用户名: 密码: 验证码:
苛刻环境下PTFE基复合材料滑动副摩擦磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚四氟乙烯(PTFE)是优良的固体润滑材料,其摩擦系数低,化学稳定性好。具有优良的热稳定性和自润滑性,应用范围广。但是,同时具有不耐磨、低强度、导热性差和易蠕变等缺点,这就限制了PTFE在实际中的应用。所以需要对其进行填充改性,以改善这些性能上的不足。国内外关于PTFE填充改性的报道很多,但文献中绝大部分为在真空环境或低温环境这些单一影响因素下进行研究的,适用于真空低温这种苛刻条件下的研究很少。针对这种情况本课题做了以下工作:
     本文选择可以显著提高抗磨性的玻璃纤维(GF)与有益形成转移润滑膜的二硫化钼(MoS2)和摩擦系数较低的石墨作为填料。通过改变填料的种类、颗粒粒度以及含量的方法,再经过称重、机械混合、烘干、冷压成型、材料烧结成型等步骤,制备出一系列PTFE基复合材料。设计了摩擦磨损实验台,测试了复合材料在真空低温环境下的摩擦学性能,并对摩擦磨损机理进行了分析。
     本文进行了GF/PTFE复合材料、石墨/MoS2/PTFE复合材料、GF/石墨/MoS2/PTFE复合材料在真空低温环境下的摩擦学实验。研究结果表明:对于GF/PTFE二元复合材料,随GF颗粒粒度的减小,摩擦系数逐渐减小,磨损率随GF的粒度的减小是先降低后增大;GF颗粒含量越多,摩擦系数越大,随颗粒含量的增加,磨损率先减小后增大。石墨/MoS2/PTFE三元复合材料的摩擦系数随着温度的降低,摩擦系数增大;随着载荷、转速的增大,摩擦系数减小,磨损率增大;而且其摩擦系数比GF/PTFE复合材料小,磨损率较GF/PTFE复合材料大。GF/石墨/MoS2/PTFE四元PTFE基复合材料的摩擦系数随着温度的降低,摩擦系数增大;真空度越高,摩擦系数越大;既保持了GF/PTFE复合材料的耐磨性,又降低了复合材料的摩擦系数。最终得出:15%的200目的GF、3%的MoS2、8%的石墨作为填充剂时复合材料的摩擦系数较低,且磨损小。通过扫描电镜结果分析可知,填充合适含量和粒度的玻璃纤维,磨损表面犁沟较浅,大大提高了复合材料的硬度,模量和耐磨性;石墨和二硫化钼的加入,促进了转移膜的形成,降低了复合材料的摩擦系数,使得磨损表面更加平整。
Polytetrafluoroethylene(PTFE) is an excellent solid lubricating material, with low friction coefficient, good chemical stability. It also has excellent thermal stability and self-lubrication and a wide range of application. However, PTFE has poor wear resistance, low strength, poor thermal conductivity and ease to creep and other shortcomings, so limit the application of PTFE in practice. Need to be filled in order to make up for lack of performance. At home and foreign the reports on the modification of PTFE filled are many, however, most literature studied under vacuum or low-temperature of the single effect factors, and reports on PTFE composites under harsh conditions such as vacuum and low-temperature are few. In view of this, this article does the following works.
     Selecting the glass fiber significantly increased wear resistance, MoS2 beneficial formed transfer lubrication film and graphite of low friction coefficient as fillers. By the method of changing the type of filler, particle size and concentration, then after weighing, mechanical mixing, drying, cold forming, sintering and other steps, prepare a series of PTFE-based composites. Designing friction and wear tester, testing friction and wear properties of them under vacuum and low temperature environment, and friction and wear mechanisms were analyzed.
     Do tribological experiments of GF/PTFE composites, Gr/MoS2/PTFE composites and GF/Gr/MoS2/PTFE composites under vacuum and low-temperature environment. The results show that: for the GF/PTFE composites, with the GF particle size decreases, the friction coefficient decreases, with the decreases of particle size, the wear rate first reduced and then increased; with the increases of GF content, the friction coefficient increases, the wear rate first decreases and then increases. The friction coefficient of Gr/MoS2/PTFE composites decreases as the temperature decreases; with the load and speed increase, the friction coefficient decreases, wear rate increases; and its friction coefficient is much smaller than the GF/PTFE composites, its wear rate is larger than the GF/PTFE composites.The friction coefficient of GF/graphite/MoS2/PTFE composites also decreases with temperature decreases; the higher the vacuum, the greater friction coefficient; the quaternary composites maintain the wear resistance of GF/PTFE composites, but also reduce the friction coefficient. Final draw: when filled with 15% of 200-mesh GF, 3% of MoS2, 8% of graphite, the friction coefficient is lower, and wear rate is the lowest. The SEM results show that: Filling the appropriate content and size of the GF, with shallow furrows of worn surface, improves the hardness modulus and wear resistance of the composites, the adding of graphite and molybdenum disulfide promotes the formation of transfer film and reduces the friction coefficient, makes worn surface more smooth.
