用户名: 密码: 验证码:
大跨径PC桥梁弯曲孔道有效预应力理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土桥梁是我国已建桥梁中数量较多的一类桥梁。虽然预应力混凝土桥梁结构的形式和跨径在不断地创新,数量在不断地增加,但是很多运营中的大跨径预应力混凝土桥梁跨中下挠、箱梁开裂现象十分普通,使得部分桥梁过早地失效或破坏,对桥梁结构的造成较大威胁。预应力混凝土连续梁桥在运营过程中的混凝土梁体伸长,说明很多桥梁结构中存在的下挠,开裂等病害均与《公路规范》中结构有效预应力估计不足有关;而施工中预应力混凝土连续梁桥预应力长索在设计张拉力下伸长量不够,反映出现行预应力计算公式不能很好的描述预应力束的张拉变化规律。
     本文从《公路规范》中预应力摩阻损失公式出发,基于弹性力学中赫兹(Hertz)接触理论,对预应力混凝土连续梁桥中弯曲孔道的有效预应力进行理论分析与试验研究。具体内容如下:
     1、预应力结构弯曲孔道预应力损失研究。首先指出《公路规范》在预应力摩阻损失公式的推导过程中的问题,并基于力学平衡条件,推导了任意应力分布模式下弯曲孔道摩阻损失公式。通过连续圆弧孔道与非连续圆弧孔道预应力损失理论分析计算,证明了弯曲孔道内预应力摩阻损失不可加,应以相对独立的弧段为单元进行摩阻损失计算。讨论了管道摩阻系数对摩阻损失计算的影响,利用弯曲孔道摩擦阻力试验及实桥的测试数据证明了目前通用损失计算公式的不合理性。最后给出了预应力钢束与与管道壁之间的摩阻损失公式。
     2、预应力钢束与混凝土接触的有限元分析。借助通用有限元分析软件ANSYS对弯曲孔道预应力钢束和混凝土的受力性能进行分析,得到弯曲孔道预应力摩阻损失的分布规律,以及预应力钢束和混凝土的界面接触应力分布模式。通过规范公式、本文简化公式和有限元计算结果比较,发现当弯曲孔道圆心角度小于120°时,可利用简化公式计算弯曲孔道的预应力摩阻损失;当弯曲孔道圆心角度大于120°时,必须考虑B值项对摩阻损失的的影响。假定界面接触应力沿圆弧长度呈三段直线分布,在此基础上推导本文公式中B值项的表达式。从理论上为预应力钢束的摩阻损失计算提供了参考,且证明了只要接触应力分布模式假设正确,本文推导公式将给出准确的摩阻损失值,进而验证本文推导摩阻损失公式的适用性。
     3、预应力摩阻损失公式的参数识别。在前述推导的孔道预应力摩阻损失简化公式的基础上,基于实际桥梁结构施工过程中管道摩擦系数μ和管道偏差系数k的不易确定性,结合桥梁现场实测数据,利用BP神经网络的非线性拟合功能,对参数μ和k进行识别;计算结果表明,采用BP神经网络算法用于摩阻参数的识别是可行的,利用识别参数计算的摩阻损失与试验值吻合较好,证明了本文推导公式用于预应力摩阻损失计算的有效性。对于计算平曲线预应力钢束摩阻损失和空间曲线预应力钢束摩阻损失计算也是可行的,并且精度比规范公式要高。根据环向预应力钢束的应变测试结果,给出了弧段内指定点的摩阻损失计算的简化方法。
     4、预应力损失的实桥设计应用与比较。结合某大跨径连续刚构桥梁,对预应力钢束的损失值进行了分析研究。计算了摩阻损失、弹性压缩损失、收缩徐变损失、钢束松弛损失等损失在总预应力损失中所占的比例,得出了预应力钢束与与管道壁之间的摩阻损失和混凝土收缩徐变引起的损失是对预应力钢束影响较大损失的结论。针对管道中摩阻损失,考察了结构挠度和应力随摩擦系数μ和管道偏差系数k变化的敏感性,同时比较了本文摩阻损失公式与规范损失公式的差别对结构的影响程度。
Prestressed concrete bridge has a large number in all kinds of built bridges in China. Although the structure form and the span of prestressed concrete bridge are in the constant innovation, the number is also constantly increasing, but the phenomenon of downwarping and cracking across the middle of box girder of many long span prestressed concrete bridge in operation is very common. These damages make some bridges failed or destroyed earlier, cause large threat to the bridge structure. The elongation of concrete beam of prestressed concrete continuous beam bridge in the operation indicates that downwarping, cracking and other diseases of many existing bridge structures have the matter with the insufficient estimation of effective prestress in the provision of Chinese "Highway Code". And during the construction of prestressed concrete continuous beam bridge the elongation of long cable under the designed tensile force is not enough. Both of these problems reflect the current formula does not give a good description of the tension variation of the pretress strands.
