用户名: 密码: 验证码:
三电平有源滤波器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源电力滤波器(APF)是用于动态抑制谐波和补偿无功的新型电能质量控制装置,与传统无源滤波器相比具有不受电网参数影响、动态响应快等优点而日益受到研究人员的重视。三电平有源滤波器与传统两电平APF相比可以大大提高系统的容量,补偿效果好,系统可靠性高。本文对三电平有源电力滤波器相关的关键技术进行了研究。
     APF双闭环矢量控制时,矢量定向角的观测是控制系统关键环节之一,定向角观测的准确性和快速性直接影响到APF最终的谐波补偿效果。传统电网电压锁相环检测电压定向角的参数设计较为复杂,本文提出一种APF电网侧虚拟磁链角度的改进观测方法,改进方法采用高通滤波器和新型坐标变换所组成的新型辨识算法,代替传统电网虚拟磁链观测中的纯积分环节,从而消除了积分初值及直流偏移量对磁链观测带来的误差。改进方法有效避免了电网高频谐波带来的影响,改善了APF电网虚拟磁链角的观测精度。仿真和实验验证了采用的新型辨识算法观测磁链角的可行性和优越性。
     补偿电流的检测是有源电力滤波器的关键技术之一,检测准确性和快速性对有源电力滤波器的补偿精度有决定性影响。本文提出一种改进的FBD谐波电流检测算法,利用虚拟磁链观测方法,通过电网虚拟磁链角与电网三相电压相位之间的关系重构出单位幅值的三相电压,从而省去了电网电压锁相环节。并在此改进的FBD谐波检测算法中采用两个低通滤波器来替代纯积分器,可以实现幅值和相角检测无偏差。
     APF系统具有多输入多输出,强耦合、非线性的特点,本文综合考虑了干扰抑制性能以及模型不确定性,提出了一种新型的H∞鲁棒控制策略。根据APF系统的数学模型,建立广义被控对象的状态方程,综合参数慑动以及外部扰动,利用粒子群优化算法进行参数整定和优化,通过求解黎卡提(riccati)不等式,得到所设计的控制器的解。仿真和实验证明了所提出的控制器可同时满足系统鲁棒稳定性和干扰抑制性能的要求。
     有源电力滤波器对电流内环的控制要求是快速性、鲁棒性和稳定性。本文设计了一种新型的变指数趋近律滑模控制器对有源电力滤波器进行控制。基于新型的变指数趋近律,开始时系统状态量以变速和指数两种速率趋向滑模面,当接近滑模面时,指数项趋近零,变速项起关键作用。在系统稳定过程中状态量趋向于零,有效地抑制了抖振。仿真和实验进一步证明了所提出的控制器的有效性,具有比鲁棒性更加优越的不变性,算法简单,易于工程实现。
     在有源滤波器应用系统的开发中,功率主回路的电磁兼容设计是重中之中。本文给出了一种基于有限元分析方法的平板母线设计思路,通过合理建模、优化寻优,可以获得理想的低电感平板母线。仿真和实测都证明了该方法的有效性。
The active power filter (APF), as a dynamic harmonic suppression and reactivepower compensation apparatus, has gained more and more research attention due toits advantages such as anti-perturbation ability to the network parameters and fastdynamic response compared with the traditional passive power filters. Three-levelneutral-point-clamped inverters applied to APF not only increased the installedcapacity greatly but also improved the harmonic compensation performance andsystem reliability. This paper investigates the key techniques of the three-levelneutral-point-clamed inverter applied to APF.
     As for the APF double closed-loop space vector control, the observation of thespace vector orientation angle is a critical point. Whether the observation of theorientation angle is rapid and accurate directly affects the final harmoniccompensation performance of APF. For the traditional phase lock loop, the parameterdesign for detecting the voltage orientation angle is relatively complicated. And animproved observation method of detecting the virtual flux angle of the APF grid sideis proposed in the paper, which adopts a novel identification algorithm composed ofhigh-pass filters and novel coordinate transformation in place of the pure integrator inthe traditional grid virtual-flux observation, thus eliminating the virtual-fluxobservation errors brought about by the integral initial value and DC offsets. Theimproved method can effectively avoid the impact of grid high-frequency harmonicsand improve the accuracy of the observed grid virtual-flux angle. Simulation andexperiments demonstrate that the novel identification algorithm applied to flux angleis feasible and superior.
