用户名: 密码: 验证码:
混凝土高温静动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是一种在民用工程、工业工程以及军事工程中得到广泛应用的承重结构材料,其工作过程中要承担静态载荷、冲击动态载荷及高温等异常环境作用,为了更好地设计和分析这些混凝土结构,必须对混凝土材料在各异常条件下的相关力学特性进行充分研究。迄今为止,由于混凝土高温力学试验技术及数值模拟技术尚不完善,使得人们对混凝土材料在高温作用下的力学性能认识受到制约。围绕这一课题,本文对混凝土高温静动态力学特性做了以下几个方面的研究:
     ①混凝土高温静动力学特性试验技术研究。采用电液伺服万能试验机系统与微波加热技术设计出混凝土高温试验系统,对其测温设备、保温技术及试件温度分布等进行系统分析,并通过验证性试验结果分析其有效性。针对分离式霍普金森压杆(SHPB)试验装置进行混凝土高温动态试验技术研究,理论分析混凝土试件与波导杆的阻抗匹配、试件应力均匀性等,对试验温度变化过程进行测试与分析,最终建立混凝土高温SHPB试验技术。
     ②混凝土高温静态力学特性试验研究。完成了常温20℃至600℃的混凝抗压强度试验,分析抗压强度、峰值应变、弹性模量随温度变化规律,并拟合出经验公式,建立了混凝土高温破坏准则。通过对试验应力-应变曲线与文献经验公式的对比分析,论证了高温静态试验技术的可靠性,为今后试验技术提供参考。
     ③混凝土高温动态力学特性试验研究。通过混凝土常温SHPB试验分析了混凝土动态抗压强度的应变率效应,以动态应力-应变曲线分析了高应变率下混凝土损伤演化规律。完成系列混凝土高温SHPB试验,得到不同温度混凝土动态破坏形式,分析抗压强度、应变率与温度、加载速率的相关性,提出了混凝土应变率强化效应与高温弱化效应相互耦合演化规律。系列混凝土高温动态应力应变曲线表明应变率不变情况下混凝土随温度升高其抗压强度降低,而峰值应变越来越大,其韧性有所增加。
     ④混凝土高温静动态本构模型研究。综合分析了影响混凝土应力应变曲线的因素,提出了一种包含应变率强化效应与温度弱化效应在内的混凝土统一损伤本构模型。基于损伤断裂概率密度的Weibull理论建立了常温混凝土静态损伤本构模型,添加静态温度弱化因子得到混凝土高温静态损伤本构模型,添加应变率强化因子得到常温混凝土动态损伤本构模型,最后,添加应变率强化因子与温度弱化效应因子得到混凝土高温动态损伤本构模型,并将理论公式与试验数据、已有文献公式及数据进行对比分析,验证模型的有效性。
     ⑤采用有限元方法进行混凝土高温静动试验数值模拟,建立混凝土高温条件下的静、动力学试验数值模拟方法,尤其建立了混凝土高温HJC模型参数。结合试验测试温度,获得了整个试验过程中试样温度变化规律,通过数值模拟分析了混凝土高温静动力学特性,再现了混凝土高温试件的破坏现象。数值模拟结果与试验结果较吻合。
Concrete has become a widely used load-bearing construction material for civil engineering, industrial engineering and military projects. And concrete generally works under environmental activities such as static load, dynamic impact load and high temperature, etc. In order to design and analyze concrete structures better, the mechanical properties of concrete under abnormal conditions must be fully studied. Fully studying the mechanical properties of concrete under abnormal conditions is of critical importance in designing and analyzing concrete structures. But the experimental techniques and numerical simulation techniques about concrete with elevated temperature are not perfect, so the research and application of concrete are restricted. But the imperfect high-temperature experimental techniques and numerical simulation techniques lead to restrictions in understanding high-temperature mechanical behaviors of concrete. Around these goals, the following research on static and dynamic mechanical behaviors of concrete at elevated temperature has been conducted.
     ①The experimental techniques for studying static and dynamic mechanical behaviors of concrete have been studied. First, A whole set of elevated temperature technique is put forward by the material testing machine and microwave heating technology. The temperature measuring equipment, insulation technology and temperature distribution of specimens are systematically analyzed and the validity is proved by the results of confirmatory tests. Last, the experimental techniques for studying dynamic mechanical behaviors of concrete with high temperature are studied by the split Hopkinson pressure bar (SHPB). After analyzing the impedance matching between concrete specimen and wave guide bar, the uniformity of specimen stress and the temperature changing process, the elevated temperature SHPB technique is established.
