用户名: 密码: 验证码:
风电并网的无功优化控制及其数模混合仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电在电网中的渗透率不断增加,其间歇性、随机性等特点对电网的影响日益显著,无论是风电大规模集中并入电网,还是风电小规模分散式接入电网,均对电网的运行和控制提出了严峻挑战。目前,风电并网区域的无功电压问题尤其突出,深入研究风电机组并网的无功控制技术,对提高电网接纳风电能力和保证电网安全稳定运行具有重要意义。本文从挖掘双馈风电机组的无功控制潜力、实现多风电场接入区域电网的无功优化调度的角度,研究风电并网的无功和电压优化协调控制策略,并搭建风电并网控制的数模混合仿真系统,对所提出的控制方案进行实验验证。本文主要的研究内容及成果如下:
     (1)建立了三相静止坐标系下和同步旋转坐标系下双馈风力发电机及PWM换流器的数学模型;推导了双馈风电机组转子电压、电流与DFIG定子输出功率之间的关系以及DFIG定、转子间的功率关系;分析了DFIG风电机组的控制策略,建立了双PWM换流器矢量控制模型。
     (2)基于上述理论分析,研究了转子换流器、定子绕组、网侧换流器以及机端电压等因素对DFIG的无功功率极限的影响;针对双馈风电机组自身的优化运行控制,深入研究全补偿控制、最小转子电流控制、最小损耗控制和恒转子电流控制四种控制策略的特点,并推导转子电流参考值的计算方法;针对DFIG对电网的无功补偿控制,提出了基于无功电流裕度的转子侧换流器优先、网侧换流器优先以及二者比例分配无功三种协调控制策略,以实现对换流器容量的充分利用。
     (3)提出了一种多风电场并网的区域电网无功电压优化协调控制策略,该控制策略综合考虑系统电压质量和网损的优化,并采用遗传算法进行优化求解。利用区域电网的无功电压灵敏度和无功网损灵敏度信息对基于潮流计算的遗传算法进行改进,提高了优化算法的计算速度,进而增强了无功协调控制的实时性。在上述研究基础上,提出了一种基于超短期风电功率预测和无功电压优化的风电场并网在线预警与无功优化控制系统的设计方案,利用PowerFactory软件提供的引擎模式功能和DGS接口进行二次开发,构建了与电网EMS的数据接口,实现了以PowerFactory软件为计算核心的风电并网安全预警与无功优化控制系统。
     (4)针对研究风电并网控制相关问题的需要,提出了一种基于NI-PXI平台的数模混合仿真系统实现方案,通过对该混合仿真系统简化模型的稳定性分析,讨论了实现该方案对接口算法和参数的基本要求,并提出了实时信号同步控制策略以解决数字仿真系统与物理仿真系统反馈电压信号同步问题。在上述研究的基础上,构建了实际的数模混合仿真系统,对风电并网功率控制以及多风电场并网无功优化协调控制进行了数模混合仿真实验,通过实验验证了所提混合仿真方案的可行性以及控制策略的有效性。
With wind power penetration increasing, the effects on power system become more significant due to the uncertain nature of wind power, and the serious challenges at power system security operation and control are encountered whether wind power is integrated into grid as large-scale centralized mode or small-scale decentralized mode. At present, since the reative power and voltage issues emerged at the regional grid with wind power, it is necessary for increasing the capbility of accepting wind power and ensuring power system operation security. For utilizing the reactive power control of DFIG and optimizing the reactive power of the regional grid with multi wind farms, the reacitve power and voltage optimal coordinated control strategy is studied, and a digital/physical hybrid simulation system for wind power control is constructed to verify the proposed contro strategy. The main contents and contributions are as follows:
     (1) The mathematical models of DFIG and PWM converter under three-phase stationary coordinate and the synchronous coordinate are constructed, and the relationship is derived in detail which is between the rotor voltage, current and output power of DFIG stator in steady state conditions. The general control strategy for DFIG wind turbine is introduced, and the control model for dual PWM converters were built up.
