用户名: 密码: 验证码:
基于垃圾渗滤液中有机污染物特征的预处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液中有机污染物种类众多,不仅含有大分子难生物降解有机物,而且还含有许多有毒难生物降解的小分子有机物,这将降低甚至抑制生物处理中微生物的活性。为此,本文以成都市长安垃圾填埋场的渗滤液为研究对象,在对其中有机污染物进行较全面分析的基础上,从理论上提出高浓度有机废水厌氧可生化性的新指标,并就其适用性与传统的可生化性指标进行了对比分析。采用石灰沉淀-混凝与氧化法组合对垃圾渗滤液中的有机污染物进行预处理,阐明了去除含量较低的难生物降解有机物对提高渗滤液可生化性的重要性;考察了次氯酸钠氧化降解垃圾渗滤液中典型有机物的影响因素及途径。
     本文通过将超声波辅助萃取引入样品的预处理,与传统的振荡萃取相比,明显提高了萃取效率。利用C-MS分析仪,就不同极性色谱柱对有机污染物分析结果的适用性开展实验。结果表明:极性柱比较适于测定垃圾渗滤液中极性大的有机酸、醇类等物质,非极性柱能提高低含量烷烃、酯类等物质的检出率。长安垃圾填埋场的渗滤液在试验阶段为早期渗滤液与晚期渗滤液的混合液,因此,两种柱子配合使用非常必要。
     基于理论分析,提出CODCH4/COD值作为废水厌氧可生化性的评价指标,确定了CODCH4/COD值表示厌氧可生化性的数值界限。同时,在BMP分析的基础上,采用CODCH4/COD值考察了垃圾渗滤液的厌氧可生化性,并与BOD5/COD值评价结果进行对比。研究显示,CODCH4/COD值与BOD5/COD值用于垃圾渗滤液可生化性的评价时,得出的结论具有相似性,但CODCH4COD值略大于BOD5/COD值。究其原因:好氧条件下,总的生化耗氧量(BODu)小于理论完全需氧量(COD);厌氧条件下,有机物完全去除时CODcH4等于理论完全需氧量。此外,BOD5测试时间仅5d,而BMP测试时间一般在30d以上,从而使微生物有足够的时间去适应废水水质,故能较好地反映废水的可生化性。进一步的GC-MS分析表明,垃圾渗滤液中有机污染物的种类和性质直接影响其生化性能。在可生化处理的渗滤液A中(BOD5/COD=0.3~0.4),检出的有机污染物约90%为有机酸类物质;在不易生化处理的渗滤液B中(BOD5/COD<0.15),检出的有机污染物烷烃类约占50%。但无论是BOD5/COD值较低的渗滤液B,还是BOD5/COD值较高的混合渗滤液A,在进行生物处理之前都有必要先通过物化法将其所含的有毒有机污染物去除或降低到适当的浓度范围,以改善后续工艺的运行状况。
     本文以垃圾渗滤液A作为多级预处理的研究对象。在石灰沉淀-混凝法预处理部分,由于饱和石灰水本身碱性不高且渗滤液具有一定的缓冲作用,所以调节pH值时加入适量的NaOH有助于石灰沉淀作用。相对于FC和FS, PAC为较佳的絮凝剂。助凝剂PAM和PAC配合使用不但增大了渗滤液COD的去除率,而且有利于絮体的沉降。采用GC-MS法对石灰沉淀-混凝预处理前后渗滤液中有机污染物的分析表明,石灰沉淀-混凝预处理可以去除渗滤液中部分有机污染物,特别是含量较低的难生物降解有机物,进而提高渗滤液的可生化性。与此同时,表征渗滤液中难生物降解有机物的指标A260的分析结果也表明预处理后该类物质可去除约48.67%。
     为了将垃圾渗滤液中有毒且难生物降解的小分子有机物去除或降低到适当的浓度范围,实验对石灰沉淀-混凝预处理出水进行氧化处理。考察了pH值、氧化剂用量、反应时间和反应温度等对NaClO、Ca(ClO)2、KMnO4氧化处理效果的影响,并筛选出较优的氧化剂NaClO。采用NaClO进行正交试验时,试验结果表明:影响次氯酸钠氧化作用的主次顺序为NaClO折合有效氯用量>反应时间>反应温度,且次氯酸钠用量对处理效果有显著影响。氧化预处理后渗滤液中有机污染物的GC-MS分析显示,渗滤液中低含量有机污染物的谱峰经氧化处理明显下降的同时,有机污染物的总离子流图上部分短链脂肪酸的峰高增加。这归因于氧化剂NaClO将渗滤液中的部分有毒或难生物降解有机污染物转化成一系列小分子有机物,从而提高了渗滤液的可生化性。
     最后,以垃圾渗滤液中的典型有机污染物苯酚为对象,分别在无氨氮体系和氨氮体系中考察了NaClO处理苯酚废水的氧化特性,探讨了相应的反应途径。实验结果表明:无氨氮体系中,NaClO氧化降解苯酚时氯化中间产物氯酚有且仅有5种,它们分别是2-MCP、4-MCP、2,6-DCP、2,4-DCP和2,4,6-TCP。在试验所取的pH值范围6-9内,同一氯酚在不同pH条件下随反应时间增加表现出相似的变化趋势,但不同pH条件下浓度变化速率存在一定差异,且弱碱性条件下有利于苯酚连续氯化反应的进行。加氯量的增大不仅有利于苯酚的氯化,而且有利于苯酚氯化中间产物的转化和氧化降解。在含氨氮的苯酚废水中加入NaClO,氨氮将与苯酚发生竞争反应。折点加氯曲线表现为当氯与氨氮质量比由5.35上升到27.67时,氨氮去除率的变化趋势滞后;而余氯量则不断减小,没有折点出现。随着氨氮浓度增加,苯酚的氧化降解受到抑制:一方面,苯酚的去除率不断下降;另一方面,体系中检洲到一系列氯酚中间产物。这些氯酚中间产物至少有2种(2-MCP和4-MCP),至多有5种(2-MCP、4-MCP、2,6-DCP、2,4-DCP和2,4,6-TCP)。因此,在氨氮体系中加入NaClO氧化降解苯酚时将有利于大大降低THMs和HAAs等有害副产物的生成量。实验结果对NaClO处理含氨氮的难生化或有毒的有机废水具有一定的参考价值。
The sanitary landfill is the main treatment technology for municipal solid waste disposal currently. Landfill leachate generated at a landfill contains high concentration of organic pollutants, not only the recalcitrant ones with macromoleculars, but also toxic ones with small moleculars. All above will reduce or even inhibit the activity of microorganisms in biological treatment. Therefore, the leachate of Chang'an landfill in Chengdu was collected to research in this experiment. Based on a comprehensive analysis of organic pollutants by GC-MS, new anaerobic biodegradability index for high concentration organic wastewater was proposed in theory, and whose applicability was compared with the traditional biodegradability index. Landfill leachate was pretreated by the combination of lime sedimentation, coagulation and oxidation method for removing organic pollutants. The importance of removing low content of refractory organic pollutants for improving leachate biodegradability was illustrated. The influencing factor and reaction pathway were also studied when phenol, a typical organic matter in leachate, was oxided by sodium hypochlorite (NaClO).