     Compensation current detection is one of the critical techniques for APF andwhether the detection is accurate and fast directly affects the compensation precision.An improved FBD harmonic detecting method is proposed in this paper, whichemploys the virtual-flux observation method and reconstructs the three-phase voltageof the unit amplitude by the relations between the grid virtual-flux angle and thethree-phase voltage actual angle, thus eliminating the phase lock loop. And besides, inthe improved FBD harmonic detecting method, two low-pass filters are adopted toreplace the pure integrator, which guarantees the amplitude and the phase angle of nodeviation.
     APF is characteristic of multi-input, multi-output, strong coupling and nonlinearity. Considering the disturbance attenuation performance and modeluncertainty as a whole, a novel H∞robust control strategy is proposed in this paper.According to the mathematical model of APF, state equations of the generalizedcontrolled target are established. And taking parameter perturbation and externaldisturbance into consideration, the particle swam optimization (PSO) algorithm isemployed for parameter tuning and optimization. By solving the Riccati inequality,the solution to the designed controller is obtained. Simulation and experimentsdemonstrate that the proposed controller meets the requirements of system robuststability and disturbance attenuation simultaneously.
     APF demands the inner current control loop of rapidity, robustness andstability. So a novel sliding mode controller is also proposed in the paper. Someimprovements are made to the exponential reaching law put forward by AcademicianGao Weibing and therefore a new variable-exponent reaching law is derived, whichmakes the system state variables approach to the sliding surface at the variable speedand the exponential speed in the beginning, and when the status point is close to thesliding surface, the value of the exponential component gets near to zero, and then thevariable speed component plays a key role. Chattering can be inhibited effectivelywhen state variables are infinitely close to zero in the process of system stabilizing.
     Simulation and experiments have demonstrated the effectiveness, simplealgorithm, easy engineering implementation of the proposed controller, and the moresuperior invariance to robust control aforementioned.
     In the devising stage of the practical system, to seek a solution to theelectromagnetic compatibility problem of the main power circuit is the most critical. Aflat-panel design idea based on finite element analysis is presented in the paper. Bymeans of appropriate modeling and optimization, the ideal low inductance flat-panelbus can be achieved. Both the simulation and field measurement demonstrate thevalidity of the method.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998:80~98.
    [2]卓放,杨君,王兆安.有源电力滤波器的发展动态及其应用[J].电气自动化,2000(4):4~6.
    [3]林海雪,孙树勤.电力网中的谐波.第一版[M].北京:中国电力出版社,2000,56-78.
    [4] Bose B K. Power electronics-a technology review. Proceedings of IEEE[J],1992,80(8):1303-1334.
    [5] George J.wakifeh..电力系统谐波——基本原理、分析方法和滤波器设计(第一版)[M].徐政译.北京:机械工业出版社,2003.
    [6]郎维川.供电系统谐波的产生、危害及其防护对策,高电压技术[J],2002,Vol.28,No.6:30-39.
    [7]张代润.有源电力滤波技术研究的新进展(续)[J].电工技术,2000(8):4-5.
    [8]凌青.三相并联型有源电力滤波器控制方法的研究[D].西安交通大学,2005.
    [9]王兆安,张明勋.电力电子设备设计和应用手册[M].北京:机械工业出版社,2002,690~695.
    [10]周国梁.基于DSP的有源电力滤波器装置的实现[D].华北电力大学(保定),2004
    [11]Bird B M, Marsh J F, McLellan P R. Harmonic reduction in multiple converters bytriple-frequency current injection.Proc IEE[J],1969,116(10):1730~1734.
    [12]Gyugyi L, Strycula E C. Active ac power filters. In: Proc of IEEE/IAS Annual Meeting[J],1976:529~535.
    [13]Sasaki H, Machida T. A new method to eliminate ac harmonic currents by magneticcompensation on basic design.IEEE Trans Power App&Syst[J],1971,90(5):2009~2019.
    [14]Aredes M, Heumann K, Watanabe E H. An universal active power line conditioner. IEEETrans on Power Delivery[J],1998,13(2):545~551.
    [15]Fujita H, Akagi H. The unified power quality conditioner: The integration of series-andShunt-filters[J]. IEEE Trans on Power Electronics,1998,13(2):315~322.
    [16]顾建军,徐殿国,刘汉奎,等.有源滤波技术现状及其发展[J].电机与控制学报,2003,7(2):126-132.
    [17]乐健,姜齐荣,韩英铎.并联型四桥臂有源电力滤波装置的研制[J].电气技术,2006,(8):14–19.