     (2) Based on the theoretical analysis above, it was analyzed in particular that the impact on DFIG reactive power limit caused by design of rotor converter, stator winding, the grid side converter and terminal voltage factors, etc. For the optimal operation control of the DFIG, it were studied deeply that the characteristics of four control strategy including the full compensation control, the minimum rotor current control, the minimum power loss control, and the constant rotor current control. The algorithm for calculating the rotor current reference values were given. According to control of reactive power compensation, three coordinated control strategies are proposed which are based on RSC priority, GSC priority, and proportional dispatching, so as to achieve fully use of converter capacity.
     (3) A coordinated control strategy of reactive power optimization for multi wind farms integrated into regional grid is proposed, which considered the voltage quality and power loss synthetically, and optimal solution is solved via genetic algorithm. An improved genetic algorithm is proposed which utilized the reactive power sensitivity to voltage and to power loss. As results, the optimal computing speed of genetic algorithm and the real-time performance of the coordinated control are improved significantly. Supported by above studies, a design scheme of online pre-alarm and reactive power optimal control system for wind power grid integration is proposed that based on the ultra-short-term wind power prediction and reactive power optimization. Secondary development is performed which utilized the engine mode supported by PowerFactory software and DGS interface, and the data interface is developed which used for exchanging data with EMS. Finally, the pre-alarm and reactive power optimal control system is realized which takes PowerFactory engine as the computing core.
     (4) According the requirement of study on wind power control, a design scheme for DPHS is proposed which is based on the NI-PXI platform. The stability of the proposed scheme is analyzed via using the simplified model of the DPHS, and the base demands for the interface algorithm and parameters are discussed. A control strategy for synchronizing grid voltage signal between digital simulation and physic simulation is proposed. Based on the above study, a real DPHS system is established, on which wind power control and coordinated control for multiple wind farm are performed, and the validity of the proposed scheme and the feasibility of the control strategy are verified.
引文
[1]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[EB/OL]. http://www.cwea.org.cn/upload/2011年风电装机容量统计.pdf
    [2]李俊峰,蔡丰波,唐文倩,等.风光无限:中国风电发展报告2011[M].北京:中国环境科学出版社,2011
    [3]青云.华锐风电中国首台6兆瓦风电机组出产[J].装备制造,2011,(6):77
    [4]寇兴魁.酒泉风电脱网事故原因及应对措施[J].上海电力学院学报,2011,27(4):323-326,358
    [5]何世恩,董新洲.大规模风电机组脱网原因分析及对策[J].电力系统保护与控制,2012,40(1):131-137,144
    [6]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):3-11
    [7]李晓燕,余志.海上风力发电进展[J].太阳能学报,2004,25(1):78-84
    [8]肖运启,贾淑娟.我国海上风电发展现状与技术分析[J].华东电力,2010,38(2):277-280