     Organic pollutants in leachate were extracted by ultrasonic with CH2Cl2 and determined by GC-MS. Compared with the traditional liquid-liquid extraction, ultrasonic extraction could improve extraction rate of organic pollutants effectively. Capillary column stationary phase was researched on GC-MS measuring in order to offer an accurate method for the measure and analysis of organic matter in leachate. The results of study were as follows:polar capillary column HP-1NNOWAX was applicable for the analyse of polar organic pollutants such as carboxylic acids and alcohols, which were the major components of early landfill leachate. Non-polar capillary column HP-1MS could improve detectable rate and credibility of organic pollutants such as alkanes and esters whose content was low in early leachate and high in old leachate. Because the Leachate of Chang'an landfill in Chengdu was a mixed leachate, polar capillary column and non-polar capillary column should be used together.
     On the basis of theoretical analysis, that CODCH4/COD was regarded as wastewater's anaerobic biodegradability index was presented, and the bound of numberical value was laid down. At the same time, the anaerobic biodegradability of landfill leachate was appraised by CODCH4/COD through biochemical methane potential (BMP) test. When the anaerobic biodegradability index respectively were CODCH4/COD and BOD5/COD, a similar conclusion was obtained. But CODCH4/COD was greater than BOD5/COD for the same sample. The possible explanation was that total biochemical oxygen demand (BODu) was smaller than total chemical oxygen demand (COD) in aerobic condition, and with organic pollutants converted completely into methane CODCH4 was equal to COD in anaerobic condition. In addition, the test time was only 5 days for BOD5 and above 30 days for BMP where microbial flora had enough time to adapt to wastewater. Thus CODCH4/COD was feasible for the biodegradability evaluation of wastewater such as landfill leachate. Further GC-MS analysis showed that the type and nature of organic pollutants had an direct effect on leachate biodegradability. In high biodegradability (BOD5/COD=0.3~0.4) leachte A, the detected organic pollutants in leachate were mainly composed of carboxylic acids and their content was about 90%. While in low biodegradability (BOD5/COD<0.15) leachte B, the detected organic pollutants in leachate were mainly composed of alkanes and their content was about 50%. In spite of the high BOD5/COD value, mixed leachate A should be pretreated by physic-chemical methods before biological treatment like leachate B for increasing biodegradability.
     This study selected landfill leachate A as research subject of multiple pretreatment. Lime sedimentation and cogulation was used at the first stage. Because of the weak alkaline of saturated limewater and buffer action of landfill leachate, adding some NaOH was helpful for the lime sedimentation. Compared to ferric chloride(FC) and ferric sulfate(FS), poly aluminium chloride(PAC) was the better flocculant. The combined use of aid flocculating polyacrylamide(PAM) and PAC not only increased the removal rate of COD, but also was helpful to the sedimentation of flcos. The organic matter in leachate A which was pretreated before and after was analyzed by GC-MS. The results showed that some refratory organic compounds, in particular low content of them, could be removed by lime sedimentation and coagulation. Meanwhile, removal of UV260 absorbance which characterize refractory orgaic matter in leachat was 48.67% after pretreatment.
     For further decreasing the concentration of small molecular recalcitrant or toxic organic pollutants, chemical oxidation method was used for the effluent of limewater sedimentation and coagulation pretreatment. The effect of pH, oxidant dose, oxidation time and reaction temperature on the preoxidation of NaCIO, Calcium hypochlorite [Ca(ClO)2] and potassium permanganate (KMnO4 was respectively investigated. Contrast to Ca(C10)2 and KMnO4, NaClO was the best oxidant. Orthogonal experiments were designed to optimize the oxidation conditions of NaCIO based on the single affected factor. The results discovered that the influences of operating factors followed the order of oxidant dose>oxidation time> reaction time. And NaCIO dose had a drastic effect. GC-MS analysis showed that with peak height of low content orgaic pollutants decreased obviously, peak height of some small aliphatic acid increased in TIC of orgaic pollutant in leachate. The cause was that NaClO transformed some recalcitrant or toxic compounts into biodegradable products, or even to CO2.
