用户名: 密码: 验证码:
电主轴单元电磁特性及控制策略改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电主轴单元是高速数控机床的关键功能部件,其运行特性决定机床的加工质量。电主轴的运行过程中存在的主要问题为由电磁损耗导致的温升及由磁场相互作用导致的振动。特别是由于电主轴采用变频器供电,电源电压(电流)波形为含有谐波的非正弦波,产生一系列的谐波效应,影响了电主轴的性能及使用寿命,因此研究非正弦供电下电主轴电磁特性是必要的;此外,电主轴的运行特性与控制系统密切相关,高性能电主轴对控制系统提出了更高的要求,控制系统性能的改善是当务之急。本文在深入研究电主轴电磁损耗、电磁振动、直接转矩控制策略的基础上,研究改善其电磁特性及控制策略的方法,开展的相关研究工作及结论概括如下:
     采用有限元分析的方法,研究了电源形式、载荷及转轴材料对电磁损耗的影响,揭示了电磁损耗的本质。针对高速电主轴难以进行加载实验的问题,提出了连接式电主轴特性测试方法并实现电主轴加载。采用该装置进一步实验研究了载荷及转轴材料对电主轴损耗及效率的影响。综合仿真及实验结果,认为将陶瓷材料应用于电主轴转轴,将有效减小电磁损耗。
     采用仿真分析及实验研究相结合的方法,研究了电源形式、载荷、转轴材料对电磁振动的影响,揭示了电磁振动的本质。通过对陶瓷电主轴与金属电主轴振动性能的对比,得出了相同结构参数条件下,陶瓷电主轴振动小于金属电主轴的结果。通过仿真及实验进一步研究了气隙大小及气隙偏心对陶瓷电主轴性能的影响。指出气隙越大,电主轴振动及噪声越小,但气隙增大将减小电主轴效率。气隙偏心使电主轴产生单边磁拉力,陶瓷电主轴比金属电主轴具有更强的抵抗单边磁拉力作用下的变形能力。
     基于电主轴的动态数学模型及直接转矩控制原理,建立了电主轴直接转矩控制仿真模型,分析了定子电阻变化对直接转矩控制性能的影响;理论分析了影响定子电阻变化的主要因素;借鉴电机参数测试国家标准对电主轴定子电阻进行冷态及热态测量,分析定子电流、运行频率及电主轴温度对定子电阻的影响。
     提出了人工智能神经元网络(ANN)及案例推理(CBR)相结合的定子电阻混合智能辨识方法。建立了基于ANN-CBR的定子电阻辨识模型,通过辨识结果与实测结果对比表明该方法适合具有非线性特征的定子电阻辨识问题,辨识精度较高。
     论文通过对电主轴电磁特性及直接转矩控制策略的深入研究,提出了改善电主轴运行特性的有效方法。为新型材料在电主轴转轴上的应用提供了依据,同时也为混合智能方法在电主轴控制系统的应用奠定了理论基础。
Motorized spindle cell is a key component of high-speed CNC machine tools and its operating characteristics determines the machining quality of the machine tools. The main problems of motorized spindle in running are the temperature rise caused by electromagnetic loss and the vibration of the interaction of the magnetic field. Moreover, the power of motorized spindle is supplied by inverter and its output voltage (current) is non-sinusoidal with harmonics, resulting in a series of harmonic effects. The harmonic effects influence the performance and service life of the motorized spindle. Therefore, it is necessary to study the electromagnetic characteristics of the motorized spindle under inverter supply. In addition, the operation characteristics of the motorized spindle relate closely to the control system and high-performance electric spindle needs to match the high performance control system. So it is necessary to improve the performance of the control system. On the basis of the deep analysis of the electromagnetic loss, electromagnetic vibration and direct torque control strategy, the methods to improve the electromagnetic characteristics and the control strategy of the motorized spindle are studied in this paper. The main works and conclusions are summarized as follows:
     The influence of the power form and load and shaft materials on the electromagnetic loss is researched based on the finite element in order to reveal the essence of electromagnetic loss. Loading and measuring the load applied on a high speed motorized spindle in the non-machining state is an important issue in performance evaluation of high speed motorized spindle. A new method is developed through connection mode to make the loading possible in the experiment. The influence of the load and shaft materials on the efficiency and electromagnetic loss of the motorized spindle is further researched using that device. The simulation and experimental results show that applying the ceramic material to the shaft of the motorized spindle may reduce the electromagnetic loss effectively.
     The influence of the power form, load and shaft materials on the electromagnetic vibration is researched by the simulation and experiments in order to reveal the essence of electromagnetic vibration. The results show that the vibration speed of ceramic motorized spindle is smaller than the metal motorized spindle through the comparison of two kinds of motorized spindle under the same structural parameters. The influence of length and eccentricity of air-gap on the performance of the ceramic motorized spindle is further researched through simulation and experiment. It is pointed out that the bigger the air gap is, the smaller the vibration and noise of motorized spindle are. But at the same time, the efficiency of motorized spindle is reduced. Air-gap eccentricity results in unilateral magnetic force in motorized spindle and the deformation of the ceramic motorized spindle is smaller than the metal motorized spindle under unilateral magnetic force.