     Based on the Hertz elastic contact theory, this paper studies the formula of friction loss in the Chinese "Highway Code" and does some theoretical analysis and experimental studies on effective prestress of prestressed concrete continuous beam bridge in the curved duct. The main content includes:
     1. Study on the prestress loss of prestressed structure in curved duct. This paper pointed out problems of the prestressed friction loss formula of Chinese "Highway Code" in the deriving process at first. Based on force equilibrium conditions, this paper derived the friction loss formulas in any stress distribution mode. From the theoretical analysis and calculations of prestress loss of continuous and non-continuous circular of curved channel, this paper proved that friction losses of prestress in several curved ducts can not add up, but should be calculated in relatively independent arc as a unit. This paper then used the friction test of curved channel and the test data of a real bridge to prove the current general formula of prestresse friction loss unreasonable. Finally, prestressed loss formula between prestressed strands and pipe wall was shown.
     2. Finite element analysis of contact analysis between prestressed strands and concrete. With common finite element analysis software ANSYS, this paper analyzed the mechanical properties of prestressed strands and concrete in curved channel, and got the law of prestress friction loss and the interface contact stress distribution patterns between prestressed strands and concrete. Through the comparisons of the results by the code formula, the simplified formula and the finite element calculation, it is found when the central angle of the bend channel is less than 120°, we can use the simplified formula for friction loss of curved channel; when the central angle of the bend channel is greater than 120°, the results must be considered the value, of item B which can impact on the final friction losses. Assume that the distribution of contact stress along the arc is in three sections of lines, the value of item B can be expressed by a formula. This paper provided a reference of friction loss calculation in theory. It also proved derived formula will give an accurate value of friction loss as long as the assumption of contact stress distribution model is correct, and then validated the applicability of the derived friction loss formula.
     3. Parameter identification for formula of friction loss of prestress. For friction coefficientμand deviation coefficient k of the pipe is indeterminate in the construction process of a real bridge structure, this paper used the derived friction loss formula and field data to identify parametersμand k by BP neural network. The results shown that BP neural network algorithm for the identification of friction parameters is feasible; the values of friction loss by identification parameter are in good agreement with the experimental values. It proved the derived formula is effective for calculating prestress friction loss. The calculation of friction loss for flat curve and space curve prestressed strands were feasible and the accuracy is higher than the code formula. According to the strain test results of circular prestressed strands, it gave the calculation method of the specified point within an arc of curved duct.
     4. Design and comparison of prestress loss of a real bridge. Combined with a continuous rigid frame bridge, this paper analyzed the values of prestress loss. It calculated the prestress loss of friction, elastic compression, and looseness of strands, shrinkage and creep of concrete, and the ratios of the above four to the total prestress loss. This paper investigated the sensitivity of deflection and stress of the bridge structure with deviation ofμand k. It also compared the influence of derived friction loss formulas and the formula of current code.