    [18]M.Etezadi-Amoli, T.Florence. Voltage and Current Harmonic Content of A UtilitySystem-A Summary of1120Test Measurements[J]. IEEE Transactions on PowerDelivery,1990,5(3):1552~1557.
    [19]Robert D.Henderson,Patrick, J.Rose. Harmonics:The Effects on Power Quality andTransformers[J].IEEE Transactions on Industrial Applications,1994,30(3):528~532.
    [20]李圣清,朱英浩,周有庆,等.电网谐波检测方法的综述[J].高电压技术,2004,30(3):39-42.
    [21]戴朝波,林海雪,雷林绪.两种谐波电流检测方法的比较研究[J].中国电机工程学报,2002,22(1):80-84.
    [22][Li Ma,Jinghai Zhou,Zhengyu Lu,etal.An Improved Harmonic Detecting Approach forActive Power Filter. IEEE Trans[J]. On Power Electronics and Motion ControlConference,2000,3:1420-1424.
    [23]Heydt G T,Fjekl P S,Liu C C.Applications of the windowed FFT to electric power qualityassessment.IEEE Trans[J].On Power Delivery,1999,14:1411-1416.
    [24]潘文,钱愈涛,周鹗.基于加窗插值FFT的电力谐波检测理论窗函数研究[J].电工技术学报,1994,9(1):50-54.
    [25]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报,2001,21(12):83-87.
    [26]Bo Zhang,SongWen Yi,Xiaoming He.A novel harmonic current detection technique based ona generalized dq coordinate transform for active power filter and fault protection of powersystem[J].Proceedings of the5th International Conference on Advances in Power SystemControl,Operation and Management,APSCOM2000,Hong Kong,2000.8:543-547.
    [27]王群,谢品芳,吴宁,等.模拟电路实现的神经元自适应谐波电流检测方法[J].中国电机工程学报,1999,19(6):42-46.
    [28]Zin A M,Rukonuzzaman M,Shaibon H,et al,Neural network approach of harmonicsdetection[J].Energy Management and Power Delivery.Proceedings of EMPD Internationalconference,1998,23(5):467-472.
    [29]高大威,孙孝瑞.基于神经元网络的用于有源电力滤波器的电流检测[J].电网技术,2000,24(1):72-75.
    [30]Hiroyuki M,Kenji I.An artificial neural-net basedmethod for predicting power systemvoltage harmonic[J]. IEEE Transactions on Power System,1996,11(4):1730-1735.
    [31]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法[J].中国电机工程学报,2006,26(10):23-27.
    [32]王群,吴宁,王兆安.一种基于人工神经网络的谐波测量方法[J].电网技术,1999,23(1):29-32.
    [33]王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术,2005,29(3):72-75.
    [34]EI-Amin I,Arafah I. Artificial neural networks for power systemsharmonicestimation[J].Proceeding of the8th International Conference on Harmonics andQuality of Power,Athens,Greece,1998,2:999-1009.
    [35]杜天军,陈光,雷勇.基于混叠补偿小波变换的电力系统谐波检测方法[J].中国电机工程学报,2005,25(3):54-59.
    [36]薛蕙,杨仁刚.利用小波包变换实现电力系统谐波分析[J].电网技术,2004,28(5):41-45.
    [37]邵明,钟彦儒,余建明.基于小波变换的谐波电流的实时检测方法[J].电力电子技术,,2000,(1):42-45.
    [38]严居斌,刘晓川,张斌.基于DSP的小波算法的实现[J].四川大学学报(工程科学版),2002,34(2):92-95.
    [39]杨桦,任震.基于小波变换检测谐波的新方法.电力系统自动化[J].1997,21(10):39-42
    [40]Pham V L.Wavelet-transform-based algorithm for Harmonic analysis of power systemwaveforms[J]. IEE Proceedings: Generation, Transmis sion and Distribution,1999,146(3):249-254.
    [41]张宇辉,陈晓东,王鸿懿.基于连续小波变换的电能质量测量和分类[J].电力自动化设备,2004,24(3):17-21.
    [42]Chih-Chiang Hua,Chih-Wei Chuang.Design and implementation of a hybrseries activepower filter[J].Power Electronics and Drives System,2005,1322-1326.
    [43]李新瑞. NPC三电平逆变器及其中点电位平衡的研究[D].中国石油大学,2009.5.
    [44]李圣清,朱英浩,周有庆,等.电网谐波检测方法的综述[J].高电压技术,2004,30(3):39-42.