     A direct torque control spindle simulation model is established based on dynamic model of the motorized spindle and direct torque control principle, in order to analyze the influence of variation of stator resistance on performance of direct torque control. The main factors of influence the variation of stator resistance is analyzed in theory. The stator resistance under cold and hot conditions is measured by means of reference on the national test standards for motor parameter and the influence of stator current, operating frequency and temperature on the stator resistance is analyzed.
     A hybrid intelligent stator resistance identification strategy is proposed based on artificial neural network (ANN) and Case-Based Reasoning (CBR). A model for the stator resistance identification is established based on ANN-CBR. By comparing the recognition results and experimental results, it shows that the method fits for non-linear characteristics of the stator resistance identification problem with higher recognition accuracy.
     This thesis proposes the effective method to improve the running characteristics of motorized spindle based on study of the electromagnetic characteristics and direct torque control strategy. A basis is provided for the application of new material on motorized spindle and the theoretical foundation is established for the application of hybrid intelligent method in control system of motorized spindle.
引文
[1]. 程汉湘.PWM谐波损耗分析[J].机电工程.1999(5):p 244-247.
    [2]. 许大中.电机控制[M].杭州:浙江大学出版社.
    [3]. 朴春吉.变频调速系统中电机轴电流问题综述[J].机械管理开发.2011(3):p 32-33.
    [4]. 李宗臣.基于矢量控制的异步电机效率优化控制研究[D].北京:北京交通大学.2010.
    [5]. E, L. Impact of iron loss on behavior of vector controlled induction machines[J]. IEEE Transactions on Industry Applications.1995,31(6):p 1287-1296.
    [6]. Garcia G O, Santisteban J A,B.S. D. Iron loss influence on a field-oriented controller[C]. IECON Proceedings (Industrial Electronics Conference),Control and Instrumentation. Bologna,Italy.1994.
    [7]. Levi E, Sokola M,B. A. Iron loss in rotor flux oriented induction machines:identification,assessment of detuning[J]. IEEE Transactions on Power Electronics.1996, 11(5):p 698-707.
    [8]. Choi J W, Chung D W,S.S. K. Implementation of field oriented induction machine considering iron loss[C].11th Annual Applied Power Electronics Conference and Exposition.1996.
    [9]. Sung Don Wee, Myoung Ho Shin,D.S. Hyun. Stator-flux oriented control of induction motor considering iron loss[J]. IEEE Transactions on Industrial Electronics.2001,48(3):p 602-608.
    [10]. 李凯,陈兴林,宋申民.变压恒频感应电机效率功率因数优化控制[J].电机与控制学报.2009,13(3):p p361-366.
    [11]. 张佳兴,潘国顺,章力源.浅析变频电机轴电流对电机轴承的影响[J].防爆电机.2007,42(135):p 18-20.
    [12]. 刘欣,孙力,孙亚秀.PWM驱动系统中感应电动机轴电压轴电流研究[J].微电机.2007,40(9):p 5-8.
    [13]. 郭程.变频技术对交流电动机轴电流的影响与预防[J].大电机技术.2008(5):p 23-25,30.
    [14]. 曹承志,魏光华,张彦超,鲁木平.基于小波神经网络的定子电阻参数辨识的研究[J].信息与控制.2004,33(6):p 745-749.
    [15]. 熊万里,李芳芳,纪宗辉,吕浪.滚动轴承电主轴系统动力学研究综述[J].制造技术与机床.2010(3):p 25-31.
    [16]. Jiang S Y,Z.S. F. dynamic design of a high speed motorized spindle-bearing system[J]. Journal of Mechanical Design.2010,132(3):p 0345011-0345015.
    [17]. Uddin M N.N.S. W. New online loss-minimization-based control of an induction motor drive[J]. IEEE Transactions on Power Electronics.2008,23(2):p 926-933.
    [18]. Park Jae—Do, Kalev C,H.H. F. Analysis and reduction of time harmonic rotor loss in solid-rotor synchronous reluctance drive[J]. IEEE Transactions on Power Electronics.2008,23(2):p 985— 992.
    [19]. Bradley K, Cao W, Clare J,Wheeler P. Predicting inverter induced harmonic loss by improved harmonic injection[J]. IEEE Transactions on Power Electronics.2008,23(5):p 2619-2624.
    [20]. A, R.W. A practical,accurate and very general core loss model for nonsinusoidal waveforms[J]. IEEE Transactions on Power Electronics.2007,22(1):p 30-40.
    [21]. Yang Jinkyu, Lee Sang Bin, Yoo Jiyoon,e. al. A stator winding insulation condition monitoring technique for inverter-fed machines[J]. IEEE Transactions on Power Electronics.2007,22(5):p 2026-2033.
    [22]. Liu Ruifang, Mi C C,G.D. W. Modeling of eddy-current loss of electrical machines and transformers operated by pulse-width-modulated inverters[J]. IEEE Transactions on Magnetics. 2008,44(8):p 2021-2028.
    [23]. Khluabwannarat P, Thammarat C, Tadsuan S,e. al. An analysis of iron loss supplied by sinusoidal,square wave,bipolar PWM inverter and unipolar PWM inverter[C]. International Power Engineering Conference.2007.