     ②The static mechanical behaviors of concrete with high temperature have been studied. A series of compression tests with temperature changing from 20℃to 600℃have been completed. The laws about the compressive strength, the peak strain and the elastic modulus changing with temperature are analyzed, and the empirical formulas are also proposed. At the same time, the failure criterion of concrete with high temperature is developed. The stress-strain curves were analyzed by comparing with the empirical formula. Through comparative analysis of the stress-strain curve achieved from the experiment and the empirical formulas in the literature, the reliability of high- temperature static experimental techniques is demonstrated, which provides reference for future research.
     ③The dynamic mechanical behaviors of concrete with high temperature have been studied. Through the result of SHPB tests with normal temperature, the effect of strain-rate is analyzed and the damage evolution rules of concrete under high strain rate are studied through the dynamic stress-strain curve. The dynamic destructional forms of concrete under different temperatures are observed during the high-temperature SHPB tests. The correlations among the compressive strength, the strain rate, the temperature and the loading rate are studied. The strengthening effect of strain-rate and the weakening effect of high temperature on concrete were putted forward. The coupling law of the strain-rate strengthening effect and high-temperature weakening effect on concrete is presented. The results show that the compressive strength reduces as the temperature increases under a constant strain rate, and the peak strain was more and more bigger. while the peak strain as well as the toughness accretes.
     ④The static and dynamic constitutive model of concrete with high temperature has been studied. After comprehensive analysis of factors which influence the stress-strain curve, a unified damage constitutive model of concrete containing the strengthening effect of strain-rate and the weakening effect of high temperature is put forward. First, based on the Weibull’s damage fracture probability density theory, a new static damage constitutive model of normal temperature concrete is established. Then the static constitutive model becomes a high-temperature damage model or a dynamic damage constitutive model after adding the effectors about the weakening effect of high temperature and the strengthening effect of strain-rate. Then after adding the high-temperature weakening factor and the strain-rate strengthening factor, respectively, the static constitutive model becomes a high-temperature static damage model and a normal-temperature dynamic damage model. Ultimately, a high-temperature dynamic damage constitutive model of concrete is obtained by adding both strengthening factor and weakening factor. And the effectiveness of the model is verified by comparing the theoretical formula with test data.
     ⑤The numerical simulation method for concrete with high temperature has been established by the finite element software. The accurate parameters of HJC model, especially parameters affected by high temperature, are gotten. The temperature changing rules of concrete specimens during the entire test process are acquired by combination of the temperature measured in the experiment, and the static and dynamic mechanical behaviors of concrete at elevated temperature are also analyzed by numerical simulation, and the destructive phenomena of high-temperature concrete are represented. The result shows that the numerical simulation dovetails nicely with experimental phenomena.
引文
[1]陈磊,李彬,滕桃居,陈太林.混凝土高温力学性能分析[J].混凝土,2003,(7):26-28.
    [2] Weigler.H. Influence of High Temperatures on Strength and Deformations of Concrete [J]. Concrete for Nuclear Reactors, 1972, ACI SP 34, Detroit:481-493.
    [3]李卫,过镇海.高温下混凝土的强度和变形性能的试验研究[J].建筑结构学报.1993,14 (1): 8-16.
    [4] Abrams.M.S. Compressive Strength of Concrete at Temperature to 1600F [J]. Temperature and Concrete, 1971, ACI SP 25, Detroit: 33-59.
    [5] Malhotra.H.L. The Effect of Temperature on the Compressive Strength of Concrete [J]. Magazine of Concrete Research, 1956, Aug: 85-94.
    [6] Schneider.U. Properties of materials at high temperatures concrete[M]. Kassel: RILEM, 1985.
    [7] Castillo.C, A.J D. Effect of transient high temperature on high-strength concrete[J]. ACI Materials Journal. 1990, 87 (1): 43-53.
    [8]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报.1990,18 (3): 287-297.
    [9]孙伟,罗欣,Chan S. Y. N.高性能混凝土的高温性能研究[J].建筑结构学报.2000,3 (1): 27-32.
    [10]钮宏,马云凤.轻骨料混凝土构件抗火性能的研究[J].建筑结构, 1996, 26( 7):29-33.
    [11]覃丽坤,宋玉普,王玉杰,等.高温对混凝土力学性能影响的试验研究[J].混凝土, 2004, (5):9-11.
    [12] Landerson.S. On the Multiaxial Behaviour of Concrete Exposed to High Temperature [J]. Nuclear Engineering and Design 75. 1982: 271-282.
    [13] C.Ehm, U.Schneider. The high temperature behavior of concrete under biaxial conditions [J]. Cement and concrete research.1985,15:27-34.
    [14] K.Kordina, C. Ehm, U. Schneider. Effect of biaxial loading on the high temperature behaviour of concrete. Proc.l st Symp [J], Fire Safety Science, Gaithersburg, MD,1985.