     Phenol was a typical organic pollutant in landfill leachate. The degradation of phenol by oxidation using sodium hypochlorite were respectively investigated with ammonia nitrogen(NH3-N) and without NH3-N. And the reaction pathway during the oxidation processes were deduced. The results showed that there were only five chlorophenols such as 2-monchlorophenol(2-MCP),4-monchloropthenol(4-MCP),2,6-dichlorophenol(2,6-DCP), 2,4-monchlorophenol(2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) without NH3-N. In the range of 6-9, the variation of same chlorophenol concentration with reaction time showed similar trend, but the reaction rate was different at different pH. And the successive chlorination process could be facilitated in slightly alkaline and alkaline media. The increase of chlorine dose was not only beneficial to the chlorination of phenol, but also the conversion and degradation of chlorination products. In NH3-N system, there was a competion between ammonia and phenol after sodium hypochlorite was added to wastewater. Breakpoint chlorination curve was as follows:When the chlorine/ammonia weight ratio (Cl/N) rose from 5.35 to 27.67, the trend of NH3-N removal lagged behind and residual chlorine continuously decreased with no discont point. With increasing NH3-N concentration, the degradation of phenol was inhibited:on the one hand, the removal rate of phenol declined; on the other hand, a series of chlorophenols whose amount and sort showed an increase before decreasing were detected. Analysis of products by HPLC revealed that chlorophenols were only two chlorophenols(2-MCP and 4-MCP) at least, and five chlorophenols(2-MCP, 4-MCPl,2,6-DCP,2,4-DCP and 2,4,6-TCP) at most.2-monchlorophenol and 4-monchlorophenol were the highest activity of forming trihalomethanes (THMs), While 2,6-dichlorophenol,2,4-monchlorophenol and 2,4,6-trichlorophenol were the highest activity of forming haloacetic acids (HAAs).The experimental results provided certain reference value for dealing with organic wastewater with low biodegradability or toxicity by sodium hypochlorite in NH3-N.
引文
1. Foo K Y, Hameed B H. An overview of landfill leachate treatment via activated carbon adsorption process[J]. Journal of Hazardous Materials,2009,171:54-60.
    2.李国学,周立祥,李彦明.固体废物处理与资源化[M].北京:中国环境科学出版社,2005.
    3. Renou S, Givaudan J G, Poulain S, et al. Landfill leachate treatment:Review and opportunity[J]. Journal of Hazardous Materials,2008,150:468-493.
    4.徐海云.2006年全国城市生活垃圾处理发展综述[J].城市垃圾处理技术,2007,34(1):7-12.
    5.侯晓龙,马祥庆.中国城市垃圾的处理现状及利用对策[J].污染防治技术,2005,18(6):19-23.
    6.吴钦钦,刘振鸿.垃圾渗滤液的高级氧化处理工艺[J].广州化工,2005,33(5):71-73.
    7.李青松,金春姬,乔志香,等.垃圾填埋场渗滤液的产生及处理现状[J].青岛大学学报,2003,18(4):80-83.
    8.侯晓龙.城市垃圾渗滤液重金属污染特征及修复研究[D].福建农林大学硕十研究生论文,2006.
    9.孙向武,王国锋,朱磊.垃圾焚烧污染控制现状及研究进展[J].安徽农业科学,2008,36(2):670-671,756.
    10. Vehlow J. Municipal solid waste management in Germany[J]. Waste Management,1996,16:367-374.
    11. Magrinho A, Didelet F, Semiao V. Municipal solid waste disposal in Portugal[J]. Waste Management, 2006,26:1477-1489.
    12. Sharholy M, Ahmad K, Mahmood G, et al. Municipal solid waste management in Indian cities-a review[J]. Waste Management,2008,28:459-467.
    13. Moy P, Krishnan N, Ulloa P, et al.Options for management of municipal solid waste in New York City — preliminary comparison of health risks and policy implications[J]. Journal of Enivronmental Management,2008,87:73-79.
    14.中国环境保护产业协会城市生活垃圾处理委员会.2008年城市生活垃圾处理行业发展综述[J].中国环保产业,2009,6:17-23.
    15.陈丹,李建国.国内外垃圾填埋渗滤液控制的比较及对策[J].环境保护,2001,6:16-18.
    16.夏立江,许立孝,温小乐.城市垃圾渗沥液引起地下水氮污染的研究[J].农业环境保护,2001,20(2):108-110.
    17.罗泽娇,赵俊英,靳孟贵.武汉市某垃圾填埋场重金属对环境污染的研究[J].地质科技情报,2003,22(3):87-90.
    18. Sang N, Li G K. Genotoxicity of municipal landfill leachate on root tips of Vicia faba[J]. Muta Res, 2004,560:159-165.
    19. Cabrera G L, Rodriguez D M G. Genotoxicity of leachates from a landfill using three bioassays[J]. Muta Res,1999,426:207-210.
    20. Mikac N, Cosovic B, Ahel M, et al. Assessment of groundwater contamination in the vicinity of a municipal waste landfill (zagreb.croatia) [J]. Water Science and Technology,1998,37(8):37-44.
    21. Hallbourg R R, Delfino J J. Organic priority pollutants in groundwater and surface water at three landfill in north central florida[J]. Water Air Soil Pollut,1992,65 (3/4):307-322.
    22.张兰英,韩静磊,安胜姬,等.垃圾渗沥液中有机污染物的污染及去除[J].中国环境科学,1998,18(2):184-188.