    [9]林鹤云,郭玉敬,孙蓓蓓,等.海上风电的若干关键技术综述[J].东南大学学报:自然科学版,2011,41(4):882-888
    [10]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-76
    [11]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18,34
    [12]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23
    [13]Olimpo Anaya-Lara, Nick Jenkins, Janaka Ekanayake, et al. Wind energy generation:Modeling and control[M]. Wiley,2009
    [14]Muller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Applications Magazine,2002,8(3):26-33
    [15]申洪.变速恒频风电机组并网运行模型研究及其应用[D].北京:中国电力科学研究院,2003
    [16]Tao Sun. Power Quality of Grid-Connected wind turbines with DFIG and their interaction with the grid[D]. Denmark:Institute of Energy Technology Aalborg University,2004
    [17]李晶.变速恒频双亏风电机组动态模型及并网控制策略的研究[D].河北:华北电力大学,2004
    [18]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].浙江:浙江大学,2005
    [19]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研[D].湖北:华中科技大学,2005
    [20]谢震.变速恒频双馈风力发电模拟平台的研究[D].安徽:合肥工业大学,2005
    [21]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008
    [22]肖运启.双馈型风力发电机励磁控制与优化运行研究[D].河北:华北电力大学,2008
    [23]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海:上海大学,2008
    [24]贾增周.大型风力发电机组的智能滑模变结构控制研究[D].河北:华北电力大学,2008
    [25]张学广.变速恒频双馈风电机组并网控制策略研究[D].黑龙江:哈尔滨工业大学,2010
    [26]贾俊川.双馈风力发电系统中双变流器优化联合控制[D].北京:华北电力大学,2011
    [27]SLC I IA&DT(西门子中 国).DTC 与矢量控制[EB/OL]. http://www2.ad.siemens.com.cn/download/Upload/MC/faq/F0008.pdf
    [28]Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. IEE Proceedings-Electric Power Applications,1996,143(3): 231-241
    [29]李晶,宋家骅,王胜伟.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105
    [30]刘其辉,贺益康,赵仁德.交流励磁变速恒频风力发电系统的运行与控制[J].电工技术学报,2008,23(1):129-136
    [31]Boussak M, Jarray K. A high-performance sensorless indirect stator flux orientation control of induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2005,53(1):41-49
    [32]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162
    [33]Chondrogiannis S, Barnes M. Stability of doubly-fed induction generator under stator voltage oriented vector control [J]. IET Renewable Power Generation,2008, 2(3):170-180
    [34]Tapia A, Tapia G, Ostolaze J X. Reactive power control of wind farms for voltage control applications[J]. Renewable Energy,2004,29:377-392
    [35]杨顺昌,廖勇,李辉,等.异步化同步发电机[M].北京:科学出版社,2009
    [36]Arnalte S, Burgos J C, Rodriguez-Amenedo J L. Direct torque control of a doubly fed induction generator for variable speed wind turbines[J]. Electric Power Components and Systems,2002,30(2):199-217
    [37]马小亮,刘志强.双馈电动机直接转矩控制技术的研究[J].电工技术学报,2003,18(5): 63-68
    [38]姚兴佳,井艳军,王文卓,等.双馈风力发电机直接转矩控制的研究[J].沈阳工业大学学报,2006,28(6):671-674
    [39]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术[J].沈阳工业大学学报,2006,28(2):206-209,229
    [40]张叶明,赵克友.基于直接转矩控制的双馈风力发电系统[J].机械工程与自动化,2009,2:127-129
    [41]Xing Zuoxia, Yao Xingjia, Sui Hongxia. DTC in Doubly-fed VSCF wind turbine control system[C]. Proceeding of IEEE ICIT,2006:2715-2718
    [42]Lie Xu, Phillip Cartwright. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation[J]. IEEE Transactions on Energy Conversion,2006, 21(3):750-758