    [24]. Bogliett A, Cavagnino A,L. M. Fast method for the iron loss prediction in inverter-fed induction motors[J]. IEEE Transactions on Industry Applications.2010,46(2):p 806-811.
    [25]. Jeong-Jong Lee, Young-Kyoun Kim, Hyuk Nam,e. al. Loss distribution of three-phase induction motor fed by pulse width modulated inverter[J]. IEEE Transactions on Magnetics.2004, 40(2):p 762-765.
    [26]. Thammarat C, Tadsuan S.S. B. The result analysis of the power loss 3—phase induction motor with PWM inverter supply[C]. The 7th International Power Engineering Conference.2005.
    [27]. Cao W, Bradley K J, Clare J C,e. al. Comparison of stray load and inverter-induced harmonic losses in induction motors using calorimetric and harmonic injection methods[J]. IEEE Transactions on Industry Applications.2010,46(1):p 249-255.
    [28]. Boglietti A, Ferraris P, Lazzari M,e. al. Influence of the inverter characteristics on the iron losses in PWM inverter-fed induction motors[J]. IEEE Transactions on Industry Applications.1996,32(5):p 1190-1194.
    [29]. 佟来生,吴广宁,舒雯,温凤香,何恩广.变频调速系统对牵引电机谐波损耗影响的研究[J].电力系统及其自动化学报.2005,17(6):p 10-13.
    [30]. Kinnares V, Potivejkul S,S. B. Modified harmonic loss model in PWM fed induction machines[C]. Proceedings of the 3th IEEE Asia-Pacific Conference on Circuits and Systems. Chiangmai,Thailand.1998.
    [31]. 孙成明,袁峰,李敏,等.变频调速系统对交流电机的谐波效应分析[J].沈阳建筑工程学院学报.1999,15(4):p 392-393.
    [32]. 万健如,林志强,禹华军.变频器谐波对负载影响的仿真分析[J].电力电子技术.2001,35(5):p52-54.
    [33]. Yamazaki K, Seto Y,T. M. Iron loss analysis of IPM motor considering carrier harmonics[J]. IEEJ Transactions on Industry Applications.2005,125(7):p 758-766.
    [34]. F, B.D. System electrical parameters and their effects on bearing current[J]. IEEE Transactions on Industrial Applications.1997,33(3):p 577-584.
    [35]. Mendes A M S, Lopez-Fernandez X M,M.C.A. J. Thermal performance of a three-phase induction motor under fault tolerant operating strategies[J]. IEEE Transactions on Power Electronics.2008, 23(3):p 1537-1544.
    [36]. Demetriades G D, De La Parra H Z, Andersson E,e. al. A real-time thermal model of a permanent-magnet synchronous motor[J]. IEEE Transactions on Power Electronics.2010,25(2):p 463-474.
    [37]. Karagol S,B. M. Generation of equivalent-circuit models from simulation data of a thermal system[J]. IEEE Transactions on Power Electronics 2010,25(4):p 820-828.
    [38]. Lorenz R D,Y.S. M. Effieieney-optimized flux trajectories for closed-ceycle operation of field-orientation induction machine drives[J]. IEEETransaetions on Industry AP Plieations.1992, 28(3):p 574-580.
    [39]. Kioskeridis I,M. N. Loss minimization in induetion motor adjustable-speed drives[J]. IEEE Transactions on industrial Electronics.1996,43(1):p 226-231.
    [40]. Abrahamsen F, Blaabjerg F, Pedersen J K, Grabowski P Z,T. P. On the energy optimized control of standard and high- effieiency induction motors in CT and HVAC applications [J]. IEEE Transactions on Industry Applications.1998,34(4):p 822-831.
    [41]. Chen, S.-C., Y.-L. Juan, C.-H. Tang,C.-F. Chang. An improving development of the harmonics losses and bearing load for motorized high speed spindle[J]. ICIC Express Letters.2011,5(9):p 3353-3360.
    [42]. Aoulkadi M, Binder A,J. G. Additional losses in high-speed induction machine-removed rotor test[C].2005 European Conference on Power Electronics and Applications. Dresden,Germany. 2005.
    [43]. Joksimovic G,B. A. Additional no-load losses in inverter-fed high-speed cage induction motors[J]. Electrical Engineering.2004,86(2):p 105-116.
    [44]. 张云,吴凤江,孙力,赵克.异步电动机铁耗对直接转矩控制性能的影响及补偿方法[J].电工技术学报.2008,23(9):p 51-56.
    [45]. 金梅,侯楚林.基于损耗模型的感应电机效率优化控制研究[J].电测与仪表.2010,47(540):p27-30.
    [46]. Sagarduy J,M.A. J, Copper winding losses in matrix converter-fed induction motors:a study based on skin effect and conductor heating, in 39th IEEE Annual Power Electronics Specialists Conference.2008:Rhodes,Greece. p.3192-3198.
    [47]. Aldo Boglietti, Andrea Cavagninno, Mario Lazzari,e. al. Predicting iron on losses in soft magnetic materials with arbitrary voltage supply:an engineering approach[J]. IEEE Transactions on Magnetics.2003,39(2):p 981-989.