    [15] K.CH.Thienel, F.S.Rostasy. Strength of concrete subjected to high temperature and biaxial stress:Experiments and modelling[J]. Materials and Structures. 1995, 28: 575-581.
    [16] A.Khennane, G.Baker. Plasticity models for the biaxial behaviour of concrete at elevated temperatures, Part I: Failure criterion [J]. Computer Methods in Applied Mechanics and Engineering.1992,100: 207-223.
    [17] A.Khennane, Baker G.. Plasticity models for the biaxial behaviour of concrete at elevated temperatures, Part II:Implementation and simulation tests [J]. Computer Methods in AppliedMechanics and Engineering. 1992,100: 225-248.
    [18]张众.冻融及高温后混凝土多轴力学特性试验研究[D].大连理工大学博士学位论文, 2006.
    [19] Bresler.B, Iding.R.H. Fire Response of Prestressed Concrete Members [J]. Fire Safety of Concrete Structures.1983,ACI SP-80: 69-113.
    [20] Harade.T, etc. Strength, Elasticity and Thermal Properties of Concrete Subjected to elevated Temperature[J]. ACI.1972, 1 (34): 377-406.
    [21]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报.1997,37 (6): 87-90.
    [22] Bertero.V.V., M.P. Influence of Thermal Exposures on Mechanical Characteristics of Concrete[J]. Concrete for Nuclear Reactors,1972,(34):505-531.
    [23]南建林,过镇海,时旭东.温度升降循环下混凝土变形性能的试验研究[J].建筑科学, 1997, (2): 16-21.
    [24] Crispino.E.Studies on the Technology of Concretes under Thermal Condition [J]. Concrete for Nuclear Reactor 1972,ACI SP-34, Detroit: 443-479.
    [25] Khoury.G.A, Grainger B N, Sullivan P J E. Strain of concrete during first heating to 600 0C under load [J]. Magazine of Concrete Research. 1985,37(133): 195-215.
    [26] Khoury.G.A, Grainger B N, Sullivan P J E. Strain of Concrete during First Cooling from 6000C under Load [J]. Magazine of Concrete Research.1986,38(134): 3-12.
    [27]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报, 1993, 26 (5): 58-69.
    [28] Marechal.J.C. Variations in the Modulus of Elasticity and Poisson's Ratio with Temperature[J]. Concrete for Nuclear Reactors. 1972,Vo1.I, II, III.ACI SP34-27, Detroit: 495-503.
    [29] D.J.Nauss, C.B.Oland, G.C.Robinson.Testing program for concrete at temperaure to 8940K[A]. Proc.6th.Internat.on Struct.Mech. in Reactor Technology[C], Paris, 1981.
    [30] Z.P.Bazant, A.Asghari, J.Schmidt. Experimental study of creep hardened cement paste at variable water content [J]. Material and Structures,1976,9: 279-290.
    [31] Kaplan.M.F.,Roux.F.J.P.Effects of Elevated Temperature on the Properties of Concrete for the Containment and Shielding of Nuclear Reactors [J]. Concrete for Nuclear Reactors. 1972,ACI SP-34,Detroit:437-441.
    [32]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究, 1990, (1):37-43.
    [33] Bzaant Z P,Kaplan M F.Concrete at high temperatures [M].London:Addison Wesley Longman.INC,1996.
    [34]李荣涛.高温下混凝土中化学-热-湿-力学耦合过程的数值模拟及破坏分析[D].大连理工大学博士学位论文,2006.
    [35] Ulm F J, Coussy O, Bazant Z P. The "Chunnel" fire. I: Chemoplastic softening in rapidly heated concrete [J]. ASCE Journal of Engineering Mechanics, 1999, 125(3): 272-282.
    [36] Winney M. Arches brace chunnel for six month repair schedule [J]. New Civil Engineer, 1996,(10):34-39.
    [37] Luccioni B M, Figueroa M I, Danesi R F. Thermo-mechanic model for concrete exposed to elevated temperatures [J]. Engineering Structures, 2003, 25: 729-742.
    [38] Kang S W, Hong S G. Behavior of Concrete Members at Elevated Temperatures Considering Inelastic Deformation [J]. Fire Technology, 2003, 39: 9-22.
    [39] Nechnech W, Meftah F, Reynouard J M. An elasto-plastic damage model for plain concrete subjected to high temperatures [J]. Engineering Structures, 2002, 24: 597-611.
    [40] Baker G, de Borst R. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures. Philosophical Transactions of the Royal Society [J]. Mathematical, Physical and Engineering Sciences, 2005, 363(1836): 2603-2628.
    [41] Gawin D, Pesavento F, Schrefler B A. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation [J]. Computer Methods Appl. Mech Engng.2003, 192: 1731-1771.