引文
[1]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [2] Mason B L,Winder S M,Krim J. On the Current Status of Quartz Crystal Miccrobalance Studies of Superconductivity-dependent Sliding Friction [J]. Tribology letters,2001,10(1-2):59-65.
    [3] Fusaro R L. Preventing Sacecraft Filures due to Tibological Problems[J]. NASA/TM,2001,(6):25-38.
    [4]中华人民共和国国务院新闻办公室.中国的航天[M].北京出版社,2000:137-150.
    [5] Wyn-Roberts D. New Frontiers for Space Tribology[J]. Tribol Int,1990,23:149-155.
    [6] Hugh Spikes. Tribology Research in the Twenty- first Century[J]. Tribol Int,2001(34):789-799.
    [7]冯伟泉.航天器材料空间环境适应性评价与认定准则研究[J].航天器环境工程,2010,27(2):139-143.
    [8]邹永廖,欧阳自远,徐琳,刘建军,胥涛.月球表面的环境特征[J].第四世纪研究,2002,22(6):534-535.
    [9]郭亮,姜利祥,李涛.样品温度对原子氧环境下ITO/Kapton/Al涂层性能变化的影响[J].航天器环境工程,2009,26(4):326-328.
    [10] Fursaro R L. Self-lubricating Polymer Composites and Polymer Film Lubricaton for Space Application [J]. Tribology Internationa,1990,23:105-122.
    [11]刘宇明.空间紫外辐射环境及效应研究[J].航天器环境工程,2007,24(6):359-365.
    [12]李涛,姜利祥,冯伟泉,等.空间原子氧对低地球轨道航天器用粘结剂的腐蚀效应影响[J].航天器环境工程,2009,26(3):222-224.
    [13]于德洋,薛群基.空间摩擦学研究的前沿领域[J].摩擦学学报,1997,17(4):380-384.
    [14] Mason B L,Winder S M,Krim J. On the Current Status of Quartz Crystal Miccrobalance Studies of Superconductivity-dependent Sliding Friction[J]. Tribology letters,2001,10(1-2):59-65.
    [15] Koji Fujimoto,Tdashi Shioya,Katsuhiko Satoh. Degradation of Carbon-based Materials due to Impact of High-energy Atomie Oxygen[J]. International Journl ofImpact Engineering,2003,28:1-11.
    [16] Minoru Goto,Fumihiro Honda,Masao Uemura. Extremely Low Coefficieni of Friction of Diamond Sliding against Ag Thin Films on Si Surface under Ultrahigh Vacuum Condition[J]. Wear,2002,252:777-786.
    [17] Sasaki M,Kozukue Y,Hashimoto K,et al. Tribologieal Properties in a High Vacuum of Earbon Films Containing Titanium Prepared by Magnetron Sputtering[J]. Vacuum,2004,74:455-459.
    [18] Eiden Michael,Seiler Rene. Space Mechanisms and Tribology Challenges of Future Space Missions[J]. Aeta Astronautie,2004,55:935-943.
    [19]孙晓军.空间摩擦学研究及其实验装置与数据库建设的思考[J].航天器环境工程,2006,23(1):12-15.
    [20]马国政,徐滨士,王海斗,司红娟.空间固体润滑材料的研究现状[J].材料导报2010,24(1):68-71.
    [21]孙荣禄,孙树文.固体润滑技术在空间机械中的应用[J].宇航材料工艺,1999,(1):17-22.
    [22] Opitz A,Ahmed S I-U,Schaefer J A,et al. Nanofriction of Silicon Oxide Surfaces Covered withth in Water Films[J]. Wear,2003,254:924-929.
    [23]刘勇,罗崇泰,叶铸玉,杨剑群,何世禹,杨德庄. MoS2/石墨溅射涂层在真空中不同载荷下的摩擦磨损行为研究[J].润滑与密封,2007,32(1):131-132.
    [24]胡坤宏,孙晓军,徐玉福,Mehari Salomon,胡献国. POM基MoS2自润滑复合材料的真空摩擦学特性研究[J].合肥工业大学学报(自然科学版),2009,32(5):615-619.
