frequencies, and force constants in polyatomic molecules[J]. Phys.chem.,1987,91:5573-5577.
    [256] Sadtler Research Laboratories. Divition of Bio-Rad Laboratories[J]. Inc.Sadeler C-ommercial infrared Grating Spectra 3:A 4618K,1980.
    [257] Hubere J.E. Inorganic Chemistry[M]. 2nd Harper and Row 1983, 162-164,842-850.
    [258] Rossini F D. Selected Values of Chemical thermodynamic Propyties[M].National Bureau of Standards, Circular 500,1952.
    [259] Nicholas P,Chopey.Handbook of Chemical Engineering Calculations[M]. McGraw-Hill Companies, inc. Beijing, 2004.
    [260]段正康.刘平乐.熊鹰等.甲胺磷原油中硫酸二甲酯的正相高效液相色谱分析[J].湘潭大学自然科学学报, 1999, 21(3):40~41.
    [261]王松汉.石油化工设计手册,第1卷,石油化工基础数据[M].北京:化学工业出版社, 2001:9, 688.
    [262] Gary B, Quistad T, Roy Fukuto. Insectidal, Anticholinesterase, and Hydrolytic Properties of Phosphoramidothioate, J,AGR.FOOD.CHEM 1970,18(2):189-194.
    [263]施光燕.董加礼.最优化方法[M].北京:高等教育出版社, 1999:9, 105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700