    [48]. 陈世坤.电机设计(修订版)[M].北京:机械工业出版社.p 63-70.
    [49]. 赵海森,刘晓芳,罗应立,崔学深.电压偏差条件下笼型感应电机的损耗特性[J].电机与控制学报.2010,14(5):p 13-19.
    [50]. 赵海森,罗应立,刘晓芳,Ren H Wang,陈伟华.异步电机空载铁耗分布的时步有限元分析[J].中国电机工程学报.2010,30(30):p 99-106.
    [51]. 江善林.高速永磁同步电机的损耗分析与温度场计算[D].哈尔滨:哈尔滨工业大学.2010.
    [52]. 曾令全,魏辉,李华.PWM型逆变器输出谐波对异步电机损耗的影响分析[J].微电机.2011,44(4):p 68-72.
    [53]. Gmyrek Z, Boglietti A,C. A. Estimation of iron losses in induction motor:calculation method,results and analysis[J]. IEEE Transactions on Industry Electronics.2010,57(1):p 161-171.
    [54]. Mueller M A, Williamson S, Flack T J,e. al. Calculation of iron losses from time-stepped finite-element models of cage induction machines[C]. Seventh International Conference on Electric Machines and Drives Conference. Anterbury,UK.1995.
    [55]. McClay C I,W. S. The variation of cage motor losses with skew[J]. IEEE Transactions on Industry Applications.2000,36(6):p 1563-1570.
    [56]. Kwon S O, Lee J J, Lee B H,e. al. Loss distribution of three-phase induction motor and BLDC motor according to core materials and operating[J]. IEEE Transactions on Magnetics.2009,45(10): p 4740-4743.
    [57]. Williamson S,M.C. I. Optimization of the geometry of closed rotor slots for cage induction motors[J]. IEEE Transactions on Industry Applications.1996,32(3):p 560-568.
    [58]. Yamazaki K,I. H. Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses[J]. IEEE Transactions on Industry Electronics.2010,57(1):p 61-69.
    [59]. Jae-Woo, Kim Byung-Tack,B.I. Kwon. Optimal stator slot design of inverter-fed induction motor in consideration of harmonic losses[J]. IEEE Transactions on Magnetics.2005,41(5):p 2012-2015.
    [60]. 柯岩.变频器谐波对电机效率的影响分析[J].电力学报.2010,25(3):p 221-224.
    [61]. 王文华.基于谐波分析的高速电主轴电机设计方法研究[D].长沙:湖南大学.2009.
    [62]. Aldo Boglietti, Paolo Ferraris, Mario Lazzari,e. al. Influence of the inverter character on the iron losses in PWM inverter-fed induction motors[J]. IEEE Transactions on Industry Applications. 1996,32(5):p1190-1194.
    [63]. 丁晓峰,刘景林.感应电机损耗测试与建模[J].微电机.2011,44(5):p 83-87,109.
    [64]. Delaere Koen, Belmans Ronnie,Hameyer Kay. Influence of rotor slot wedges on stator currents and stator vibration spectrum of induction machines:a transient finite-element analysis[J]. IEEE Transactions on Magnetics.2003,39(3):p 1492-1494.
    [65]. Hirotsuka Isao, Niwa Yousuke, Tsuboi Kazuo,Kawakami Masayuki. Experimental study of radial distributions of electromagnetic vibration and noise in three-phase squirrel-cage induction motor at no-load[C]. Proceedings of the 11th International Conference on Electrical Machines and Systems,ICEMS 2008.2008.
    [66]. Ishibashi Fuminor, Matsushita Makoto,Noda Shinichi. Harmonic electromagnetic forces in induction motors[J]. IEEJ Transactions on Industry Applications.2009,129(4):p 375-381+4.
    [67]. Chang Ching-Feng,Chen Jin-Jia. Vibration monitoring of motorized spindles using spectral analysis techniques[J]. Mechatronics.2009,19(5):p 726-734.
    [68]. 熊万里,吕浪,阳雪兵,高航.高频变流诱发的电主轴高次谐波振动及其抑制方法[J].振动工程学报.2008,21(6):p 600-607.
    [69]. 伶宁泽.大中型感应电机电磁力及定子振动分析[D].沈阳:沈阳工业大学.2006.
    [70]. Valtonen Mikko, Parviainen Asko,Pyrhonen Juha. Influence of the air-gap length to the performance of an axial-flux induction motor[C]. Proceedings of the 2008 International Conference on Electrical Machines,ICEM'O8.2008.
    [71]. Zhu X L, E S J,Gao C F. Influence of the air-gap changes on the performance of linear induction motor[J]. Key Engineering Materials.2009,392-394:p 551-554.
    [72]. 李文竹.直线感应电动机气隙变化对电机性能影响的研究[D].吉林:吉林大学.2006.
    [73]. Chen Jenq-Shyong.Hsu Wei-Yao. Characterizations and models for the thermal growth of a motorized high speed spindle[J]. International Journal of Machine Tools and Manufacture.2003, 43(11):p 1163-1170.
    [74]. Knight A M,Bertani S. Stator current monitoring to detect mechanical faults in medium size induction motors[C]. Second International Conference on Power Electronics, Machines and Drives. 2004.