引文
[1]李国平.预应力混凝土结构设计原理.北京:人民交通出版社,2000年10月.
    [2]马保林.高墩大跨度连续刚构桥.北京:人民交通出版社,2001年10月.
    [3]周军生,楼庄鸿.大跨径连续刚构桥的现状和发展趋势[J].中国公路学报,2000,Vo13(01)
    [4]朱汉华,陈孟冲,袁迎捷.预应力混凝土连续箱梁桥裂缝分析与防治.北京:人民交通出版社,2006年3月.
    [5]崔宏涛,贺虹.预应力混凝土连续箱梁桥纵向裂缝仿真分析[J].中外公路,2006(04).115-118.
    [6]龙佩恒,陈惟珍,何雄君.PC箱梁桥受力开裂成因的数值分析[J].桥梁建设,2006(02).77-80.
    [7]刘小燕,龙浩军,韦成龙,王会永.公路PC箱梁腹板裂缝成因与混凝土应力限值研究[J].桥梁建设,2006(02).14-17.
    [8]顾凯峰,彭卫.预应力混凝土连续梁桥腹板裂缝研究[J].公路,2004(07):35-38.
    [9]宋随弟,祝兵.预应力混凝土连续刚构桥腹板斜裂缝发生机理研究[J].桥梁建设,2008(3):71-74.
    [10]陈宇峰,罗玲.PC连续刚构桥运营阶段箱梁开裂机理及预防措施[J].重庆交通大学学报(自然科学版),2007,26(6):43-45.
    [11]陈颜辉,风兵.预应力混凝土连续刚构桥裂缝和下挠问题探讨[J].工程结构,2008,28(5):94-95.
    [12]李华明.大跨径预应力混凝土连续刚构桥裂缝机理与对策研究[D].北京交通大学,2006.
    [13]李俊.大跨度预应力混凝土连续刚构桥裂缝研究[D].西南交通大学,2007.
    [14]陈文瑜,黄小清,汤立群.混凝土连续刚构箱梁桥的温度场分析[J].中山大学学报(自然科学版),2008(2):114-116.
    [15]祝明桥,.混凝土薄壁连续箱梁剪力滞效应试验研究[J].中南大学学报(自然科学版),2008,(2).375-379.
    [16]吴亚平,杨玫,周大为,林丽霞,苏强,.荷载横向变位下箱梁顶板与底板的剪滞效应[J].中南大学学报(自然科学版),2008,(2).土木工程学报[J].2007(10):8-12.
    [17]顾炜,熊学玉,黄鼎业,.超长预应力混凝土结构收缩徐变敏感性分析[J].建筑材料学报,2008,(5).535-540.
    [18]宋国华,高芒芒,黎国清.桥梁墩台不均匀沉降时的车桥垂向系统耦合振动分析[J].中国铁道科学,2010,(02),29-33.
    [19]Charles Newhouse, Timothy Wood,.The effect of temperature on the effective prestressing force at release for PCBT girders[C]. Proceedings of the 2008 Structures Congress-Structures Congress 2008:Crossing the Borders,2008:314.
    [20]Barr, P.J.1, Stanton, J.F.2, Eberhard, Effects of temperature variations on precast, prestressed concrete bridge girders [J]. Journal of Bridge Engineering,2005,10(2):186-194.
    [21]Idriss, Rola L.1, Solano, Effects of steam curing temperature on early prestress losses in high-performance concrete beams [J]. Transportation Research Record2002,1813:218-228.
    [22]王培金,盛洪飞.大跨连续刚构桥预应力混凝土箱梁的长期挠度预测探讨[J].公路交通科技,2007,24(1):87-89.
    [23]杨志平,朱桂新,李卫.预应力混凝土连续刚构桥挠度长期观测[J].公路,2008(8):285-289
    [24]谢峻,江见鲸,王国亮等.大跨度预应力混凝土箱梁桥的健康监测系统[J].清华大学学报(自然科学版),2006(12).