    [43]Z. Dawei, X. Lie. Direct power control of DFIG with constant switching frequency and improved transient performance[J]. IEEE Transactions on Energy Conversion, 2007,22:110-118
    [44]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[J].电力系统自动化,2008,32(1):61-65
    [45]Hughes F M, Anaya-Lara O, Jenkins N, et al. Control of DFIG-based wind generation for power network support[J]. IEEE Transactions on Power Systems, 2005,20(4):1958-1966
    [46]Hughes F M, Anaya-Lara O, Jenkins N, et al. A power system stabilizer for DFIG-based wind generation[J]. IEEE Transactions on Power Systems,2006, 21(2):763-772
    [47]Anaya-Lara O, Hughes F M, Jenkins N, et al. Contribution of DFIG-based wind farms to power system short-term frequency regulation[J]. Generation, Transmission and Distribution, IEE Proceedings-,2006,153:164-170
    [48]Zhong Wang, Yuanzhang Sun, Guojie Li, et al. A novel control strategy for DFIG based on magnitude and frequency of rotor voltage for wind power generation[C]. Asia-Pacific Power and Energy Engineering Conference 2009, Wuhan, China,2009
    [49]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90
    [50]廖勇,杨顺昌.交流励磁发电机双通道励磁系统反馈系数的选取原则[J].中国电机工程学报,1999,19(1):52-55
    [51]Krzeminski Z. Control system of doubly fed induction machine based on multiscalar model[C]. IFIC 11th World Congress, Tallin,1990
    [52]Krzeminski Z. Sensorless multiscalar control of double fed machine for wind power generators[C]. Proceedings of Power Conversion Conference.2002, (1): 334-339
    [53]赵仁德,贺益康,黄科元,等.变速恒频风力发电机用交流励磁电源的研究[J].电工技术学报,2004,19(6):1-6
    [54]苑国锋,柴建云,李永东,等.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94
    [55]姚骏,廖勇,周求宽,等.双PWM控制交流励磁电源直流链电压的稳定控制策略[J].电力系统自动化,2007,31(21):63-66,81
    [56]Mohsen Rahimi, Mostafa. Parniani. Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators[J]. IEEE Transactions on Energy Conversion,2010,25(3):873-883
    [57]Wang Y, Xu L, Williams B W. Compensation of network voltage unbalance using doubly fed induction generator-based wind farms[J]. IET Renewable Power Generation,2009,3(1):12-22
    [58]王克成,余达太.感应电动机双馈调速的3种最佳控制方法[J].北京科技大学学报,1999,21(4):400-402
    [59]张文娟,高勇,杨媛.双馈异步发电机的不同目标优化控制[J].电网技术,2009,33(7):109-114
    [60]骆皓,郭效军,曹阳,等.双馈发电机定子PQ输出数值区间研究[J].电力自动化设备,2009,29(1):104-107
    [61]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江:浙江大学,2005
    [62]秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术,2009,33(2):87-92
    [63]徐大平,肖运启,吕跃刚,等.基于模糊逻辑的双馈型风电机组最优功率控制[J].太阳能学报,2008,29(6):644-651.
    [64]申洪,王伟胜.戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003,21(11):60-63
    [65]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略.中国电机工程学报,2007,27(9):77-82
    [66]Kayikci M, Milanovic J V. Reactive power control strategies for DFIG-based plants. IEEE Transactions on Energy Conversion,2007,22(2):389-396
    [67]贾俊川,刘晋,张一工.双馈风力发电系统的新型无功优化控制策略[J].中国电机工程学报,2010,30(30):87-92
    [68]Slootweg J G. Wind power:modelling and impact on power system dynamics [D]. Delft:Technical University of Delft,2003
    [69]孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007,31(20):55-62
    [70]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82