    [45]戴朝波,林海雪,雷林绪.两种谐波电流检测方法的比较研究[J].中国电机工程学报,,2002,22(1):80-84.
    [46]Li Ma, Jinghai Zhou, Zhengyu Lu, et al.An Improved Harmonic Detecting Approach forActive Power Filter[J]. IEEE Trans. On Power Electronics and Motion ControlConference,2000,3:1420-1424.
    [47]Yao Weizheng,Wang Qun,Liu Jinjun,Wang Zhaoan.An instantaneous detecting approach ofharmonic voltage for the series active power filter[J].1998International Conference onPower System Technology,1998,2:1533-1536.
    [48]李民,王兆安,卓放.基于瞬时无功功率理论的高次谐波和无功功率检测[J].电力电子技术,1992(2).
    [49]Heydt G T, Fjekl P S, Liu C C.Applications of the windowed FFT to electric power qualityassessment[J].IEEE Trans.On Power Delivery,1999,14:1411-1416.
    [50]潘文,钱愈涛,周鹗.基于加窗插值FFT的电力谐波检测理论窗函数研究[J].电工技术学报,1994,9(1):50-54.
    [51]肖飞,马伟明,李玉梅,张波涛.并联有源滤波器在谐波检测中的相位控制[J].电力系统自动化,2001,26(3):36-41.
    [52]Shiguo Luo and Zhencheng Hou.An adaptive detecting method for harmonic and reactivecurrents[J].IEEE Trans.On Industrial Electronics.1995,42:85-89.
    [53]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制研究[D].[华中理工大学博士论文].2000:42-75.
    [54]游志青.基于重复控制技术的数字式逆变电源的研究[D].[南京航空航天大学硕士学位论文].2003:1-33.
    [55]Y.Tzou.Adaptive Repetitive Control of PWM Inverters for Very Voltage Regulation withUnknown Loads[J].IEEE Trans.on PE,1999.1.
    [56]赵金,延烨华,徐金榜.逆变电源重复控制技术的研究[J].华中科技31(12):25-28.
    [57]陈宏,胡育文.针对逆变电源的重复控制器设计[J].电力电子技术,2002.
    [58]张凯,康勇,熊建,等.基于状态反馈控制和重复控制的逆变电源研术[J],2000(5):9-11.
    [59]蒋燕君,杨海波.PWM逆变器电流补偿无差拍控制研究[J].机电工程,2008,25(3):3~4.
    [60]戴瑜兴,张义兵,陈标达.无差拍控制策略在有源滤波器中的应用[J].湘潭矿业学院学报,2003(12):2~3.
    [61]王兆安,杨君,刘进军.谐波抑制和无功功率补偿,北京:机械工业出版社,1998:80~98.
    [62]T.M. Rowan,R.J.Kerkman. A new synchronous current regulator and an analysis of currentregulated PWM inverters[J]. IEEE Transactions on Industry Application,1986,22(4):678~690.
    [63]唐健,王翔,何英杰,王成智,邹云屏等.三相四线制有源滤波器的新型无差拍控制[J].电力系统自动化,2007,31(19):59-6.
    [64]钟庆,吴捷,杨金明.并联型有源电力滤波器的无源性控制[J].控制与决策,2004,19(1):77-80.
    [65]Mekri F,Mazari B,Machmoum M.Control and optimization of shunt active power filterparameters by fuzzy logic[J].Canadian Journal of Electrical and Computer Engineering,2006,31(3):127-134.
    [66]王伟,周林,徐明.有源电力滤波器控制方法综述[J].继电器,2006,34(20):81-86.
    [67]武键,徐殿国,何娜.基于优化滑动傅立叶分析和广义积分的并联有源滤波器控制策略[J].电网技术,2005,29(17):21-25.
    [68]邹祖冰,蔡丽娟,贺佳兵.并联混合电力有源滤波器的非线性控制算法[J].电网技术,2004,28(20):43-47.
    [69]董密,成剑,罗安.并联混合型有源滤波器电流跟踪的迭代学习控制[J].中国电机工程学报,2006,26(9):104-107.
    [70]王晓刚,谢运祥,帅定新.智能控制方法应用于APF的综述与展望略[J].电网技术,2008,32(8):35-41.
    [71]肖湘宁,刘昊,姜旭,等.非正交坐标系多电平SVPWM及其在DVR中的应用[J]电力电子技术,2004,(06):58-61.