    23.田扬捷,黄仁华,杨虹等,海滨垃圾填埋场渗沥液对地下水系统的污染[J].环境卫生工程,2005,13(1):1-5.
    24. Sharma T, Upadhyaya, N P, Shahi K B. Leachate characteristics of Bishnumati Landfill site. Research on Environmental Pollution and Management[M]. A Publication of Nepal Environmental and Scientific Services, Kathmandu, Nepal,1995.
    25.张锡根,费瑾,袁兆盾,等.城市垃圾堆埋的地质环境效应及其地质处置[M].北京:地质出版社,1996.
    26.郑曼英,李丽桃,刑益和,等.垃圾浸出液对填埋场周围水环境污染的研究[J].重庆环境科学,1998,20(3):17-20.
    27. Paxeus N. Organic compounds in municipal landfill leachates[J]. Water Science and Technology,2000, 41:7-8,323.
    28.周少奇,杨志泉.广州垃圾填埋渗滤液中有机污染物的去除效果[J].环境科学,2005,26(3):186-191.
    29.喻晓,张甲耀.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J].环境科学与技术,2002,25(5):42-46.
    30. Sakakibara Y, Kuroda M. Electric prompting and control of denitrification[J]. Biotech Bioeng,1993, 42:535-537.
    31.赵宗升,刘鸿亮,李炳伟,等.垃圾填埋场渗滤液污染的控制技术[J].中国给水排水,2000,16(6):20-23.
    32.刘可.城市垃圾渗滤液的特性分析及厌氧处理试验研究[D].西安建筑科技大学硕士学位论文,2004.
    33.杨朝晖,李晨,曾光明,等.前置MAP-SBBR工艺处理早期及晚期垃圾渗滤液试验[J].环境工程,2006,24(1):14-17.
    34.倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较[J].应用基础与工程科学学报,2004,12(2):148-160.
    35.柯水洲,欧阳衡.城市垃圾填埋场渗滤液处理工艺及其研究进展[J].给水排水,2004,30(11):26-33.
    36.沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及变化规律分析[J].污染防治技术,1999,12(1):10-14.
    37.孙自良.城市垃圾渗滤液处理技术和方法的探讨[J].有色金属设计,2005,32(1):58-62.
    38.李帆,张增强,黄启飞,等.准好氧填埋工艺温度变化特性研究[J].西北农林科技大学学报(自然科学版),2006,34(6):85-90.
    39.张宏忠,方少明,松全元,等.吸收光谱法在垃圾渗滤液膜处理技术中的应用研究[J].光谱学与光谱分析,2006,26(8):1449-1453.
    40.黄进刚,曲文亮,徐晓军,等.垃圾渗滤液中COD值与UV254值的相关性分析[J].华北水利水电学院学报,2008,29(5):99-101.
    41. Fan Huan-jung, Shu Hung-Yee, Yang Hsin-Sin, et al. Characteristics of landfill leachates in central Taiwan[J]. Science of the Total Environment,2006,361:25-37.
    42.张军政,杨谦,席北斗,等.垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J].光谱学与光谱分析,2008,28(11):2583-2587.
    43. Gade B, Layh M, Westermann H. Determination of organic parameters in waste and leachates from the hazardous waste landfill of Raindorf, Germany[J]. Waste Management&Research,1996(14):553-569.
    44.陈明,陈少华,许宜平,等.厌氧滤池-膜生物反应器处理垃圾渗滤液不同工艺段中有机氯农药残留的分析[J].环境化学,2004,23(4):451-454.
    45. Sanna K Marttinen, Riitta H Kettunen, Jukka A Rintala.Occurrence and removal of organic pollutants in sewages and landfill leachates[J]. The Science of the Total Environment,2003,301:1-12.
    46. Lotte Ask Reitzel, Anna Ledin. Determination of phenols in landfill leachate contaminated groundwaters by solid-phase extraction[J]. Journal of Chromatography A,2002,972:175-182.
    47. Takashi Yamamoto, Akio Yasuhara, Hiroaki Shiraishi. Bisphenol A in hazardous waste landfill leachates[J]. Chemosphere,2001,42:415-418.
    48.刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.
    49.杨志,汪蘋,张月琴,等GC-MS法对垃圾渗滤液生物处理前后微量有机物的研究[J].环境污染与防治,2005,27(3):218-221.
    50.杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析[J].化工学报,2005,56(11):2184-2188.
    51.刘田,孙卫玲,倪晋仁,等GC-MS法测定垃圾填埋场渗滤液中的有机污染物[J].四川环境,2007,26(2):1-5,10.
    52.邓琳,张维昊,封享华,等.固相微萃取-高效液相色谱法测定垃圾渗滤液中的双酚A[J].分析科学学报,2004,20(5):461-464.
    53. Andreottola G. Chemical and biological characteristics of landfill leachate. In:Landfilling of Waste Leachate[M]. London:Elsevier APPlied Science,1992.
    54. Rooker A P. A critical evaluation of factors required to terminate the post-closuremonitoring period at solid waste landfill Master of science thesis[D]. Department of Civil Engineering, Environmental Engineering and Water Resources, NC State University, Raleigh, NC,2000.
    55. Sheng H Lin, Chih C Chang. Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method[J]. Water Researeh,2000,34(17):4243-4249.
    56. Evelyne Gonze, Nadine Commenges, Yves Gonthier, Alain Bernis. High frequency ultrasound as a pre-or a post-oxidation for paper mill wastewaters and landfill leachate treatment[J]. Chemical Engineering Journal,2003,92:215-225.
    57. Josmaria Lopes de Morais, atricio Peralta Zamora. Use of advanced oxidation processes to improve the biodegradability for mature landfill leachates[J]. Journal of Hazardous Materials 2005,23:181—186.