    [71]Yuan-zhang Sun, Zhao-sui Zhang, Guo-jie Li, et al. Review on frequency control of power systems with wind power penetration[C].2010 International Conference on Power System Technology, Hangzhou, China,2010
    [72]关宏亮,迟永宁,王伟胜,等.双馈变速风电机组频率控制的仿真研究[J].电力系统自动化,2007,31(7):173-177
    [73]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化,2009,33(13):78-82
    [74]文玉玲,晁勤,吐尔逊·依布拉音.风电场对电网继电保护的影响[J].电网技术,2008,32(12):15-18
    [75]宋少群,付超,张兰英,等.风电场并网联络线重合闸的合理配置方式[J].电力系统自动化,2010,34(20):77-79,93
    [76]Pradhan A K, Geza Joos. Adaptive distance relay setting for lines connecting wind farms[J]. IEEE Transactions on Energy Conversion,2007,22(1):206-213
    [77]苏常胜,李凤婷,武宇平,等.双馈风电机组短路特性及对保护整定的影响[J].电力系统自动化,2011,35(6):86-91
    [78]余嘉彦,袁越,周建华,等.风电场运行参数变化对其出口输电线路距离保护 的影响[J].电力系统保护与控制,2011,39(15):64-69
    [79]郑昕,杨德州,王利平,等.大型分布式电源模型化研究及其并网特性分析——(二)双馈风机专题[J].电力系统保护与控制,2011,39(8):39-45
    [80]Chen Z, Spooner E. Grid power quality with variable speed wind turbines. IEEE Transactions on Energy Conversion,2001,16(2):148-154
    [81]关宏亮,赵海翔,王伟胜,等.风电机组低电压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177
    [82]胡家兵,贺益康.双馈风力发电系统的低压穿越运行与控制[J].电力系统自动化,2008,32(2):49-52
    [83]A. D. Hansen, Gabriele Michalke. Fault ride-through capability of DFIG wind turbines[J]. Renewable Energy,2007,32:1594-1610
    [84]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008,(1):46-50,55
    [85]Muyeen S M, Rion Takahashi, Toshiaki Murata. A variable speed wind turbine control strategy to meet wind farm grid code requirements[J]. IEEE Transactions on Power Systems,2010,25(1):331-340
    [86]Mohseni M, Islam S, Masoum M A S. Fault ride-through capability enhancement of doubly-fed induction wind generators[J]. IET Renewable Power Generation, 2011,5(5):368-376
    [87]Hansen A D, Sorensen P, Iov F, et al. Centralised power control of wind farm with doubly fed induction generators[J]. Renewable Energy,2006,31:935-951
    [88]Moursi M E, Joos G, Abbey C. A secondary voltage control strategy for transmission level interconnection of wind generation[J]. IEEE Transactions on Power Electronics,2008,23(3):1178-1190
    [89]朱凌志,陈宁,王伟.兼顾接入地区无功需求的风电场无功控制策略[J].电力系统自动化,2009,33(5):80-85
    [90]王岩松,朱凌志,陈宁,等.基于分层原则的风电场无功控制策略[J].电力系统自动化,2009,33(13):83-88
    [91]李晶,李建林,许洪华.基于配网无功优化的变速恒频双馈风电机群控制策略[J].电网技术,2006,30(15):59-64
    [92]乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略[J].电力系统自动化,2010,34(5):96-101
    [93]陈琳,钟金,倪以信,等.含分布式发电的配电网无功优化[J].电力系统自动化,2006,30(14):20-24
    [94]陈海炎,陈金富,段献忠.含风电机组的配网无功优化[J].中国电机工程学报,2008,28(7):40-45
    [95]段斌,吴亚联,周立明.集成服务环境下风电并网的无功调节-(一)无功调节[J].电力系统自动化,2008,32(17):83-87,103
    [96]陈宁,朱凌志,王伟.改善接入地区电压稳定性的风电场无功控制策略[J].中国电机工程学报,2009,29(10):102-108
    [97]陈惠粉,乔颖,鲁宗相,等.风电场群的无功电压协调控制策略[J].电力系统自动化,2010,34(18):78-83
    [98]汤涌.电力系统数字仿真技术的现状与发展[J].电力系统自动化,2002,26(17):66-70
    [99]罗建民,戚光宇,何文正,等.电力系统实时仿真技术研究综述[J].继电器,2006,34(18):79-86
    [100]郑三立,黄梅,张海红.电力系统数模混合实时仿真技术的现状与发展[J].现代电力,2004,21(6):29-33
    [101]M Bacic. On hardware-in-the-loop simulation[C]. In Proceedings of 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, 2005, Seville, Spain