    [25]涂杨志,张开银等.大跨度PC桥孔道摩阻偏差系数试验研究[J].公路交通科技,2003,20(6):45~48.
    [26]颜东煌,袁明,刘昀.施工定位误差对竖向预应力筋应力损失的影响分析及改进措施[J].中外公路,2008(02).
    [27]李准华,刘钊.大跨度预应力混凝土梁桥预应力损失及敏感性分析[J].世界桥梁,2009(1):36-39.
    [28]张开银,顾津申等.弯曲孔道摩阻预应力损失试验研究[J].武汉理工大学学报(交通科学与工程版),2009(02).
    [29]刘志文,宋一凡等.空间曲线预应力束摩阻损失参数[J].西安公路交通大学学报,2001,Vo21(3).
    [30]刘来君,陈跃,段永灿.弯曲应力引起的预应力混凝土箱梁开裂[J].长安大学学报,2003(05).
    [31]张开银,郭志伟,顾津申.PC弯曲孔道摩阻预应力损失试验与分析[J].中外公路,2010(02).
    [32]张开银,殷亮,惠国旺.PC梁桥长束纵向预应力筋优化布置研究[J].交通科技,2009(1):5-8.
    [33]钟新谷.预应力混凝土连续箱梁桥裂缝防止与研究报告[R].中南大学,2001.
    [34]张开银,郭志伟,顾津申,沈典栋.预应力混凝土结构弯曲孔道预应力损失研究[J].固体力学学报,2008,(S1),127-131.
    [35]盛美群,薛峰,王腾飞.单跨预应力梁中预应力摩阻损失规律研究[J].山西建筑,2008,(03):98-99.
    [36]陈月顺,陈亚杰.预应力混凝土结构中预应力摩阻损失模型研究[J].工业建筑,2006,(S1):250-252.
    [37]胡光祥,陈东杰,赵勇,蔡跃.空间曲线预应力束摩阻损失的测试和摩擦系数反演[J].建筑科学,2004,(05):26-29.
    [38]李忠献,吴沛峰,陈培奇.预应力摩阻损失的试验研究[J].天津城市建设学院学报,2003,(01):28-31.
    [39]王建中.大曲率预应力筋的摩阻损失[J].淮海工学院学报,2000,(03):64-66.
    [40]关群.环向预应力筋摩擦损失的计算公式[J].安徽建筑工业学院学报,1999,(04):29-31.
    [41]熊学玉,黄昆,黄鼎业.预应力摩阻损失的一个有效计算方法[J].工业建筑,1998,(07):43-44+49.
    [42]张敏.计算预应力筋摩阻损失和锚固损失的等效荷载法[J].有色冶金设计与研究,1996,(04):25-30.
    [43]罗蔺隆.等效荷载法计算预应力钢筋的摩阻损失[J].四川建筑科学研究,1995,(01):8-10.
    [44]陈东.计算预应力钢筋摩阻损失的等效荷载法[J].中外公路,1991,(03):29-31.
    [45]Engin Keyder,过沛渊.用相当荷载法计算预应力筋的摩阻损失[J].世界桥梁,1991,(01):29-32.
    [46]张华新.空间预应力筋预应力摩阻损失的计算[J].中国公路学报,1993,(02):53-61.
    [47]Influence of the friction losses in the multiple step post-tensioning [J].Industria Italiana del Cemento [J] 2006(11):918-931.
    [48]Mihanovic, Antel, Nikolic, Zeljanal.Numerical model for posttensioning concrete structures [J].International Journal for Engineering Modelling,1994,6(1-4):35-43.
    [49]Roberts-Wollmann, Carin L., Arrellaga, Jose A., Breen, John E., Kreger, Michael E. Field measurements of prestress losses in external tendons [J]. ACI Structural Journal,93(5): 595-601.
    [50]Keyder, Enginl.Friction losses in prestressed steel by equivalent load method [J]. PCI Journal,35(2):74-77.