    [75]. 王保民,胡赤兵,邬再新,刘洪芹.高速电主轴定转子的气隙变化及影响因素[J].兰州理工大学学报.2008,34(6):p 40-42.
    [76]. FunkeH,Maciosehek G. Influence of unbalanced mag-netic pull on the running of synchronous machine[J]. E-lectric.1965,19.
    [77]. Bortoli M J, Salon S J, Burrow D W,Slavik C J. Effect of rotor eccentricity and parallelwindings on induction machine behavior:a study using finite element analysis[J]. IEEE Transaction on Magnetics.1993,29(2):p 1676-1682.
    [78]. Dorrell D G,Smith A C. Calculational of U.M.P. in induction motors with series or parallel winding connections[J]. IEEE Transaction on Energy conversion.1994,9(2):p 304-310.
    [79]. 曲凤波,孙玉田,曲大庄.水轮发电机的不平衡磁拉力[J].大电机技术.1997,4:p 1-3.
    [80]. 郭丹,何永勇,褚福磊.不平衡磁拉力及对偏心转子系统振动的影响[J].工程力学.2003,20(2):p 11-121.
    [81]. 冀溥,王秀和,王道涵,杨玉波.转子静态偏心的表面式永磁电机齿槽转矩研究[J].中国电机工程学报.2004,24(9):p 188-191.
    [82]. 万书亭,李和明,李永刚.气隙偏心对汽轮发电机定转子振动特性的影响[J].振动与冲击.2005,24(6):p 21-23.
    [83]. Bossmanns, B.,J.F. Tu. Thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture.1999,39(9):p 1345-1366.
    [84]. Huang Kun-Fang, Juan Yu-Ling, Tang Chia-Hui, Chang Ching-Feng,C. Tsair-Rong. A control scheme of thermal growth compensator for motorized spindles[J]. ICIC Express Letters.2011, 5(9A):p 3101-3108.
    [85]. Lin Chi-Wei,T.J. F. Model-based design of motorized spindle systems to improve dynamic performance at high speeds[J]. Journal of Manufacturing Processes.2007,9(2):p 94-108.
    [86]. 张明华,袁松梅,刘强.基于有限元分析方法的高速电主轴热态特性研究[J].制造技术与机床.2008(4):p 29-32.
    [87]. 杨佐卫,殷国富,尚欣,姜华,钟开英.高速电主轴热态特性与动力学特性耦合分析模型[J].吉林大学学报.2011,41(1):p 100-105.
    [88]. 王红梅,阮毅,徐静.定子电阻变化对异步电机按定子磁场定向控制系统性能的扰动分析[J].电气传动自动化.2004,26(1):p 14-17.
    [89]. 梅柏杉,陈晖.直接转矩控制系统中定子电阻的影响分析[J].微特电机.2009(4):p 13-15.
    [90]. Umanand L,B.S. R. Online estimation of stator resistance of an induction motor for speed control applications[J]. IEE Proceedings on Electric Power Applications.1995,142(2):p 97-103.
    [91]. Kerkman R J, Seibel B J,R.T. M. A new flux and stator resistance identifier for AC drive systems[J]. IEEE Transactions on Industry Applications.1996,32(3):p 585-593.
    [92]. Kerkman R J, Seibel B J,Rowan T M. A new flux and stator resistance identifier for AC drive systems[J]. IEEE Trans.on Industry Applications.1996,32(3):p 585-593.
    [93]. Foo Gilbert Hock Beng,R.M. F. Direct torque control of an IPM-synchronous motor drive at very low speed using a sliding-mode stator flux observer [J]. IEEE Transactions on Power Electronics. 2010,25(4):p 933-942.
    [94]. Barut Murat. Bi input-extended kalman filter based estimation technique for speed-sensorless control of induction motors[J]. Energy Conversion and Management.2010,51(10):p 2032-2040.
    [95]. Soltani J, Abootorabi Zarchi H.Arab Markadeh Gh R. Stator-flux-oriented based encoderless direct torque control for synchronous reluctance machines using sliding mode approach[J]. Proceedings of World Academy of Science, Engineering and Technology.2009,58:p 883-889.
    [96]. Soltani Jafar, Markadeh Gholam Reza Arab, Abjadi N R,Ping H W.A new adaptive Direct Torque Control (DTC) scheme based-on SVM for adjustable speed sensorless induction motor drive[J]. Proceeding of International Conference on Electrical Machines and Systems.2007:p 497-502.
    [97]. Bai Huayu, Liu Jun, Li YuJun.X. HaiMei. Research on direct torque control of permanent magnet synchronous motor drive based on extended state flux linkages observer[C].20078th International Conference on Electronic Measurement and Instruments,ICEMI.2007.
    [98]. Xiao Dan, Foo Gilbert,R.M. F. A new combined adaptive flux observer with HF signal injection for sensorless direct torque and flux control of matrix converter fed ipmsm over a wide speed range[C].2010 IEEE Energy Conversion Congress and Exposition.2010.
    [99]. Foo Gilbert,Rahman M F. Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection[J]. IEEE Transactions on Industrial Electronics. 2010,57(1):p 395-403.