    [72]赵辉,李瑞,王红君,岳有军.60°坐标系下三电平逆变器SVPWM方法的研究[J]中国电机工程学报,2008,(24).
    [73]Wei Sanmin, Wu Bin, Li Fahai, etal. A general space vector PWM control algorithm formultilevel inverters[C]. Miami USA: APEC ‘03, Eighteenth Annual IEEE,2003,2(1):562-568.
    [74]Celanovic N,Boroyevich D. A fast space-vector modulation algorithm for multilevelthree-phase converters[J]. IEEE Transactions on Industry Applications,2001,37(2):637-641.
    [75]Kanchan R S,,Baiju M R, Mohapatrak K, etal. Space vector PWM signal generation formultilevel inverters using only the sampled amplitudes of reference phase voltages[J].FEEProceedings of Electric Power Applications,2005,152(2):297-309.
    [76]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及实现[J],中国电机工程学报,2006,(12):95-100.
    [77]Sergio Busquets Monge,Sergio Somavilla,Josep Bordonau,Dushan Boroyevich. CapacitorVoltage Balance for the Neutral-Point-Clamped Converter using the Virtual Space VectorConcept With Optimized Spectral Performance[J].IEEE transactions on power electronics,2007,22(4):1128-1135.
    [78]伍文俊,钟彦儒,段博.三电平整流器弃用中矢量的对称三区电压矢量调制策略[J].电工技术学报,2009,13(06):83-88.
    [79]Sergio Busquets-Monge, Josep Bordonau, Dushan Boroyevich, Sergio Somavilla. TheNearest Three Virtual Space Vector PWM—A Modulation for the ComprehensiveNeutral-Point Balancing in the Three-Level NPC Inverter.IEEE Power Electronics Letters,2004, Vol.2(1):11-15.
    [80]A.von Jouanne, S.Dai, H.Zhang. A Multilevel Inverter Approach Providing DC-LinkBalancing, Ride-through Enhancement, and Common-Mode Voltage Elimination. IEEETransactions on Power Electronics.2002,49(4):739~745.
    [81]宋强,刘文华,严干贵,等.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报.2004,24(5):57~62.
    [82]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点电位控制方法的研究[J].中国电机工程学报.2007,27(10):92~97.
    [83]王广柱,洪春梅.多电平逆变器直流侧电容电压的平衡与控制[J].电力系统自动化.2002,26(11):23~27.
    [84]伍文俊,钟彦儒,伍超.基于合成中矢量的三电平PWM整流器中点平衡新方法[J].电气传动.2007,37(12):26~30.
    [85]S.Busquets-Monge, J.Bordonau, D.Boroyevich,et al. The Nearest Three Virtual SpaceVector Modulation for the Comprehensive Neutral-Point Balancing in the Three-Level NPCInverter.IEEE Transactions on Power Electronics.2004,2(1):11~15.
    [86]B.Kaku, I.Miyashita, S.Sone. Switching Loss Minimized Space Vector PWM Method forIGBT Three-Level Inverter. IEE Prac.Electr.Power Appl.1997,144(5):182~190.
    [87]吴洪洋,何湘宁.多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报.2002,22(5):10~15.
    [88]杨贵杰,孙力,崔乃政,等,空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-84.
    [89]姜卫东,王群京,陈权,等,一种完全基于两电平空间矢量调制的三电平空间矢量调制算法[J].电工技术学报,2009,24(1):108-115.
    [90]Nabea A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter[J]. IEEETransactions on Industrial Application,1981,17(5):518-523.
    [91]Satoshi Ogasawara.A novel PWM scheme of voltage source inverters based on space vectortheory[C].EPE Aachen1989:1199-1202.
    [92]丁菊霞,张秀峰.一种无锁相环的单相电路谐波和无功电流检测方法[J]继电器,2006(7)53-57.
    [93]汪之文,吴凤江,孙为.基于虚拟磁链的PWM整理器解耦控制策略研究[J]电力电子技术,2008(8),59-61.
    [94]田淳.无位置传感器同步电机直接转矩控制理论研究与实践[D].南京:南京航空航天大学自动化学院.
    [95]万宇宾,胡婵娟,万淑云.基于电压模型的定子磁链观测器及参数设计方法[J]电气传动,2006,36(3):15-18.
    [96]王宇,邓智泉,王晓琳.一种新颖的电机磁链辨识算法[J].中国电机工程学报,2007,27(6):39-44.