    [25] Yu D Y,Weng L J,Ouyang J L. Recent Progress of the Space Mechanism Lubrication[J]. Tribology,1996,16(1):89-96.
    [26] Shi M S. Solid Lubrication Materials[M]. Beijing:Chemical Industry Press,2000.
    [27] Leghissa M,et al. Development of HTS Power transmission Cables[J]. IEEE Transactions on Applied Superconductivity,1999,9(2).
    [28] Gradt T,Borner H,Schneider T. Low Temperature Tribometers and the Behaviour of ADLC Coatings in Cryogenic Environment[J]. Tribology International,2001,34:225-230.
    [29] Hubner W,Gradt T,Schneider T,et al. Tribological Behaviour of Materials at Cryogenic Temperature[J]. Wear,1998,216:150-159.
    [30] Ostrovskaya Ye L,Yukhno T P,Gamulya G D,et al. Low Temperature Tribologyat the B. Verkin Institute for Low Temperature Physics & Engineering[J]. Tribology International,2001,34:265-276.
    [31] Uetz H,Richter K,Wiedemeyer J. System Temperature and Tribological Behaviour of Polymer-metal Sliding Couples in Pin-on-Disc Model Testing[J]. Wear,1982,88(1):103-104.
    [32] Gradt T,Schneider T,Hubner W,Borner H. Friction and Wear at Low Temperatures [J]. Hydrogen Energy,1998,23(5):397-403.
    [33] Kuleba V I,Lyubarsk ij IM. Problems of Friction and Wear[M]. Kiev:Tekhnika,1976 .
    [34] Q.-M. Zhang,X.-N. Ying,A. Li,W.-M.Chen,X.-S. Xu,B.-Q. Li and Y.-N. Wang. Investigation on Three Intemal Friction Peaks at Low Temperature in Ni Doped YBa2Cu3O3-7[J]. Physica,2000,348:601-602.
    [35]古乐,王黎钦,郑德志,李柏松.液氮介质中Si3N4/9Cr18配副摩擦磨损性能研究[J].润滑与密封,2007,32(11):48-50.
    [36]赵琦.真空低温环境下轴承材料GCr15摩擦与润滑性能研究[D].哈尔滨工业大学优秀硕士学位论文,2008.
    [37]商全. PTFE基复合材料在真空低温条件下的摩擦磨损性能研究[D].哈尔滨工业大学优秀硕士学位论文,2009.
    [38]曲建俊,罗云霞,于佳庆.真空度和温度对超声马达特性的影响[J].哈尔滨工业大学学报,2006,38(06):848-851.
    [39]刘勇,叶铸玉,杨德庄,何世禹. TC4合金在真空低温下的摩擦磨损行为[J].哈尔滨工业大学学报,2006,38:335-339.
    [40]曲建俊,周宁宁,等.真空低温环境下超声马达驱动特性研究[J].摩擦学学报,2009,29(04):357-361.
    [41] Gamulya G D,Kopteva T A,Lebedeva I L,et al. Effect of Low Temperatures on the Wear Mechanism of Solid Lubricant Coatings in Vacuum[J]. Wear,1993,160:351-359.
    [42] Roberts E W. Thin Solid Lubricant Films in Space[J]. Tribology International,1990,23(2):95-104.
    [43]颜录科,李炜光,寇开昌,等. BaSO4 /PTFE复合材料在干摩擦条件下的摩擦磨损机理研究[J].航空材料学报,2010,30(05):78-81.
    [44] Chen W X,Li F,Han G,et al. Tribological Behavior of Carbon-nanotube-filled PTFE Composites[J]. Tribology Letters,2003,15(3):275-278.
    [45] Gong Deli,Zhang Bing,Xue Qun-ji,et al. Investigation of AdhesionWear of filledPolytetrafluoroethylene by ESC,AES and XRD[J]. Wear,1990,57:25-39.
    [46] Unal H,Mimaroglu A,Kadioglu U. Sliding Friction and Wear Behaviour of Polytetrafluoroethylene and its Composites under Dry Conditions[J]. Materials and Design,2004,25:239-245.
    [47]蔡立芳,董华东,李皓,等.不同有机填料填充PTFE复合材料性能的研究[J].郑州轻工业学院学报,2009,24(1):38-41.
    [48]路琴,张静,何春霞.混杂填料增强聚四氟乙烯复合材料的摩擦学性能研究[J].塑料,2008,37(3):15-18.
    [49]顾红艳,何春霞,等.纳米Si3 N4与石墨混合填充PTFE复合材料的性能[J].化工新型材料,2009,37(8):100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700