    [100]. Abjadi Navid R, Markadeh Gholamreza Arab,Soltani Jafar. Model following sliding-mode control of a six-phase induction motor drive[J]. Journal of Power Electronics.2010,10(6):p 694-701.
    [101]. Zidani F, Diallo D, Benbouzid M E H,Nait-Said R. Direct torque control of induction motor with fuzzy stator resistance adaptation[J]. IEEE Transactions on Energy Conversion.2006,21(2):p 619-621.
    [102]. Zaimeddine Rabah, Berkouk E Madjid,Refoufi Larbi. Two approaches for direct torque control using a three-level voltage source inverter with real time estimation of an induction motors stator resistance[J]. Mediterranean Journal of Measurement and Control.2007,3(3):p 134-142.
    [103]. Sayouti Yassine, Abbou Ahmed, Akherraz Mohammed,Mahmoudi Hassane. On-line neural network stator resistance estimation in direct torque controlled induction motor drive[C]. ISDA 2009-9th International Conference on Intelligent Systems Design and Applications.2009.
    [104]. Tlemcani Abdelhalim, Bouchhida Ouahid, Benmansour Khelifa, Boudana Djamell,Boucherit Mohamed Seghir. Direct torque control strategy (DTC) based on fuzzy logic controller for a permanent magnet synchronous machine drive[J]. Journal of Electrical Engineering and Technology.2009,4(1):p 66-78.
    [105]. Aktas Mustafa,Ibrahim Okumus H. Stator resistance estimation using ANN in DTC IM drives[J]. Turkish Journal of Electrical Engineering and Computer Sciences.2010,18(2):p 197-210.
    [106]. Draou Azeddine.Miloudi Abdellah. A simplified speed controller for direct torque neuro fuzzy controlled induction machine drive based on a variable gain PI controller[C]. PEOCO 2010-4th International Power Engineering and Optimization Conference,Program and Abstracts.2010.
    [107]. Marnefors L,Nee H P. Full-order observers for flux and parameter estimation of induction motors[C]. European Conference on Power Electronics and Applications,EPE'97.1997.
    [108]. Vasic V, Vukosavic S N,Levi E. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives [J]. IEEE Transactions on Energy Conversion.2003,18(4):p 476-483.
    [109].陈硕,山田英二.感应电机无速度传感器矢量控制系统的定子电阻在线辨识[J].中国电机工 程学报.2003,23(2):p 88-92.
    [110]. 王焕钢,徐文立,杨耕.感应电动机定子磁链与转矩解耦自适应控制[J].中国电机工程学报.2004,24(12):p 171-175.
    [111]. Mehazzem F, Reama A,B. H. Nonlinear adaptive backstepping control of induction motor with varying parameters[C]. Proceedings of the 10th IASTED International Conference on Control and Applications,CA 2008.2008.
    [112]. Nademi H, Tahami F,R. M. Fault tolerant IPMS motor drive based on adaptive backstepping observer with unknown stator resistance[C].2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008.2008.
    [113]. Sasao Tetsuya,Kubota Hisao. Stability analysis of sensor-less induction motor drives with stator resistance adaptation using estimation error index[C]. Proceeding of International Conference on Electrical Machines and Systems,ICEMS 2007.2007.
    [114]. Ravi Teja A V,Chakraborty Chandan. A novel model reference adaptive controller for estimation of speed and stator resistance for vector controlled induction motor drives[J]. IEEE International Symposium on Industrial Electronics,ISIE 2010.2010:p 1187-1192.
    [115]. 巫庆辉,邵诚.感应电动机定子磁场定向直接转矩控制中定子电阻自适应估计方法[J].机械工程学报.2006,42(6):p 24-29.
    [116]. 李自成,程善美.无速度传感器感应电机控制中定子电阻辨识策略研究[J].系统仿真学报.2009,21(8):p 2355-2357,2376.
    [117].樊扬,瞿文龙,陆海峰.一种基于磁链误差的异步电动机定子电阻校正方法[J].电工技术学报.2009,24(1):p 65-69.
    [118]. 丁惜瀛,夏强,赵鑫,杨树平,刘强.直接转矩控制磁链低频脉动分析及抑制[J].电气技术.2008(9):p 46-50.
    [119].王高林,陈伟,于泳,徐殿国.一种基于转速和定子电阻自适应的感应电机全阶磁链观测器[J].微电机.2009,42(3):p 5-8.
    [120].黄志武,桂卫华,年晓红,刘心昊,单勇腾.一种新型的基于观测器的无速度传感器感应电动机定子电阻辨识方案[J].电工技术学报.2006,21(12):p 13-20.
    [121]. 何亚屏,年晓红,张超,颜会东.考虑定子电阻鲁棒性的永磁同步电机速度辨识方案[J].电力传动.2009(1):p 47-51.
    [122]. Yoon-SeokHan, Jung-Soo Choi,Young-Seok Kim. Sensorless PMSM drivewith a sliding mode control based adaptive speed and stator resistance estimator[J]. IEEE Transactions on magnetics. 2000,36(5):p 3588-3591.