    58. Daniele M Bila, Montalvao A Filipe, Alessandra C Silva, Maarcia Dezotti. Ozonation of a landfill leachate:evaluation of toxicity removal and biodegradability improvement[J]. Journal of Hazardous Materials,2005, B117:235-242.
    59.王锋,周恭明.铁-碳微电解法预处理老龄垃圾填埋场渗滤液的研究[J].环境污染治理技术与设备,2004,5(3):63-65.
    60.黄报远,金腊华,卢显妍,等.用Fe2+/03对垃圾填埋场后期渗滤液的预处理[J].暨南大学学报(自然科学版),2006,27(3):460-464.
    61.赵庆良,卜琳,王建芳,等.高级氧化-生化组合工艺处理垃圾渗滤液的研究[J].黑龙江大学自然科学学报,2007,24(6):701-707,711.
    62.李英华,余仁焕,李海波.混凝-气浮预处理垃圾渗滤液的模拟试验研究[J].安全与环境学报,2008,8(1):48-51.
    63.黄报远,金腊华,卢显妍,等.H2O2协同O3预处理垃圾填埋场后期渗滤液的研究[J].环境工程学报,2008,2(6):771-775.
    64. Byung-uk Bae, Eui-suk Jung, Yu-ri Kim, et al. Treatment of landfill leachate using activated sludge process and electron-beam radiation[J]. Wat Res,1999,33(11):2669-2673.
    65.陈胜,孙德智,陈桂霞,等.移动床生物膜法处理垃圾渗滤液COD降解动力学[J].化工学报,2007,58(3):733-738.
    66.杨军,黄涛.垃圾填埋场渗滤液处理方法及其分析[J].四川环境,2005,24(1):87-90,94.
    67.吴文继,孙亚兵,冯景伟,等.中晚期垃圾渗滤液的处理研究[J].环境污染治理技术与设备,2006,7(2):112-115.
    68.周爱红,董玉振,张百川,等.垃圾填埋场渗滤液处理的机理和方法的探讨[J].环境工程设计,2006,57-60.
    69. Booth S D J, Urfer D, Pereira G, et al. Assessing the impact of a landfill leachate on a Canadian wastewater treatment plant[J]. Water Environment Research,1996,68(7):1179-1186.
    70. Diamadopoulos E, Samaras P, Dabou X, et al. Combined treatment of leachate and domestic sewage in a sequencing batch reactor[J]. Water Science and Technology,1997,36:61-68.
    71.沈耀良,张建平,王惠民.苏州七子山垃圾填埋场渗滤液水质变化及处理工艺方案研究[J].给水排水,2000,26(5):22-26.
    72.胡邦,蒋岚岚,耿震.桃花山垃圾填埋场渗滤液处理工艺设计[J].中国给水排水,2007,23(20):40-42.
    73.乔勇,赵国志.垃圾渗滤液接入城市污水处理厂存在的问题探讨[J].给水排水,2006,32(2):13-16.
    74. Cecen F, Aktas O. Aerobic co-treatment of landfill leachate with domestic wastewater[J]. Environmental Engeering Science,2004,21:303-312.
    75. Welander U. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process[J]. Water Res,1998,32(5):1564-1570.
    76. Orupold K, Tenno T, Henrysson T. Biological lagooning of phenols-containing oil shale ash heaps leachate[J]. Water Science and Technolgy,2000,34(18):4389-4396.
    77. Jokela J P Y, Kettunen R H, Sormunen K M, et al. Biological nitrogen removal from municipal landfill leachate:lowcost nitrification in biofilters and laboratory scale in-situ denitrification[J]. Water Research,2002(36):4079-4087.
    78. Hoilijoki T H, Kettunen R H, Rintala J A. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature[J]. Water Research,2000,34:1435-1446.
    79. Hu Z H. Research on treating technology about landfill leachate[J]. Design and Research,1991(2): 15-18.
    80. Timur H, Ozturk I. Anaerobic treatment of leachate using sequencing batch reactor and hybrid bed filter[J]. Wat SciTech,1997(36):501-508.
    81.沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水[J].中国给水排水,1999,15(5):10-12.
    82.闫志明.上流式厌氧污泥复合床-膜生物反应器处理垃圾渗滤液的研究[D].昆明理工大学硕士学位论文,2004.
    83.邹莲花.城市生活垃圾填埋场渗滤液处理的实验研究[J].给水排水,1996,22(5):13-14.
    84.张望军,王国生.序批式活性污泥法处理城市垃圾埋场渗滤液的试验研究[J].湖南大学学报,1995(3):115-120.
    85. Tatsi A A, Zuoboulis A I, Matis K A, et al. Coagulation-flocculation pretreatment of sanitary landfill leachates[J]. Chemosphere,2003,53:737-744.
    86. Anastasios I, et al.The application of bioflocculant for the removal of humic acids from stabilized landfill leachate[J]. Journal of Enviromental Management,2004,70:35-41.
    87.徐冰峰,王琳,吴国娟.聚铁预处理垃圾渗滤液研究[J].昆明理工大学学报(理工版),2005,30(2):70-74.
    88.尚爱安,赵庆祥,等.混凝在垃圾渗滤液处理中的作用研究[J].中国给水排水,2004,20(1):50-53.
    89.祝万鹏,蒋展鹏,杨志华,等.有害废物填埋场渗滤液处理[J].给水排水,1997,23(11):12-14.
    90. Izzet Ozturk, Mabmut Altinbas, Ismail Koyuncu, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Management,2003,23:441-446.