    [51]张树仁.钢筋混凝土及预应力混凝土桥梁结构设计原理.2004
    [52]涂扬志.大跨度预应力混凝土连续梁桥预应力损失研究:[硕士学位论文].武汉理工大学2003
    [53]中华人民共和国建设部.GB50010-2002.混凝土结构设计规范.中国建筑工业出版社,2002
    [54]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社.2003,13-39
    [55]章巧芳,毕向秋.三维接触有限元分析在产品设计中的应用.机械设计,24(3),2007
    [56]安世亚太公司ANSYS结构分析指南(中)—结构非线性.V0205.
    [57]杨孟刚,文永奎,陈政清.32m双线铁路简支箱梁管道摩阻试验研究[J].铁路标准设计,2001,(11):3-4
    [58]American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specifications[Z],2007
    [59]BS EN1992-1-1:2004, Eurocode 2:Design of concrete structures[Z].2004
    [60]李传习等.基于人工神经网络的混凝土大跨度桥梁主梁参数实时估计[J].中国公路学报.2001,14(3),65-69.
    [61]陈建阳等.大跨度桥梁施工控制中的神经网络方法[J].桥梁建设.2001(4):42-45+57.
    [62]刘三奇,胡成,姜天效.PC梁桥预应力管道摩阻试验研究[J].安徽建筑工业学院学报 (自然科学版),2010,18(2):34-37
    [63]李卫国等.空间多曲线钢索预应力摩阻损失试验研究[J].石家庄铁道学院学报,2000,13(1):14-17--83
    [64]周小勇等.任意空间曲线预应力筋的管道摩擦及局部偏差损失研究[J].公路交通科技,2009,26(6):84-86
    [65]项海帆.高等桥梁结构理论.人民交通出版社.2000
    [66]Shiau, H.S, analysis of initial prestress force of spatial tendon prestressed concrete containment structures[C]. Int Conf on Struct Mech in React Technol, 3rd, Trans Sponsor: Comm of the Eur Communities, Brussels, Belg,1975.
    [67]中华人民共和国行业标准.TB 10002.3-99铁路桥涵钢筋混凝土和预应力混凝土设计规范.2000.
    [68]中华人民共和国行业标准.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵结构设计规范.2004.
    [69]中华人民共和国交通部部标准.JTJ 023-85公路钢筋混凝土及预应力混凝土桥涵设计规范.1985.
    [70]中华人民共和国行业标准.JTG D60-2004公路桥涵设计通用规范.2004.
    [71]张建玲,宋玉普.缓粘结混合配筋预应力混凝土梁裂缝宽度的试验研究[J].土木工程学报,2008,(02),54-59.
    [72]刘立新,安鸿飞,于秋波,江小林.淮河大桥35m先张折线形箱梁预应力损失的研究[J].郑州大学学报(工学版),2007,(04),12-15.
    [73]王行刚,严继东,程宏,吴易.夹片与锚环摩擦阻力损失的分析[J].中国工程机械学报,2005,(01),84-87.
    [74]王宏,预应力筋与孔道壁之间的摩擦引起的预应力损失[J].暨南大学学报,2005,(01),100-102.
    [75]裘一峰,杨友根,王正平,超长预应力梁板研究及施工[J].建筑施工,2003,(06),485-486+489.
    [76]缪云伟,潘琪,王时越,迟珊,预应力混凝土结构后张拉应力试验研究[J].昆明理工大学学报(自然科学版),2001,(05),59-62.
    [77]欧阳锦,预应力钢绞线与波纹管道摩擦系数的取值[J].中国市政工程,2000,(03),37-39.
    [78]肖运龙.预应力砼梁的应力损失(σ_(s2))的新解——在锚具变形、钢筋回缩和接缝压缩引起的条件下[J].华中科技大学学报(城市科学版),1992,(Z1),75-81.