    [42]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报,1997,37(6): 23-29.
    [43]吴波,袁杰,杨成山.高温后高强混凝土的微观结构分析[J].哈尔滨建筑大学学报,1999, 32(6): 8-12
    [44]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报, 2000,33(2): 8-34.
    [45]吕培印,宋玉普.不同温度下混凝土抗拉疲劳性能试验研究[J].工程力学,2003,20(3):80-86.
    [46]倪健刚,时旭东.不同升温速率下各种强度等级混凝土的自由膨胀变形[J].工业建筑, 2007, 37(12): 100-103.
    [47]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报. 1998, 32(5):597-602.
    [48]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力-应变关系[J].工程力学,1997,14(2):28-35.
    [49] Jia Bin, Tao Junlin, Li Zhengliang, et al. Effects of Temperature and Strain Rate on Dynamic Properties of Concrete[J]. Transactions of Tianjin University, 2008,14, (Suppl): 511-513.
    [50]王政,倪玉山,曹菊珍,张文.冲击载荷下混凝土动态力学性能研究进展[J].爆炸与冲击, 2005, 25(6): 519-527.
    [51]王礼立.分离式Hopkinson杆技术与反分析[A].第三届全国爆炸力学实验技术学术会议论文集[C], 2004:1-6.
    [52] Gong J. C., Malvern L. E. Passively Confined Tests of Axial Dynamical Compressive Strength of Concrete[J].Experimental Mechanics, 1990, 3:55-59.
    [53] Tang,T, Malvern, L.E., Jenkins,D.A. Dispersion investigation in the split Hopkinson pressure bar [J]. Engng. Mech., 1992, 118: 108-124.
    [54] A Brara, F. Camborde, J.R.Klepaczko, C. Mariotti. Experimental and numerical study of concrete at high strain rates in tension [J]. Machanics of Materials.2001,33: 33-45.
    [55] A Brara, J.R.Klepaczko. Experimental characterization of concrete in dynamic tension [J]. Mechanics of Materials. 2006, 38: 253-267.
    [56] J. R. Klepaczko, A. Brara. An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering. 2001,25:387-409.
    [57] Harald Schuler, Christoph Mayrhofer, Klaus Thoma. Span experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates [J]. International Journal of Impact Engineering. 2006, 32: 1635-1650.
    [58]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构模[J].水利学报,1997(7):72-77.
    [59]严少华,段吉祥,尹放林,等.高强混凝土SHPB实验研究[J].解放军理上大学学报, 2000, 1(3): 6-9.
    [60]王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002, 17(1) : 23-27.
    [61]宁建国,商霖,孙远翔.混凝土材料动态性能的经验公式,强度理论与唯象本构模型[J].力学进展. 2006.36(3):389-405.
    [62]陈书宇.一种混凝土损伤本构模型和数值方法[J].爆炸与冲击,1998,18(4): 349-357.
    [63]陈书宇.混凝土本构模型及其动态有限元算法研究[J].上海力学,1998,19(2): 109-116.
    [64]陈大年.Al-Hassani S T S,尹志华,等.混凝土的冲击特性描述[J].爆炸与冲击.2001, 21(2): 89-97.
    [65]唐志平,田兰桥,朱兆祥,王礼立.高应变率下环氧树脂的力学性能[A].第二届全国爆炸力学会议论文集[C],1981: 4-12.
    [66]唐志平.高应变率下环氧树脂的动态力学性能[D].中国科学技术大学硕士论文,1981.
    [67]姜锡权.水泥砂浆动态力学行为及短纤维增强性能研究[D].中国科学技术大学博士论文.1996.
    [68]陈江瑛.水泥砂浆动态力学性能研究[D].浙江大学硕士论文,1997.
    [69] Winnicki A, Pearce C J, Bicanic N. Viscoplastic hoffman consistency model for concrete [J]. Computers and Structures, 2001, 79: 7-19.
    [70]李兆霞.一个综合模糊裂纹和损伤的混凝土应变软化本构模型[J].固体力学学报.1995, 16(1): 22-30.
    [71] Mazars J, Cabot G P. Continuum damage theory-application to concrete [J]. J. Eng. Mech., 1989, 115(2): 345-365.
    [72] Lemaitre J. Application of damage concepts to predict creep-fatigue failure[J]. Journal of Engineering Materials and Technology (ASME), 1979,101(1): 202-209.
    [73]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究[J].岩石力学与工程学报, 2003, 22(2): 223-226.
    [74]商霖,宁建国.强冲击载荷下混凝土动态本构关系[J].工程力学,2005.22(2):116-119.
    [75]宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J].中国科学G辑:物理学力学天文学,2008,38(6):759-772.