    91. Fettig J, Stapel H, Steinert C, et al. Treatment of landfill leachate by preozonation and adsorption in activated carbon columns[J]. Water Science and Technology,1996,34(9):30-40.
    92.蒋建国,陈嫣,邓舟,等.沸石吸附法去除渗滤液中的氨氮研究[J].给水排水,2003,29(3):6-9.
    93. Majone M, Papini M P, Rolle E. Influence of metal speciation in landfill leachates on kaolinite sorption[J]. Water Research,1998,32(3):882-890.
    94.吕鹏,翟建平,付晓茹,等.用粉煤灰处理渗沥液的研究[J].粉煤灰综合利用.2003,1:14-16.
    95. Diamadopoulos E, Samaras P, Sakellaropoulos G P. Effect of activated carbon properties on the adsorption of toxic substances[J]. Water Science and Technology,1992,25(1):153-160.
    96.石磊.矿化垃圾生物反应床处理填埋场渗滤液的工艺和机理研究[D].同济大学博士学位论文,2005.
    97.弓晓峰,雷婷,武和胜,等.高铁酸钾滤液处理垃圾渗滤液[J].水处理技术,2008,34(6):37-39.
    98.舒慧,赵山才.氧化剂在低浓度难降解垃圾渗滤液中的试验研究[J].苏州科技学院学报(工程技术版),2003,16(1):30-35.
    99. Huang S, Diyamandoglu V, Fillos J. Ozonation of leachates from aged domestic landfills[J]. Ozone: Science and Engineering,1993,15(5):433-444.
    100.李天成,王军民,朱慎林.环境工程中的化学反应技术及应用[M].北京:化学工业出版社,2005.
    101. Antonio LoPez, Michele Pagano, Angela Volpe. Fenton's pre-treatment of mature landfill leachate[J]. Chemosphere,2004, (54):1005-1010.
    102. Kim S M, Geissen S U, Vogelpohl A. Landfill leachate treatment by a photoassisted fenton reaction[J]. Water Sci Technol,1997,35:239-248.
    103. Peterson Bueno Moras, Rodnei Bertazzoli. Electrodegradation of landfill leachate in a flow electrochemical reactor[J]. Chemophere,2005,58:41-46.
    104.杨云君,李庭刚,堵国成.电解氧化法顸处理垃圾渗滤液[J].环境科学研究,2003,16(6):53-56.
    105. Cao Shengli, Chen Guohua, Hu Xijun, et al. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J]. Catalysis Today,2003,88:37-47.
    106. Piatkiewicz W. A polish study:Treating landfill leachate with membranes[J]. Filtration & Seperation, 2001,22(7/8):22-26.
    107. Hurd S, Kennedy K, Droste J, et al. Low-pressur reverse osmosis treatment of landfill leachate[J]. Journal of Soild Waste Technology and Management,2001,27(1):1-14.
    108. Ozturk I, Altinbas M, Koyuncu I, et al. Advanced hysico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Manage,2003,23:441-446.
    109.王宗平,陶涛,袁居新.垃圾渗滤液预处理—氨吹脱[J].给水排水,2001,27(6):15-19.
    110.吴方同,苏秋霞,孟了,等.吹脱法去除城市垃圾渗滤液中氨氮[J].给水排水,2001,27(6):20-24.
    111. Ieekie J O, Paeey J G, Halvadakis C. Landfill management with moisture control[J]. Journal of the Environmental Engineering Division. ASCE,1979,105(2):337-355.
    112. Townsend T G, Millen W L, et al. Acceleration of landfill stabilization using leaehate recycle[J]. Journal of the Environmental Engineering,1996,122(4):263-268.
    113.徐迪民.垃圾填埋场渗滤液回灌技术的研究.Ⅰ垃圾渗滤液填埋场回灌的影响因素[J].同济大学学报,1995,23(4):371-375.
    114. Bulc T, Vrhhovsek D, Ku Kanja U. The use of constructed wetland for landfill leachate treatment[J]. Water Science and Technolgy,1997,35(5):301-306.
    115.Kozub D D, Liehr S K. Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate[J]. Water Science and Technolgy,1999,40(3):75-82.
    116.杨柳燕,马文漪.环境微生物工程[M].南京:南京大学出版社,1998:114.
    117.杨涛,傅金祥,梁建浩.次氯酸钠预氧化处理微污染水源水的试验[J].工业用水与废水,2005,36(6):14-16.
    118.郑作添,周荣丰,卢亮.受木屑污染雨水中氮的去除[J].净水技术,2007,26(3):25-28.
    119.王光华,李文兵,余龙江,等.次氯酸钠处理终冷水中氰化物硫化物的研究[J].环境污染与防治,2005,27(9):679-682.
    120.王新强,梁利平,谢娟.絮凝沉降-NaClO/活性炭氧化-吸附法处理采油污水实验研究[J].工业水 处理,2006,26(2):60-63.
    121.李庭刚,陈坚.电化学氧化法处理高浓度垃圾渗滤液的研究[J].上海环境科学,2003,22(12):892-897.
    122. Matsubara, Kiwamu, Hirota, et al. Organic wastewater treatment for COD removal and denitrification using electrolytic means. Jpn. Kokai Tokkyo Koho JP 2004255247 A2 [P].16 Sep 2004,12 pp.
    123.焦斌权,李晓红,卢义玉,等.电化学法改善晚期渗滤液可生化性试验研究[J].重庆建筑大学学报,2005,27(4):81-83
    124. Chiang Li-Choung, Chang Juu-En, Wen Ten-Chin. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Wat Res,1995,29(2):671-678.