    [79]潘立.使用沥青聚合物涂料的无粘结预应力束张拉力摩阻损失研究[J].建筑技术,1988,(08),22-26.
    [80]王正霖,钟树生,预应力筋孔道摩阻损失计算的简化问题[J].四川建筑科学研究,1986,(02),1-9.
    [81]肖奎,张高朝,徐丰,褚文涛,张海龙.预应力混凝土箱梁日照温度场试验及仿真分析[J]. 华东公路,2008,(03),26-31.
    [82]王黎明,熊健民,周金枝.预应力混凝土连续箱梁温度场的试验研究与分析[J].重庆建筑,2007,(12),18-20.
    [83]谭毅平,韩大建,梁立农.预应力混凝土箱梁桥温度场的研究[J].科学技术与工程,2007,(11),2570-2575.
    [84]陈衡治,谢旭,张治成,叶贵如,徐兴.预应力混凝土箱梁桥的温度场和应力场[J].浙江大学学报(工学版),2005,(12),1885-1890.
    [85]刘立新,胡丹丹,于秋波,冯辉.先张法折线形预应力梁钢绞线摩阻损失试验研究[J].郑州大学学报(工学版),2006,(04),6-9.
    [86]赵国藩,宋玉普,谭克俊,大连市疏港路s形曲线连续箱梁桥预应力摩阻损失试验研究[J].黄承逵,李晓龙,王清湘,钱彭玲,孙公新.预应力技术,2004,(04),4-12.
    [87]刘海成,赵敏,宋加国,宋玉普.大跨高耸结构预应力摩阻损失简化计算的建议[J].特种结构,2003,(02),1-4.
    [88]郑文忠,周威,王英.混凝土结构中预应力筋摩阻损失与反摩阻损失简化计算[J].铁道学报,2003,(06),76-80.
    [89]宋玉普,车轶,马德有,赵国藩.空间多曲线型预应力钢索的预应力摩阻损失研究[J].土木工程学报,2002,(06),105-108.
    [90]潘加富,金杨,秦从律.空间预应力索摩阻损失的简化计算方法[J].浙江建筑,2001,(S1),38-39.
    [91]李卫国,徐步青,胡克辉.空间多曲线钢索预应力摩阻损失试验研究[J].石家庄铁道学院学报,2000,(01),14-17.
    [92]熊学玉,蒋志贤,黄鼎业.预应力摩阻损失及锚固损失的合理设计建议[J].工业建筑,1998,(02),5-9.
    [93]熊学玉,蒋志贤.预应力摩阻损失的合理设计建议[J].结构工程师,1997,(04),7-10.
    [94]陈军.大吨位预应力弯曲锚索摩阻损失和锚固损失[J].陕西水力发电,1994,(01),44-48.
    [95]颜德,郑晓芬,邓永强,朱一飞.部分预应力混凝土多跨框架大梁张拉阶段摩阻损失及锚固损失的实测工作[J].结构工程师,1994,(01),48.
    [96]刘静安.多波无粘结预应力混凝土梁的张拉摩阻损失[J].工业建筑,1989,(03),62-63.
    [97]徐俊林.预应力摩阻损失值的测定[J].工业建筑,1981,(02),43-45.
    [98]张舍.无反弯点曲线预应力束张拉方式的研究及应用[J].工程与建设,2008,(06),830-831.
    [99]吴转琴;曾昭波;尚仁杰;刘景亮.缓粘结预应力钢绞线摩擦系数试验研究[J].工业建筑,2008,(11),20-23.
    [100]王艳侠.预应力孔道摩擦应力损失检测与分析[J].中国建设信息,2006,(17),61-62.
    [101]吴顺利.曲线无粘结预应力钢绞线摩擦系数的确定[J].中外建筑,2006,(04),148-149.
    [102]徐涛;周安;陈春雷.预应力混凝土结构孔道摩擦系数K和μ值实测分析[J].工程与建设,2006,(03),200-201+243.