    [76] Rashid Y R. Analysis of prestressed concrete pressure vessels [J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
    [77] Beshara F. Smeared crack analysis for reinforced concrete structures underblast-type loading [J]. Engineering Fracture Mechanics, 1993, 45(1): 119-140.
    [78] Lu Y, Xu K. Modeling of dynamic behavior of concrete materials under blast loading [J]. International Journal of Solads and Structures, 2004, 41: 131-143.
    [79] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams [J]. Journal of ACl, 1967, 64(2): 152-163.
    [80] Hillerborg A, Modeer M and Petersson P E. Analysis of crack formation and crack growth by means of fracture mechanics and finite element [J]. Cerreeret artd Concrete Research, 1976 (6): 773-782.
    [81]钱济成,蔡尚荣,黄孟生.高速荷载下混凝土断裂性能的试验研究[J].水利学报, 1995.(1): 35- 39.
    [82]董香军.纤维高性能混凝土高温,明火力学与爆裂性能研究[D].大连理工大学硕士论文, 2006.
    [83] Chiddister J,Malvern L.E. Compression-impact testing of aluminium at elevated temperatures [J]. Exp. Mech,1963,3:81-90.
    [84]朋改非,陈延年,Mike A.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2 (3):193-198.
    [85]黄运标.再生混凝土高温性能研究[D].同济大学硕士论文,2006.
    [86] Kolsky, H. An Investigation of the1Mechanical Properties of Materials at very High Rates of Loading [J]. Proc.Roy.Soc.,1949, B62:676-700.
    [87]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [88] Gorham D.A. Specimen Inertia in High Strain-rate Compression[J].J.Phys.D, 1989, 22: 1888- 1893.
    [89]刘孝敏,胡时胜,陈智.粘弹性Hopkinson压杆中波的衰减和弥散[J].固体力学学报. 2002, 23(1): 81-86.
    [90]陶俊林,陈裕泽,田常津,等. SHPB系统圆柱形试件的惯性效应分析[J].固体力学学报, 2005,26(1):107-110.
    [91] Haque,M.M.,M.S.J.Hashmi.Mechanics of Materials[M].Horth-Holland,1984.
    [92] Gorham,D.A.The Effect of Specimen Dimensions on High Strain Rate Compression Measurement of Copper[J]. J.Phys.D, 1991,24:1489-1492.
    [93] Samanta S K. Dynamic deformation of aluminium and copper at elevated temperature. J Mech Phys Solids,19:117-135.
    [94] Dhararn, C.K.H.,F.E.Hauser.Determination of Stress-strain Characteristics at Very High Strain Rates[J]. Exp.Mech.,1970,10:370-376.
    [95]陶俊林,田常津,陈裕泽,等.SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击,2004,24(5):413-418.
    [96]谢若泽,张方举,颜怡霞,等.高温SHPB实验技术及其应用[J].爆炸与冲击, 2005, 25(4): 330- 334.
    [97]陶俊林,贾彬.无筋混凝土材料高温动态力学性能测试技术研究[R].国家自然科学基金资助项目结题报告,西南科技大学,2008.
    [98] R.Iding, B.Bresler, Z.Nizamuddin. FIRES-T3, A computer program for the fire response of structure-thermal.Report No.UCB FRG 77-15 [D]. Fire Research Group, University of California, Berkeley.October 1977
    [99] Zhaohui Huang, Andrew Platten. Nonlinear finite element analysis of planar reinforced concrete members subjected to fires [J]. Structural Joural. 1997,94(3):272-282.
    [100] Mohamad J.Terro. Numerical modeling of the behavior of concrete structures in fire [J].ACI Strural Journa1.1998,95(2):183-193.
    [101]杨志.火灾下钢筋混凝土构件温度场数值模拟研究[D].中南大学硕士论文,2008.
    [102]梁磊,赵文,李艺,陈伟.混凝土圆柱体受热时温度场的测试与模拟[J].混凝土与水泥制品,2009,(2):60-63.
    [103]徐玉野.钢筋混凝土柱在高温下的数值模拟[J].建筑科学,2005,21(6):41-44.
    [104] J.F.Georgin,J.M. Reynouard. Modeling of structures subjected to impact:concrete behaviour under high strain rate [J]. Cement and Concrete Composites, 2003, 25:131-143.
    [105]巫绪涛,孙善飞,李和平.用HJC本构模型模拟混凝土SHPB实验[J].爆炸与冲击, 2009, 29(2): 137-142.
    [106]中华人民共和国建设部.GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.04.
    [107]柳献,袁勇,叶光,Geert De Schutter.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008.41(6):61-68.