    125.李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究[J].中国给水排水,2003,16(6):53-56.
    126.刘咏.基于处理循环式准好氧垃圾渗滤液的电化学方法研究[D].西南交通大学博士学位论文,2007.
    127. Ge Fei, Zhu Lizhong, Chen Hairong. Effects of pH on the chlorination process of phenols in drinking water[J]. Journal of Hazardous Materials,2006, B133:99-105.
    128. Jaromir Michalowicz, Wirgiliusz Duda, Jadwiga Stufka-Olczyk. Transformaion of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite[J]. Chemosphere,2007,66:657-663.
    129.张茹.次氯酸钠中水消毒的研究[D].中国地质大学(北京)硕士学位论文.2006.
    130.潘力军,丁国际,李薇,等.氨氮浓度对次氯酸钠消毒影响研究[J].中国环境卫生,2005,8(1):20-24.
    131.陈忠林,陈杰,焦中志,等.高锰酸钾预氧化控制氯/氯胺消毒的卤乙酸生成量[J].环境科学学报,2006,26(7):1083-1087.
    132. Benfenati E, Porazzi E, Bagnati R, et al. Organic tracers identification as a convenient strategy in industrial landfills monitoring[J]. Chemosphere,2003,51:667-683.
    133.周文敏,傅德黔,孙宗亮.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4):1-4.
    134.张爱平,刘丹,苏艳萍,等.准好氧矿化垃圾去除渗滤液中有机物的试验研究[J].西南交通大学学报,2008,43(1):142-146.
    135.赵淑英,宋湛谦,王秋芬,等.植物农药萃取新技术的研究进展[J].林产化学与工业,2004,24(2):102-106.
    136. Schuring W Fred, et al. Journal of American Oil Chemists Society,1978,44 (10):585-589.
    137. Riera E, Golas Y, Blaneo A, et al. Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound[J]. Ultrasonics Sonochemistry,2004,11:241-244.
    138. Wu Jianyong, Lin Lidong, Chau Foo Tim.Ultrasonics Sonochemistry,2001,18 (4):347-352.
    139.曹雁平,刘佐才.植物成分超声浸取研究现状[J].化工进展,2005,24(11):1249-1252.
    140. Rao K S等.氧化矿石氨浸中超声波的影响[J]. Metall. Mater. Trans B.1997,28(4):721-723.
    141. Consuelo Sanchez-Brunete, Esther Miguel, Jose L. Tadeo. Determimation of polybrominated diphenyl ethers in soil by ultrasonic assisted extraction and gas chromatography mass spectrometry[J]. Talanta, 2006,70(5):1051-1056.
    142.李军.超声提取-气相色谱法测定覆盖区土壤中的六六六和滴滴涕[J].2003,22(4):248-253.
    143. Pesic Batric, Zhou Taili. Application of ultrasound in extractive metallurgy:sonochemical extraction of nickel[J]. Metallurgical Transactions B(Process Metallurgy),1992,23(1):12-22.
    144.徐盛明,张传福,李作刚.超声波在金属溶剂萃取及离子交换中的应用[J].应用声学,1994,14(5):29-31.
    145.陈坚,刘和,李秀芬,等.环境微生物实验技术[M].化学工业出版社,2008.
    146.安虎仁,钱易,顾夏声.染料在好氧条件下的生物降解性能[J].环境科学,1994,15(6):16-18.
    147. OECD Expert Group. Determination of the biodegradability of anionic synthetic surface active agents[R]. Organization for Economic Cooperation and Development. Paris,1981.
    148. Soap and Detergent Association. Subcommittee on Biodegradation Test Methods. A procedure and standards for the determination of the biodegradability[J]. J Am Oil Chem Soc,1965,42:986.
    149. Pitter P. Determination of biological degradability of organic substances[J]. Water Res,1976,10: 231-235.
    150.Zahn R, Wellens H. Ein Einfaches Verfahren zur Prufung der Biologischen Abbaubarkeit von Produkten und Abwasserinhaltsstoffen[J]. Chem Ztg,1974,98:228.
    151.顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1990.
    152. Fischer W K. Der Geschlossene Flaschentest. Eine Einfache Quantitive Methode zur Bestimmung der Bioloischen Abbaubarkeit[J]. Fette Seifen Anstrichm.1963,65:37.
    153.钱易.工业废水可生化性的探讨[J].建筑技术通讯(给水排水),1979,3:5-11.
    154.韩庆莉.应用瓦勃氏技术研究工业污水的可生化性[J].环境保护科学,2002,20(2):60-63.
    155.张忠祥.关于有机化学污染物与有机化工废水的生物毒性及生物降解性的初步研究[J].化工环保,1984,4(4):211-218.
    156. Strotmann U J, Schwarz H, Pagga U. The combined CO2/DOC test—a new method to determine the biodegradability of organic compounds[J]. Chemosphere,1995,30(3):525-538.
    157. Wenning M, Zhanpeng J. A test method for determination biodegradability of organic substances[J]. J of Environ Sci,1995,7(2):146-150.
    158. Anderson D A. Growth Response of Certain Bacteria to ABS and Other Surfactants[C]. Proc 19th Ind Waste Conf Purdue Univ,1964.
    159. Jiang Z, Hongwei Y, Shaoqi S, et al. Biodegradability of organic substances by ATP test[J]. J Toxicol Environ Chem,2000,74(3-4):45-55.
    160.蒋展鹏,杨宏伟,师绍琪.有机化合物厌氧生物降解性的测定[J].给水排水,1999,25(6):20-23.
    161.贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,56-57.