    [123]. Cristian Lascu, Ion Boldea,Frede Blaabjerg. Variable-structure direct torque control-a class of fast and robust controllers for in-ductionmachine drives[J]. IEEE Transactions on Industrial Electronics. 2004,51(4):p 785-792.
    [124]. Lai Yen-Shin, WangWen-Ke,Chen Yen-Chang. Novel switching techniques for reducing the speed ripple ofAC driveswith direct torque control[J]. IEEE Transactions on Industrial Electronics.2004, 51(4):p 768-775.
    [125]. Soltani J, Abjadi N R, Markadeh Gh R Arab,Ping H W. Adaptive sliding-mode control of a two five-phase series-connected induction motors drive[C]. Proceeding of International Conference on Electrical Machines and Systems,ICEMS 2007.2007.
    [126]. Hajian M, Arab Markadeh G R, Soltani J,Hoseinnia S. Energy optimized sliding-mode control of sensorless induction motor drives[J]. Energy Conversion and Management.2009,50(9):p 2296-2306.
    [127].姜文,贺昱曜.基于滑模定子电阻观测器的直接转矩控制[J].微特电机.2008(2):p 48-56.
    [128]. Barut Murat, Bogosyan Seta,Gokasan Metin. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMS[J]. Energy Conversion and Management. 2007,48(12):p 3120-3134.
    [129]. Joshi R R, Gupta R A,Wadhawani A K. Intelligent controller for dtc controlled matrix converter cage drive system[J]. Iranian Journal of Electrical and Computer Engineering.2008,7(1):p 9-16.
    [130]. Mir S, Elbuluk M E,Zinger D S. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines[J]. IEEE Transaction on Industry Applications.2004,51(6):p 1318-1328.
    [131]. 佘致廷,任三民,胡超.异步电机定子电阻模糊控制辨识器的研究[J].微计算机信息.2009,25(1):p 14-15.
    [132]. 陈其工.一种新型的模糊神经网络电阻检测器[J].仪器仪学报.1999,20(6):p 589-592.
    [133]. 胡刚,许越.直接力矩控制系统的模糊在线观测器设计[J].电气传动.1997,27(1):p 21-25.
    [134]. 蔡斌军,刘国荣.模糊定子电阻辨识在直接转矩控制系统中的应用[J].湖南工程学院学报(自然科学版).2009,19(3):p 6-9.
    [135]. 张彬娜,张继和,李文.模糊关系模型在定子电阻辨识中的应用[J].电力系统及其自动化学报.2008,20(5).
    [136]. 陶兴华,张俊洪,杨涛.异步电机定子电阻的观测[J].海军工程大学学报.2002,14(6):p 89-92.
    [137].李晓芳,李文,张继和.基于BP网络的感应电机定子电阻观测器[J].电力系统及其自动化学报.2008,20(3):p 25-28
    [138].李健,程小华MRAS感应电机定子电阻的在线辨识[J].电机与控制学报2007,11(6):p620-624.
    [139]. Karanayil B, Rahman M F,Grantham C. On-line stator and rotor resistance estimation scheme for vector-controlled induction motor drive using artificial neural networks[C]. Proceedings of IAS. Texas,USA.2003.
    [140]. Elbuluk M E, Liu Tong,Husain I. Neural-network-based mode reference adaptive systems for high-performance motor drives and motion controls[J]. IEEE Transaction on Industry Applications. 2002,38(3):p 879-886.
    [141]. Cabrera L A, Elbuluk M E,Husain I. Tuning the stator resistance of induction motors using artificial neural network[J]. IEEE Transactions on Power Electronics.1997,12(5):p 779-782.
    [142]. 曹承志,曲红梅,路战红,修国一.利用模糊神经网络对定子电阻进行在线检测的研究[J].仪器仪表学报.2002,23(3):p 291-294.
    [143]. 卜树坡.考虑定子电阻变化的电动机转矩间接检测方法[J].自动化仪表.2009,30(4).
    [144].沈显庆,周宝国.定子电阻的小波神经网络辨识[J].黑龙江科技学院学报.2008,18(4):p295-298.
    [145].孙炜,翟晓华,张路金,王耀南.一种自自组组织小波神经网络定子电阻估计器[J].控制理论与应用.2007,24(3):p 371-373.
    [146]. 吕伟杰,刘鲁源.小波网络在直接转矩控制定子电阻辨识中的应用[J].中国电机工程学报.2004,24(4):p 116-119.
    [147]. Vukadinovic Dinko, Basic Mateo,Kulisic Ljubomir. Stator resistance identification based on neural and fuzzy logic principles in an induction mo tor drive[J]. Neurocomputing.2010,73(4-6):p 602-612.
    [148].曹开玉,徐中,刘晓冰.模糊神经网络在线辨识定子电阻的直接转矩控制技术[J].电工技术.2003(4):p 41-43.
    [149].李佳玉,徐中,曹开玉.模糊神经网格控制的定子电阻的在线检测[J].机械设计与制造.2003(4):p 44-46.
    [150]. Ismail Mohamed Mahmoud. Stator resistance identification using artificial intelligent technique for the adaptive controller of magnetically saturated induction motor[C]. Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications,ISDA'10.2010.