    [103]赵勇,黄鼎业.空间曲线筋的摩擦和锚固预应力损失分析[J].建筑结构,2005,(04),31-34.
    [104]叶健.下白石特大桥空间曲线孔道摩阻损失分析及测试[J].福建建筑,2005,(03),115-116.
    [105]吴旭,张宿峰.关于大跨径连续箱梁锚下局部应力试验的初步分析[J].黑龙江交通科技,2008,(8),71-73.
    [106]潘晓明,张旭明,王德信.基于点-点单元的预应力混凝土结构仿真分析[J].河海大学学报(自然科学版),2003,(2),60-64,184-187.
    [107]刘金生.大跨度PC连续梁桥孔道摩阻系数测试研究[J].兰州交通大学学报,2008,27(3),23-26.
    [108]杨涛.预应力筋张拉阶段应力损失实用评估方法研究[D].重庆交通大学硕士学位论文,2008.
    [109]Meyer, r, Fuchs e.method for eliminating friction losses in prestressed elements with subsequent adherence, [J].Bauingenieur,45, (5),170.
    [110]Roberts-Wollmann, Carin L, Arrellaga, Jose A, Breen, John E, Kreger, Michael E.Field measurements of prestress losses in external tendons[J]. ACI Structural Journal,1996.93(5), 595-601.
    [111]Martak, L. Friction calculation in fixing the load of prestressed anchors with free tendon length. Proceedings of the European Conference on Soil Mechanics and Foundation Engineering,1979,1,205-214.
    [112]Shiau, H.S. analysis of initial prestress force of spatial tendon prestressed concrete containment structures [J].1975.
    [113]Kwak, Hyo-Gyoung. Numerical models for prestressing tendons in containment structures, Nuclear Engineering and Design [J].2006,236(10):1061-1080.
    [114]Roberts-Wollmann, Carin L.; Arrellaga, Jose A.; Breen, John E.; Kreger, Michael E. Field measurements of prestress losses in external tendons[J].ACI Structural Journal,1996,93(5): 595-601.
    [115]Keyder, Engin. Friction losses in prestressed steel by equivalent load method [J]. PCI Journal,1990,35(2):74-77.
    [116]Artoos, Kurt; Clair, David; Poncet, Alain; Savary, Frederic; Veness, Raymond. Measurement of friction coefficient down to 1.8 K for LHC magnets [J]. Cryogenics,1994,34, 689-692.
    [117]Sapountzakis, E.J.; Katsikadelis, J.T. Analysis of prestressed concrete slab-and-beam structures [J]. Computational Mechanics, September 2001,27(6):492-503.
    [118]Tawfiq, Kamal; Experimental investigation on stress distribution in Florida bulb-tee concrete girders [J]. ACI Structural Journal,1998,95(6):758-767.
    [119]Hu, Di; Chen, Zheng-Qing. Computation of stress loss in prestressed steel due to anchorage set considering function of reverse-friction in PC members [J].Zhongguo Gonglu Xuebao/China Journal of Highway and Transport,2004,17(1):34.
    [120]Li, Peixun; Li, Xingyi; Wang, Yaowen.Experimental research on the loss of friction and anchorage and the affected length of circular prestressed unbonded tendons,1997,31(8):6-9.
    [121]Xiong, Xueyu; Jiang, Zhixian; Huang. Rational design proposals about the loss of prestressing due to friction and the deformation of anchorage devices[J].Gongye Jianzhu/Industrial Construction 1998,28(2):5-9.
    [122]Xiong, Xueyu; Jiang, Zhixian; Huang. Rational design proposals about the loss of prestressing due to friction and the deformation of anchorage devices [J].Gongye Jianzhu/Industrial Construction 1998,28(2):5-9
    [123]Kaiyin, Zhang, Chen Cheng. Analysis on prestress loss caused by friction in curved duct in the design of prestressed concrete structure[C], the 4th international symposium on lifetime engineering of civil infrastructure,2009:701-705.