    162. EPA. Toxic Substance Control Act Test Guidelines. Final Rules[R].Federal Registee,1985,50:39-78.
    163. ECETOC. Anaerobic Biodegration Task Group. Anaerobic Biodegradation:Screening Test for Assessment.2nd Draft[R]. Organization for Economic Cooperation and Development. Paris.1987.
    164. Owen W F. Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J]. Water Resarch,1979,13:485-490.
    165.斯皮思RE著,李亚新译,马志毅校.工业废水的厌氧生物处理[M].北京:中国建筑工业出版社,2001.
    166.俞琉馨等.环境工程微生物检测手册[M].北京:中国环境科学出版社,1990.
    167. Jetten, M.S.M., Horn, S.J.& van Loosdrecht, M.C.M. Towards a more sustainable wastewater treatment system[J]. Water Science & Technology,1997,35(9):171-180.
    168.中立贤,刘玫瑰,刘忠敏.用核素双标记法研究厌氧生物降解途径同位素[J].同位素,1994,7(3):141-145.
    169.郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006:160.
    170. Pitter P. Biodegradability of organic substances in the aquatic environment[M]. London:CRC. Press.
    171. USA Environmental Protection Agency. Chemical fate test guidelines. USA:EPA560/6-82-003[S]. Environmental Protection Agency, Washington, D.C,1982.
    172. The Biodegradability and Bioaccumulation of New and Existion Chemical Substances[R]. Ministry of International Trade and Industry. Japan.1978.
    173. Jae Kyoung Cho, Soon Chut Park. Biochemical methane Potential and solid state anaerobic digestion of Korean food wastes[J]. Bioresource Technology,1995,52:245-253.
    174.张胜利,郑爽英,刘丹等.超声波辅助萃取GC-MS法测定垃圾渗滤液[J].环境污染与防治,2008,30(7):32-34,37.
    175.胡香芳,厌氧序批式反应器处理垃圾渗滤液的试验研究[D].西南交通大学硕十研究生学位论文,2008.
    176.王艳捷,吴敏.“老龄”垃圾渗滤液的厌氧毒性试验研究[J].广州环境科学,2007,22(4):6-9.
    177.姚重华.混凝剂[M].中国环境科学出版社,1992.
    178.郑忠,胡纪华.胶体稳定性[M].广州:广东科技出版社,1993.
    179.许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑T业出版社,1992.
    180.薛丹丹,刘丹,李军,等.垃圾渗滤液输送管道结垢原因分析[J].四川环境,2008,27(6):9-12,24.
    181. Ong K C, Cash J N, Zabik M J, et al. Chlorine and ozone washes for Pesticide removal from apples and processed apple sauce[J]. Food Chemistry,1995,55(2):153-160.
    182. Hwang E, Jerry N C, Ma Tthew J Z. Postharvest Treatment for the Reduction of Mancozeb in Fresh Apples[J]. J Agric Food Chem,2001,49:3127-3132.
    183.王琦,张了德,刘伟,等.次氯酸钙对蔬菜上甲胺磷农药残留降解的研究[J].食品工业科技,2006,27(7):169-171.
    184. Akcil A. Destruction of cyanide in gold mill effluents:biological versus chemical treatment[J]. Biotechnology Advances,2003,21:501-511.
    185. Petrusebski Vlaski A. et al. Influence of Algae Species and Cultibation Conditions on Algae Removal in Direct Filtration[J]. Wat Sci Tech,1983,27(11):211-216.
    186.马军.高锰酸钾去除与控制饮用水中有机污染物效能和机理[D].哈尔滨建筑大学,1990.
    187. Moyers B and Wu J S. Removal of Organic Precursors by Permanagate Oxidation and Alum Coagulation[J]. Wat Res,1985,19(3):309-315.
    188.唐利,崔福义,王建玲,等.高锰酸钾强化混凝处理洗车废水的研究[J].给水排水,2005,31(8):65-67.
    189.李光,武志明.酸碱度对次氯酸钠消毒液稳定性的影响[J].河南预防医学杂志,2004,15(3):151-152.
    190.关国栋.高炉煤气洗涤水脱氰的研究[D].湖北:武汉科技大学硕十学位论文,2005.
    191.刘源月.二氧化氯处理中药制药废水的氧化特性研究[D].成都:西南交通大学硕士研究生学位论文,2004.
    192.葛元新,朱志良,赵建大.水体中腐殖酸含量与ClO2投加量问的相互关系研究[J].河南师范大学学报(自然科学版),2006,34(1):73-76,81.
    193.黄秀华,孙郁莉.气相色谱法测定水中酚类化合物[J].中国给水排水,2000,16(3):52-53.
    194.张红雨,张杰,黄秀华.固相微萃取/GC直接测定废水的三种氯酚[J].分析科学学报,2002,18(5):421-423.
    195.刘桂明,邓义敏.水中苯酚、五氯酚、2,4,6-三氯酚的高效液相色谱法[J].云南环境科学,2000,19(4):59-61.
    196.丛燕青.氯酚的电化学降解行为及治理研究[D].浙江:浙江大学博十学位论文,2005.
    197. White G C. The Handbook of Chlorination[M]. New York:Van Nostrand Reinhold,1986:172.
    198. Metcalf & Eddy. Wastewater Engineering:Treatment and Reuse[M]. New York:MeGraw-Hill Book Co,2003:1235-1238.
    199.黄君礼,窦广中,杨滨生.水中腐殖酸等前驱物对卤仿形成的影响[J].环境化学,1987,6(5):14-22.
    200.王小文,张晓健,陈超,等.芳香类有机物生成氯化消毒副产物特性及其与化学结构的关系[J].环境科学,2006,27(8):1603-1607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700