    [97]吴轩钦,谭国俊,张倩倩,韩耀飞.新颖虚拟电网磁链在有源滤波器中的应用[J].电力系统及其自动化学报,2010,22(6):77-82.
    [98]陈峻岭,姜新建,孙卓,朱东起.基于FBD法的三相电力系统电流检测方法的应用[J].电力系统自动化,2004(24):23-27.
    [99]王杰,申张亮.基于FBD法的四相输电系统电流检测方法[J].中国电机工程学报,2007(22):87-93.
    [100]康静,郑建勇,曾伟,袁涛.FBD法在三相四线制系统电流实时检测中应用[J].电力自动化设备,2006(8):36-39.
    [101]伏祥运,代鹏.FBD功率理论在无功补偿器控制中的应用[J].江苏电机工程,2009(1):39-42.
    [102]丁祖军,郑建勇,胡敏强,袁兆祥. FBD算法电流检测的滞后误差建模[J].电工技术学报,2008(2):133-137.
    [103]程琼,郑建勇.三相电力系统电流检测方法FBD法的研究[J].湖北工业大学学报,2008(1):49-52.
    [104]伏祥运,王建赜,纪延超.不对称系统中基于FBD理论的无功电流快速检测方法[J].电力自动化设备,2007(3):30-33.
    [105]刘宏超,吕胜民,张春晖,谢琨.采用FBD电流检测法的三相四线法APF[J].电力自动化设备,2010(1):45-48.
    [106]王杰,申张亮.基于FBD谐波检测方法的有源电力滤波器系统设计[J].电工电气,2010(8):9-13.
    [107]黄宇淇,孙卓,姜新建,邱阿瑞. FBD法及复合控制在有源滤波器中的应用[J].电力系统自动化,2006(7):65-68.
    [108]陈娟,郑建勇,丁祖军,曾伟,康静,袁涛.p-q-r法与FBD法在三相四线制系统谐波电流检测中的对比[J].电力自动化设备,2007(11):30-33.
    [109]吴峰,郑建勇,梅军.谐波电流检测技术的理论与FBD法仿真试验研究[J].低压电器,2011(15):45-50.
    [110]时国平,许卫兵,王长春.基于FBD法的三相四桥臂APF的研究[J].自动化与仪器仪表,2010(5):22-24.
    [111]Y.Xu, L.M. Tolbert, J.N. Chiasson, J.B. Campbell and F.Z.Peng. A generalisedinstantaneous non-active power theory for STATCOM. IET Electr. Power Appl.,2007,1,(6), pp.853–861.
    [112]Rafael Ordo ez,Roberto Morales, Charif Karimi. Three-phase Active Power Filter Under
    [113]Non-sinusoidal Voltage Conditions:2009International Conference on Electrical,Communications, and Computers:69-73.
    [114]Helmo K.M. Paredes, Fernando P. Maraf o, Member, IEEE, Luiz C. P. da Silva, Member,IEEE. A Comparative Analysis of FBD, PQ and CPT Current Decompositions–Part I:Three-Phase Three-Wire Systems.2009IEEE Bucharest Power Tech Conference, June28th-July2nd, Bucharest, Romania.
    [115]YANG Chao, HUANG Qingxiu, ZHOU Jiangman. Research of Hybrid Active PowerFilter Based on FBD Method Detection: IEEE,2011:4205-4208.
    [116]Helmo K.M. Paredes, Fernando P. Maraf o, Member, IEEE, Luiz C.P. da Silva, Member,IEEE. A Comparative Analysis of FBD, PQ and CPT Current Decompositions–Part II:Three-Phase Four-Wire Systems.2009IEEE Bucharest Power Tech Conference, June28th-July2nd, Bucharest, Romania.
    [117]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社,2005.
    [118]雍炯敏,楼红卫.最优控制理论简明教程[M].北京:高等教育出版社,2006.
    [119]胡寿松,王执铨,胡维礼.最优控制理论与系统.[M].科学出版社.2005.
    [120]李国勇.最优控制理论及参数优化[M].国防工业出版社.2006.
    [121]史忠科,吴方向,王蓓,阮洪宁.鲁棒控制理论[M].国防工业出版社.2003.
    [122]吴志刚.线性鲁棒控制的理论与计算[M].大连:大连理工大学出版社,2003.
    [123]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008.
    [124]Gary J, Balas, John C. Doyle, Keith Glover, Andy Packard, Roy Smith. u-Analysis andSynthesis Toolbox[M]. The MathWorks User’s (Guide Version3),2001.