    [108]关明慧,徐宇工,卢太金,等.微波加热技术在清除道路积冰中的应用[J].北方交通大学学报, 2003, 27(4):79-83.
    [109]马保国,穆松,高英力,王耀城.瞬时高温混凝土性能的测试方法[J].硅酸盐学报, 2008, 36(S1): 160-164.
    [110]秦李波.混凝土的高温试验技术和高温力学性能研究[D].西南科技大学硕士论文,2009.
    [111] Anderbery Y. Spalling phenomena of HPC and OC [A].Proceedings of International workshop on Fire Performance of High-Strength Concrete (NIST Special Publication 919)[C]. Gaithersburg: NIST, 1997:69-73.
    [112]李丽娟,谢伟锋,刘锋,陈应钦.高温作用后高强橡胶混凝土的性能研究[J].建筑材料学报, 2007,10(6):692-698.
    [113]陈国灿.低碳超高强石渣混凝土的抗火性能研究[J].武汉工程大学学报,2010,32(11):36-41
    [114]吴波,袁杰,李惠,周文松.高温下高强混凝土的爆裂规律与柱截面温度场计算[J].自然灾害学报, 2002,11(2):65-69.
    [115]傅宇方,黄玉龙,潘智生,唐春安.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报, 2006, 9(3):323-329.
    [116]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003.
    [117]陶俊林. SHPB实验技术若干问题研究[D].中国工程物理研究院博士学位论文,2005.
    [118]胡时胜. SHPB与混凝土材料动态力学性能[M].合肥:中国科学技术大学出版社,2005.
    [119] Ellwood S. Griffiths L.J. Parry D.J. Materials testing at high constant strain rates[J]. Journal of Physics E: Scientific Instruments,1982,15:280-282.
    [120]胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991(11):40-47.
    [121] Oosterkamp D.L, Ivankovic A,Venizelos G. High Strain Rate Properties of Selected Aluminum alloys [J]. Materials Science and Engineering, 2000, 278:225-235.
    [122]夏开文,程经毅,胡时胜.SHPB装置应用于测量高温动态力学性能的研究[J].试验力学, 1998, 13(3):307-313.
    [123] Lankford J. Temperature-strain rate dependence of compressive strength and damage mechanisms in aluminium oxide[J]. Mater. Sci. 1981, 16:1567-1578.
    [124] Schneider U. Concrete at High-Temperature-a General ReView [J]. Fire Safety Journal, 1988, 13(1): 55-68.
    [125]刘利先,吕龙,刘铮,王海莹.高温下及高温后混凝上的力学性能研究[J].建筑科学, 2005,21(3): 16-20.
    [126] N.R.Short,J.A.Purkiss,S.E. Guise. Assessment of fire damaged concrete using colour image analysis [J]. Construction and Building Materials, 2001,(15):9-15.
    [127]阎慧群.高温(火灾)作用后混凝土材料力学性能研究[D].四川大学硕士论文,2004.
    [128]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [129] Harada T et al. Strength,Elasticity and Thermal Properties of Concrete Subjected to Elevated [J]. Temperature.Concrete for Nuclear Reactors,Vol.I, II, III.ACI SP 34-21, Detroit, 1972. 377-406.
    [130] Baldwin R, North M A. A stress-strain relationship for concrete at high temperature[J]. Magazine of Concrete Research,1973(12):208-211.
    [131] Ellingwood B, Lin T D. Flexure and Shear Behavior of concrete Beams During Fires[J]. ASCE, 1991, 117(ST2):440-457.
    [132] Commission of the European Communities. Eurocode No.2, Design of Concrete Structure, Part 10: Structural Fire Design[S]. 1990.
    [133] CEN. DAFT ENV1992-1-2, Eurocode 2:Design of concrete structure Part 1-2: General Rules- Structural Fire Design[S].1996.
    [134]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报, 1999, 20(5):42-49.
    [135]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击, 2002, 22(3): 242-246.
    [136]曹吉星,陈虬,张吉萍.混凝土SHPB试验的数值模拟及应力均匀性[J].西南交通大学学报, 2008, 43(1):67-70.
    [137] Ross C A, Thompson P Y, Tedeso J W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression [J]. ACI Materials Journal, 1989, 86(5):475 -481.
    [138] Malvern L E, Jenkins D A, Tang T, et al. Dynamic compressive testing of concrete[A]. Ross C A, Thompson P Y, ed. Proceedings of Secongd Symposium on the Interation of Non- Nuclear Munitions with Structure[C]. Florida: U.S. Department of Defense, 1985:194 -199.
    [139] Grote D L,Park S W. Zhou M. Dynamic behavior of concrete at high strain rates pressures: Experimental characterizational[J].International Journal of Impact Engineering, 2001, 25(3): 869-886.