    [102]Wu X, Lentijo S, Deshmuk A, ea al. Design and implementation of a power-hardware-in-the-loop interface:A nonlinear load case study[C]. In Proc.20th Annu. IEEE Appl. Power Electron. Conf. Expo.,2005,2:1332-1338
    [103]Weidong Zhu, Steve Pekarek, Juri Jatskevich, et al. A model-in-loop interface to emulate source dynamics in a zonal DC distribution system[J]. IEEE Transactions on Power Electronics,2005,20(2):438-445
    [104]朱艺颖,蒋卫平,印永华.电力系统数模混合仿真技术及仿真中心建设[J].电网技术,2008,32(22):35-38
    [105]胡涛,朱艺颖,张星,等.全数字实时仿真装置与物理仿真装置的功率连接技术[J].电网技术,2010,34(1):51-55
    [106]钱珞江,叶飞,钟启迪.数字-物理模型互联方法及混合仿真系统稳定性研究[J].电力自动化设备,2008,28(9):45-48
    [107]Verma S C, Odani H, Ogawa S, et al. Real time interface for interconnecting fully digital and analog simulators using short line or transformer [C]. Power Engineering Society General Meeting, Montreal, Canada:IEEE,2006:1-8
    [108]Ren W, Steurer M, Baldwin T L. Improve the stability and accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms [J]. IEEE Transactions on Industry Applications,2008,44(4):1286-1294
    [109]Ren W, Steurer M, Baldwin T L. An effective method for evaluating the accuracy of power hardware-in-the-loop simulations [J]. IEEE Transactions on Industry Applications,2009,45(4):1484-1490
    [110]周俊,郭剑波,郭强,等.电力系统功率连接装置接口稳定性问题及其改进措施[J].电力自动化设备,2011,31(8):42-46
    [111]Li H, Steurer M, Woodruff S, et al. Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real time simulation[J]. IEEE Transactions on Industry Electronic,2006,53(4):1144-1151
    [112]Pak L-F, Dinavahi V. Real-time simulation of a wind energy system based on the doubly-fed induction generator[J]. IEEE Transactions on Power Systems,2009, 24(3):1301-1309
    [113]Vahid J M, Pak L-F, Dinavahi V. Real-time simulation of grid-connected wind farms using physical aggregation[J]. IEEE Transactions on Industrial Electronics, 2010,57(9):3010-3021
    [114]Wei Li, Geza Joos, Jean Belanger. Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system[J]. IEEE Transactions on Industrial Electronics,2010,57(4):1137-1145
    [115]刘其辉,李万杰.双馈风力发电及变流控制的数/模混合仿真方案分析与设计[J].电力系统自动化,2011,35(1):83-86,95
    [116]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003
    [117]Hansen A D, Jauch C, Sorensen P. Dynamic wind turbine models in power system simulation tool DIgSILENT[R]. Copenhagen Denmark:Ris(?) National Laboratory, Ris(?) Denmark, Tech. Rep. Ris(?)-R-1400 (ed.2) (EN),2007
    [118]Vladislav Akhmatov.风力发电用感应发电机[M].北京:机械工业出版社,2010.
    [119]丁晓群,黄伟,邓勇,等.基于分级递阶的地调/中心站模式无功电压控制系统[J].电力系统自动化,2004,28(5):63-66
    [120]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123
    [121]郭庆来,张伯明,孙宏斌,等.电网无功电压控制模式的演化分析[J].清华大学学报(自然科学版),2008,48(1):16-19
    [122]张勇军,任震.无功电压动态控制的分布式协同优化[J].中国电机工程学报,2004,24(4):34-38
    [123]高阳,朴在林,张旭鹏,等.基于噪声场合下ARMA模型的风力发电量预测 [J].电力系统保护与控制,2010,38(20):164-167
    [124]王海超,周双喜,鲁宗相,等.含风电场的电力系统潮流计算的联合迭代方法及应用[J].电网技术,2005,29(18):59-62
    [125]Power System Analysis Engine DIgSILENT PowerFactory[Z]. DIgSILENT GmbH, Gomaringen, Germany
    [126]Richard C. Dorf, Robert H. Bishop.现代控制系统[M].北京:高等教育出版社,2001
    [127]石新春,付超,马巍巍,等.基于实测数据的电弧炉实时数字仿真模型及其实现[J].电工技术学报,2009,24(7):177-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700