    [125]D,-W. Gu, P,Hr, Petkov, M.M.Konstantinov. Robust Control Desingn withMATLAB[M]. published by Springer,2005.
    [126]Kemin Zhou, John C. Doyle, Keith Glover. Robust and Optimal Control[M]. NewJersey: PRENTICE HALL,2002.
    [127]解学书,钟宜生.H∞控制理论[M].北京:清华大学出版社,1994.
    [128]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [129]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [130]褚健,俞力,苏宏业.鲁棒控制理论与应用[M].杭州:浙江大学出版社,2000.
    [131]黄琳.稳定性与鲁棒性的理论基础[M].北京:科学出版社,2003.
    [132]夏怡.永磁同步电机H∞控制策略的研究[D].无锡:江南大学,2006.
    [133]吴旭东,谢学书. H∞鲁棒控制中的加权阵选择[J].清华大学学报(自然科学版),1997,37(1):27-30.
    [134]J.C.Doyle,K.Glover,P.P.Khargonekar, B.A.Francis. Statespace solutions to standard H2and H∞control problems[J]. IEEE Transactions on Automatic Control.1989,34(8):831-847.
    [135]P.P.Khargonekar, I.R.Petersen, M.A.Rotea. H∞-OptimalControl with State-Feedback [J],IEEE Transactions on Automatic Control.1988,33(8):786-788.
    [136]Huanshui Zhang, Lihua Xie, Guangren Duan. H∞Control of Discrete-Time Systems WithMultiple Input Delays[J]. IEEE Transactions on Automatic Control.2007,52(2):271–283.
    [137]Chih-Lyang Hwang, Song-Yu Han. Fuzzy Mixed H2/H∞Optimization-BasedDecentralized Model Reference Control and Application to Piezo-Driven XY TableSystems[J]. IEEE Transactions on Fuzzy Systems.2007,15(2):145–160.
    [138]A.Alif, M.Darouach, M.Boutayeb. Design of Robust H∞Reduced-Order Unknown-InputFilter for a Class of Uncertain Linear Neutral Systems[J]. IEEE Transactions on AutomaticControl.2010,55(1):6–19.
    [139]G.-H. Yang, D.Ye. Robust H∞dynamic output feedback control for linear time-varyinguncertain systems via switching-type controllers[J]. IET Control Theory&Applications.2010,4(1):89–99.
    [140]F.Liu, F.He, Y.Yao. Linear matrix inequality-based robust H∞control of sampled-datasystems with parametric uncertainties[J].IET Control Theory&Applications.2008,2(4):253–260.
    [141]Hong Chen. A Feasible Moving Horizon H∞Control Scheme for Constrained UncertainLinear Systems[J]. IEEE Transactions on Automatic Control.2007,52(2):343–348.
    [142]M.F. Miranda, R.C.H. Takahashi, F.G. Jota. Hierarchical approach for H∞robustcontrol design: S/KS mixed sensitivity with genetic algorithm[J]. IET Control Theory&Applications.2007,1(1):18–24.
    [143]J.C.Geromel, R.H.Korogui, J. Bernussou. H2and H∞robust output feedback control forcontinuous time polytopic systems[J]. IET Control Theory&Applications.2007,1(5):1541–1549.
    [144]X.Ji, H.Su, J.Chu. Robust state feedback H∞control for uncertain linear discrete singularsystems[J]. IET Control Theory&Applications.2007,1(1):195–200.
    [145]D.Wu, J.Wu, S.Chen. Roubst H∞Control for Networked Control Systems withUncertainties and Multiple-packet Transmission[J].IET Control Theory Appl.2010,4(5):701-709.
    [146]Ian R.Petersen. Robust H∞Control of an Uncertain System Via a Stable Output FeedbackController[J]. IEEE Transactions on Automatic Control.2009,54(6):1418-1423.
    [147]P.Lin, Y.Jia. Robust H∞consensus analysis of a class of second-order multi-agent systemswith uncertainty[J]. IEEE Transactions on Control Theory&Applications.2010,4(3):487–498.
    [148]Bor-Sen Chen, Ching-Han Chiang, Sing Kiong Nguang. Roust H∞SynchronizationDesign of Nonlinear Coupled Network via Fuzzy Interpolation Method[J]. IEEETransactions on Circuits and Systems,2011,58(2):349-362.