    [151]. Rajaji L,Kumar C. Adaptive neuro-fuzzy inference systems into squirrel cage induction motor drive:modeling, control and estimation[C]. Proceedings of ICECE 2008-5th International Conference on Electrical and Computer Engineering.2008.
    [152].谢黎明,张静,马洪梅.影响高频电主轴工作寿命的主要原因及解决方法[J].组合机床与自动化加工技术.2006(3):p 8-10.
    [153].李立毅,崔淑梅,宋凯,程树康.高频电主轴的发热及其对策[J].微电机.2000,33(3):p 47-52.
    [154].余莉,胡虔生,易龙芳,崔 杨,黄允凯.高速永磁无刷直流电机铁耗的分析和计算[J].电机与控制应用.2007,34(4):p 10-14.
    [155].魏华雄SPWM逆变器供电下感应电机谐波分析与仿真[D].哈尔滨:哈尔滨理工大学.2004.
    [156].黄平林,胡虔生,崔杨,黄允凯.PWM逆变器供电下电机铁心损耗的解析计算[J].中国电机工程学报.2007,127(12):p 19-23.
    [157]. K.Yamazaki, M.Tanida,H.Satomi., Calculation Method for Iron Loss in Rotating Machines by Direct Consideration of Eddy Currents in Electrical Steel Sheets, in IEEJ Transactions on Industry Applications.2008. p.1298-1307.
    [158].方瑞明,王榕.基于谐波分析法的高速变频电机铁耗计算方法[J].电机与控制学报.2004,8(1):p25-27.
    [159].刘玉庆,李莉.变频调速异步电动机铁耗的分析计算[J].电工电能新技术.2002,21(2):p29-32.
    [160].江善林.高速永磁同步电机的损耗分析与温度场计算[D].哈尔滨:哈尔滨工业大学.2010.
    [161]. 中华人民共和国,三相异步电动机试验方法.1985,国家标准局.
    [162. 严可国.大型汽轮发电机组故障诊断方法及检测保护系统研究[D].北京:华北电力大学.2009.
    163]. 关慧.变频器驱动下的异步电机设计与分析[D].北京:清华大学.2004.
    [164].汤蕴璆.电机内的电磁场[M].北京:科学出版社.
    [165].蒙亮,罗应立,刘晓芳,杨金福,池永斌.汽轮发电机转子铁心表面电磁力分布的实例研究[J].中国电机工程学报.2005,25(1):p 81-86.
    [166].杨耕,罗应立.电机与运动控制系统[M].北京:清华大学出版社.
    [167].尔桂花,窦曰轩.运动控制系统[M].北京:清华大学出版社.
    [168]. 洪乃刚.电力电子、电机控制系统的建模和仿真[M].北京:机械工业出版社.
    [169].刘军锋.李叶松.定子电阻对无速度传感器系统的影响及其在线调整[J].电气传动.2007,37(11):p 6-9,41.
    [170]. P, P. Introduction:issues in case-based design system[J]. AIEDAM.1993,7(2):p 79-85.
    [171]. K, K. Case-based reasoning:an introduction[J]. Expert Systems with Applications.1993,6(1):p 3-8.
    [172]. 片锦香.热轧带钢层流冷却过程建模与控制方法研究[D].沈阳:东北大学.2010.
    [173]. Olsson E, Funk P,X. N. Fault diagnosis in industry using sensor readings and case-based reasoning[J]. Journal of Intelligent & Fuzzy Systems.2004,15(1):p 41-46.
    [174]. Stephane N,M.L.L. J. Case-based reasoning for chemical engineering design[J]. Chemical Engineering Research & Design.2008,86(6(A)):p 648-658.
    [175]. Acevedo P R, Martinez J J F,G.M. D. Case-based reasoning and system identification for control engineering learning[J]. Ieee Transactions on Education.2008,51(2):p 271-281.
    [176]. Tsai Chieh-Yuan,C. Chuang-Cheng. A case-based reasoning system for PCB principal process parameter identification[J]. Expert Systems with Applications.2007,32(4):p 1183-1193.
    [177].吴丽娟,张健宇,高立新.基于神经网络和案例推理的智能诊断系统综述[J].机械设计与制造.2009(3):p 261-263.
    [178]. Hartman E J, Keller J D,K.J. M. Layered neural networks with Gaussian hidden units as universal approximations[J]. Neural Computation.1990,2(2):p 210-215.
    [179]. Kolodner J L, Cox M T,G.-C.P. A. Case-based reasoning-inspired approaches to education[J]. Knowledge Engineering Review.2005,20(3):p 299-303.
    [180]. Rissland E L, Ashley K D,B.L.K. Case-based reasoning and law[J]. Knowledge Engineering Review.2005,20(3):p 293-298.
    [181]. Richter M M,A. A. Case-based reasoning foundations[J]. Knowledge Engineering Review.2005, 20(3):p 203-207.
    [182]. Yang B S, Jeong S K,O.Y. M. Case-based reasoning system with Petri nets for induction motor fault diagnosis[J]. Expert Systems with Applications.2004,27(2):p 301-311.
    [183]. 白穆.人工神经元网络在农用地分等因素权重确定中的应用研究[D].西安:长安大学.2007.
    [184]. 史忠植.知识发现[M].北京:清华大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700