    [140]胡时胜,王道荣,刘剑飞.混凝上材料动态力学性能的实验研究[J].工程力学, 2001, 18(5): 115-126.
    [141]吴中伟,姚明初.混凝土力学[M].北京:中国铁道出版社,1991.
    [142] Hakailehto K.O. The behaviour of rock under impulse loads-A study using the Hopkinson splitbar method [D], Doctor Thesis,Technical University,Otaniemi Helsinki, Acta Polytechnica Scandinanca, 1969.
    [143] Lennon A.M, Ramesh K.T. A technique for measuring the dynamic behavior of materials at high temperatures [J]. Int.J.Plasticity, 1998, 14:1279-1292.
    [144] Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effect s on concrete strength [J]. ACI Mate2rials Journal, 1996, 93 (3): 293-300.
    [145]王启洪,徐昭东.关于混凝土流变模型的研究[J].武汉建材学院学报,1980,(2):53-57.
    [146]郤保平,赵阳升,万志军等.热力耦合作用下花岗岩流变模型的本构关系研究[J].岩石力学与工程学报,2009,28(5):956-967.
    [147]钱在兹,吴慧.混凝土高温后的扫描电镜实验研究[J].福州大学学报(自然科学版), 1996, 24:34-38.
    [148]柳献,袁勇,叶光,Geert De Schutter.高性能混凝土高温微观结构演化研究[J].同济大学学报(自然科学版),2008,36(11):1473-1478.
    [149] Rossi P, Van Mier J G M, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J].Materials and Structures, 1994, 27: 260-264.
    [150] Comborde F, Mariotti C. Etude du comportement dynamique des materiaux fragiles parles elements discrets[A].14 eme Congres Francais de Mecanique-Toulouse'99[C], 1999.
    [151]董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53.
    [152]王仁,黄克智,朱兆祥.塑性力学进展[M].北京:中国铁道出版社,1988.
    [153]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [154]曹鹏.混凝土塑性损伤模型及其ABAQUS子程序开发[D].沈阳工业大学硕士学位论文,2009.
    [155]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [156]中国建筑科学研究院.GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [157]蒋丽娜.混凝土在单轴受力时的应力,应变分析[J].广西工学院学报,1995,6(2):18-24.
    [158] Nechhnech W, Meftah F, Reynouard J M. An elasto-platic damage model for plain concrete subjected to high temperatures [J]. Engineering structures, 2002,24: 597-611.
    [159] Rosen Tenchev, PhilPurnell. An application of a damage constitutive model to concrete at high temperature and prediction of spalling[J]. International Journal ofSolids and Structures, 2005, 42: 6550-6565.
    [160] Longyuan Li,John Purkiss. Stress-strain constitutive equations of concrete materialat elevated temperatures[J]. Fire Safety Journal, 2005, 40:669-686.
    [161]李荣涛,李锡夔.高温下混凝土的本构模拟及破坏分析[J].计算力学学报, 2007, 24(5):550-554.
    [162]杜荣强,林皋.混凝土动力损伤本构关系的基础理论及应用[J].哈尔滨工业大学学报,2006,38(5):746-751.
    [163] Grady D E, Kipp M E, Continuum Modeling of Explosive Fracture in Oil Shale [J]. Rock Mech and Min Sci, 1980, 17: 147-157.
    [164] Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulationin brittle rock under dynamic loading [J]. J Comp Meth in Appl Mech and Engrg, 1986, 55(3): 301-320.
    [165] T. J .Holomquist, G. R. Johnson, W.H.Cook. A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressures [A]. Jackson N, Dickert S. The 14th International Symposium on Ballistics [C].USA: American Defense Prepareness Association, 1993:591-600.
    [166] Riedel W. Beton unter dynamischen Lasten Meso-and makromechanische [J]. Modelle and ihre Parameter. Freiburg, Germany: Phd Thesis, Ermst-Mach-Institut, 2000.
    [167]蔡清裕.爆炸及撞击加载下混凝上动态响应的数值模拟[D].国防科技大学博士论文, 2003.
    [168]金乾坤.混凝上动态损伤与失效模型[J].兵工学报,2006 27(1):10-14.
    [169]王政,倪玉山,曹菊珍等.冲击载荷下混凝上本构模型构建研究[J].高压物理学报, 2006, 20(4):337-344.
    [170]李耀.混凝土HJC动态本构模型的研究[D].合肥工业大学硕士学位论文,2009.
    [171]张剑.混凝土动态受压损伤试验研究[D].大连理工大学硕士学位论文,2008.
    [172]李为民,许金余,翟毅,李庆.冲击荷载作用下碳纤维混凝土的力学性能[J].土木工程学报, 2009, 42(2): 24-30.