    [149]J.De Caigny, J.F.Camino, R.C.L.F. Oliveira, P.L.D.Peres, J.Swevers. Gain-scheduled H2and H∞Control of Discrete-time Polytopic Time-varying Systems[J]. IET Control Theoryand Applications.2010,4(3):362-380.
    [150]L.Mianzo, Huei Peng. Output Feedback H∞Preview Control of an ElectromechanicalValve Actuator[J]. IEEE Transactions on Control Systems Technology.2007,15(3):428–437.
    [151]Xie Dongmei, Qu Daokui, Xu Fang.Design of H∞Feedback Controller and IP-PositionController of PMSM Servo System[C]. Proceedings of the IEEE International Conferenceon Mechatronics and Automation.2005:578-583.
    [152]Liu Bingyou. Research on H∞Robust Tracking Controller for Permanent MagnetSynchronous Motor Servo System[C]. International Conference on InformationEngineering and Computer Scienc.2009:1-5.
    [153]Fayez F.M. El-Sousy.Hybrid H∞-Based Wavelet-Neural-Network Tracking Control forPermanent-Magnet Synchronous Motor Servo Drives[J]. IEEE Transactions on IndustrialElecctronics.2010,57(9):3157-3166.
    [154]F.F.M.El-Sousy.Robust adaptive H∞position control via a wavelet-neural-network for aDSP-base permanent-magnet synchronous motor servo drive system[J]. IET ElectricPower App;ications.2009,4(5):333-347.
    [155]A.R.Ghafari-Kashani, J.Faiz, M.J.Yazdanpanah.Integration of non-linear H∞and slidingmode control techniques for motion control of a permanent magnet synchronousmotor[J]. IET Electric Power Applications.2010,4(4):267-280.
    [156]Chen Yongjun, Huang Shenghua, Wan Shanming, Wu Fang. DSP-Based Real-TimeImplementation of A Neural Network Observer and Hybrid H∞Adaptive Controller forServo-Motor Drives[C]. Proceedings of the27th Chinese Control Conference.2008:130-134.
    [157]T.L.Hsien, Y.Y.Sun, M.C.Tsai. H∞control for a sensorless permanent-magnet synchronousdrive[J]. IEE Proceedings Electrical Power Application.1997,144(3):173-181.
    [158]Wu Guorong, Xiao Xi. Robust Speed Controller for a PMSM Drive[C]. PowerElectronics and Motion Conference,2009:396-400.
    [159]Yu Rui-wen, Zhang Hui, Tan Guo-jun, Yan De-kun. Design of Robust Controller forPMSM Drivers[c]. The International Conference on Electrical and Control Engineering,Wuhan, China,2010.
    [160]Guojun Tan, Hui Zhang, Miaowang Qian, Ruiwen Yu. Optimization of Three-Phase PWMRectifier Robust Control System Based on Improved PSO Algorithm[J]. IntelligentAutomation and Soft Computing.2011,17(7):847–858.
    [161]Hui Zhang, Guojun Tan, Minglian Zhang and Ruiwen Yu. Design of mixed H∞andoptimal controller for three-phase PWM rectifiers[c]. the IEEE international conference onautomation and logistics,2010.
    [162]郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定[J].计算机工程.2007,33(18):202-204.
    [163]J.Kennedy, R.Eberhart. Particle swarm optimization[C]. Proc IEEE Int Conf on NeuralNetworks.1995:1942-1948.
    [164]N.Piette, Y.Markhal, E.Clavel. Calculation of Electrodynamic Efforts on BusbarTechnology: Comparison between Partial Equivalent Element Circuit Method(PEEC)[J]. IEEE PESC1996:73-76.
    [165]M.Chiado Caponet', F.Proflimo, R.W.Low. Stray Inductance Bus Bar Design andConstruction for Good EMC Performance in Power ElectronicCircuits[J]. IEEE,PESC,1996:79-82.
    [166]Mark Jones, Arthur W. Kelley Wideband Circuit Model for Bus Bar Impedance[J].IEEE,PESC,2000:40-45.
    [167]G.L.Skibinski, D.M.Divan, Design Methodology and Modeling of Low-Inductance PlanarBus Structure [J].EPE1993:98-105.
    [168]白同云,吕晓德.电磁兼容设计[J].北京邮电大学出版社,2001.
    [169]钟玉林,咸哲龙,孙旭东,等.计及部分电容的接地回路高频电路模型[J].中国电机工程学报,2005,25(17):37-41,149.
    [170]高攸纲.电磁兼容总论[M].北京:北京邮电大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700