    [124]Robitaille, S.1; Bartlett, F.M.2; Youssef, M.A.2; Tape, W.3. Evaluating prestress losses during pre-tensioning[C]. Canadian Society for Civil Engineering Annual Conference 2009, May.
    [125]Roberts-Wollmann, Carin L.; Arrellaga, Jose A.; Breen, John E.; Kreger, Michael E. Field measurements of prestress losses in external tendons[J]. ACI Structural Journal,1996,93, 595-601.
    [126]Lundqvist, Peterl; Nilsson. Evaluation of prestress losses in nuclear reactor containments [J]. Nuclear Engineering and Design,2011,241,168-176.
    [127]Khan, Ahmad Alil; Dindorkar, N.1; Pathak, K.K.2. Three dimensional finite element analysis of prestressed concrete slabs considering friction [J]. Journal of Structural Engineering (Madras),2010,37,154-160.
    [128]Shiau, H.S. Analysis of initial prestress force of spatial tendon prestressed concrete containment structures[C]. Int Conf on Struct Mech in React Technol,3rd, Trans.1975.
    [129]Park, Sun-Kyul,2; Kim, Kwang-Sool. A new design method for prestressed concrete continuous flat slabs [J]. Structural Design of Tall and Special Buildings,2004,13,265-276.
    [130]Marojevic, S.T.1. Computer control of minimum shoulder prestress requirements during makeup procedure of premium shoulder connections[C]. Society of Petroleum Engineers of AIME, (Paper) SPE,1986.
    [131]Czaderski, Christophl; Motavalli, Masoudl. Determining the remaining tendon force of a LargeScale,38-year-old prestressed concrete bridge girder [J]. PCI Journal,2006,51,56-68.
    [132]Meyer, R; Fuchs E. Method for eliminating friction losses in prestressed elements with subsequent adherence [J]. Bauingenieur,1970,45,170-171.
    [133]Kim, S.-H.1; Kim, J.-H.2; Ahn, J.-H.2; Jang, M.-S.2; Kim, K.-M.2. Multi-stepwise thermal prestressing method for strengthening of concrete structures[C]. Proceedings of the 3rd International Conference on Bridge Maintenance,2006.
    [134]Bagish, B.P. Quick solution of loss due to slip[J]. Indian Highways,1983,11,28-33.
    [135]Kwak, Hyo-Gyoung; Kim, Jae Hong. Numerical models for prestressing tendons in containment structures [J]. Nuclear Engineering and Design,2006,236,1061-1080.
    [136]Kim, Hyung-Joon; Christopoulos, Constantin. Friction damped posttensioned self-centering steel moment-resisting frames [J]. Journal of Structural Engineering,2008,134, 1768-1779.
    [137]Kleywegt, Harold S.; Jofriet, Jan C. Hoop tension loss and elastic shortening in concrete stave silos [J]. Concrete International,1979,1,28-30.
    [138]HuanG T. Anchorage take-up loss in post- tensioned members [J]. Prestressed Concrete Inst-J,1969,14,30-35.
    [139]Kwak, Hyo-Gyoung; Kim, Jae-Hong; Kim, Sun-Hoon. Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons [J]. Computers and Concrete,2006,3, 43-64.
    [140]Nagataki, Shigeyoshi; Yoneyama, Koichi. Studies on continuously reinforced concrete and prestressed concrete pavements made with expansive cement concrete[C]. Klein Symp on Expansive Cem Concr,1972.
    [141]Seruga, Andrzej. Friction Losses of Tensioning Force in RC Circular Tanks [J]. Inzynieria i Budownictwo,1983,40,321-325.
    [142]Morgen, Brian G.; Kurama, Yahya C. Characterization of two friction interfaces for use in seismic damper applications [J]. Materials and Structures/Materiaux et Constructions,2009,42, 35-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700