    [173] Tedesco J W, Ross C A. Strain-rate-dependent constitutive equation for concrete [J]. Journal of Pressure Vessel Technology, 1998, 120: 398-405.
    [174] CEB. Concrete structures under impact and implosive loading. Synthesis Report [R]. Lausanne: Committee Euro-international du Beton, 1998
    [175] Johson G R, Cook WH, A constitutive model and data for metals subjuected to large strain high strain rates and high temperatures [A].Proceedings of the Seventh Interational Symposium on Ballistic [C]. Zhague Z. The Netherlands[sn], 1983:541-547.
    [176] Arild H. Clausen, Tore Borvik, Odds S. Hopperstad, Ahmed Benalled. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality[J]. Materials science and engineering, 2004,364(12): 260-272.
    [177] Woei Shyan Lee, GenWang. The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions [J]. Journal of Materials Processing Technology, 1997,71(2):224-234.
    [178] Akhtar S.Khan, Riqiang Liang. Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling[J]. Inter. J. of Plasticity, 1999,15(10):1089-1109.
    [179]张克实,Brocks Wolg, Chaboche.热粘塑性损伤模型的应用研究[J].航空动力学报, 2000: 17(5): 615-622.
    [180]彭建祥,李英雷,李大红.纯钽动态本构关系的实验研究[J].爆炸与冲击,2003, 23(2): 183-187.
    [181]王少林,阮雪榆.金属高温塑性本构方程的研究[J].上海交通大学学报,1996,30(8):20-24.
    [182]佟景伟,高丛峰,李林安,徐步青.温度和应变率对拉伸载荷下高强铝合金本构关系影响的研究[J].实验力学,1999,14(4):498-504.
    [183] Frank J. Zerilli, Ronald W. Armstrong. Dislocation-mechanics-based contitutive relations for material dynamics calculations[J]. J. Appl. Phys. 1987,61 (5):145-149.
    [184] Chang W T, Giang Y S, Wang C T, Huang C W. Concrete at High Temperatures above 1000℃[J]. Security Technology, 1993,10:263-268.
    [185]赵杰,朋改非.高性能混凝土火灾高温模拟研究的现状与展望综述[J].商品混凝土, 2008, (2):1-3.
    [186]张德海,毛苏毅.冲击荷载下混凝土破坏过程的数值模拟[J].沈阳建筑大学学报(自然科学版),2008,24(3):389-392
    [187]曹菊珍,周淑荣,李恩征.材料的本构关系在数值计算中的作用[J].兵工学报, 1998, 19(1): 69-72.
    [188] Ko Dae Cheol et al. Finite Element Analysis for the Semi-Solid State Forming of Aluminium Alloy Considering Induction Heating[J].Journal of Materials Processing Technology, 2000, 100(1-3): 95-104.
    [189] Dughiero F, Forzan M., Lupi, S. 3D Solution of Electromagnetic and Thermal Coupled Field Problems in the Continuous Transverse Flux Heating of Metal Strips[J]. IEEE Transactions on Magnetics,1997, 3(2)-2: 2147-2150
    [190] Janssen H. H. J. M. et al. Simulation of Coupled Electromagnetic and Heat Dissipation Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3331-3334.
    [191]李勇.微波场中温度分布的数值模拟研究[D].云南师范大学硕士学位论文,2006.
    [192]徐效亮.基于电磁热祸合理论的5. 8GHz微波道路除冰温度场仿真研究[D].长安大学硕士学位论文,2009.
    [193] Commission of the European Communities. Eurocode No.2, Design of Concrete Structures, Part 10: Structural Fire Design. April 1990.
    [194] Cen(European Committee for Standardization) DRAFT prEN 1993-1-2, Eurocode3:Design of steel structures, Part 1.2:General rules [S], Structural fire design. English version, 2001.
    [195] Lie T.T., Irwin R.J. Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete [J]. Journal of Structural Engineering, 1995,121(5):797-805.
    [196]李志强,陈维毅,王志华.子弹长度对SHPB测试影响的有限元模拟[J].科学技术与工程, 2009,(9)5:1122-1125.
    [197]王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用[J].爆炸与冲击, 2005,25(1):17-25.
    [198]路春森,屈立军,薛武平,等.建筑结构耐火设计[M].北京:中国建材工业出版社,1995.
    [199]阎慧群,王清远,闫宁.高温下及高温后钢筋混凝土结构性能评述[J].重庆建筑大学学报,2003,25(3):110-114.
    [200] Zhang B, Bicanic N, Pearce C J, et al. Residual Fracture Properties of Normal and High Strength Concrete Subject to Elevated Temperature [J]. Magazine of Concrete Research, 2000, 52(2): 123-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700