用户名: 密码: 验证码:
变速器齿轮承载能力分析方法的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速器的种类很多,包括:手动变速器,自动变速器,无级变速器,机械式自动变速器,以及双离合变速器。无论哪种类型的变速器,齿轮都是主要的传动部件,齿轮的承载能力与可靠性,直接关系着传动质量,进而影响整车性能。
     齿轮承载能力分析国家标准涉及到大量的系数,求解非常繁琐,而且在齿轮整个结构区域内无法获得位移场、温度场和应力场的变化。齿轮试验也只能得到齿轮的疲劳寿命和极限应力,对齿轮实际运转过程中的内部应力或温度则无法直接测量。为了保证齿轮不发生破坏,只能将齿轮设计得偏于保守。随着计算机和软件技术的高速发展,作为一种应用范围广泛的现代数值分析方法,有限元法已经在齿轮设计与分析中得到应用。应用有限法不仅能够实现接触、弯曲和胶合的承载能力分析,而且还能够优化齿轮齿形,实现齿轮的轻量化设计。
     本文在国家863高技术研究发展计划重点项目(2006AA110104)与吉林省科技发展计划项目(20076029)支持和资助下,根据汽车行业的特点,研究变速器齿轮承载能力分析经典方法和有限元法,通过对某型实际变速器的研究,探索相应的分析流程和规范。
     比较了各种类型变速器传动的优缺点,分析了变速器齿轮研究的背景和意义,以及国内外齿轮承载能力研究现状,针对齿轮常见的三种失效形式,即齿面剥落(点蚀)、轮齿折断、以及齿面胶合进行综述和分析,提出本文研究的内容。
     面向工程应用,对齿轮接触和弯曲承载能力分析标准GB/T3480-1997中载荷修正系数、计算应力修正系数、许用应力修正系数,计算应力和许用应力等各种系数与应力公式进行了系统分析和总结,应用APDL开发了齿轮接触与弯曲承载能力分析的计算机程序模块,既便于应用又为后续齿轮接触和弯曲有限元分析结果的验证提供了必要的依据。
     面向工程应用,对齿轮胶合承载能力分析的闪温法标准GB/Z6413.1与积分温度法标准GB/Z6413.2所包含的基本参数、瞬时温升及其修正系数、积分温升及其修正系数、闪温胶合准则和积分胶合准则等进行系统分析和总结,应用APDL开发了齿轮胶合承载能力分析的计算机程序模块,实现了对啮合齿面温度的快速、准确预测。
     建立了用于接触、弯曲和温度有限元分析的参数化三维齿轮实体几何模型,各主要啮合点的三维齿轮接触有限元模型,适用于不同啮合点、齿轮齿廓和旋向变化的三维齿轮弯曲有限元模型。面向工程应用,利用APDL开发了齿轮参数化实体几何模型和与齿轮啮合过程对应的接触和弯曲有限元模型自动化实现计算机程序模块,对齿轮瞬时温度分析有限元建模的基本参数进行了研究,通过对齿轮瞬时温度分析基本理论的分析,建立了齿轮瞬时温度分析的边界条件,随时间和位置变化移动热源载荷,提出了在ANSYS处理移动热源加载方法。应用APDL开发了齿轮瞬时温度分析有限元模型自动实现的计算机程序模块。以便能够准确预测齿轮的温度分布状态。
     根据汽车行业的特点,结合某变速器逆向设计的需要,应用开发的经典方法和有限元法自动实现模块,针对变速器齿轮承载能力分析遇到的问题,从接触、弯曲和胶合三个方面对变速器齿轮承载能力进行了研究与分析。
     本文的创新点为:
     (1)面向工程应用,对齿轮接触和弯曲承载能力分析标准GB/T3480-1997,胶合承载能力分析闪温法标准GB/Z6413.1-2003和积分温度法标准GB/Z6413.2-2003进行了分析和总结,应用APDL开发了齿轮接触、弯曲、闪温和积分温度承载能力分析的计算机程序模块,只要输入齿轮承载能力分析的原始数据,就可自动完成齿轮承载能力的经典分析,不但提高了计算效率和准确性,而且避免了以往使用简化公式或查阅图表所带来的误差。
     (2)依据齿轮啮合的几何位置关系,建立了各主要啮合点的三维齿轮接触有限元模型,可以全面分析齿轮啮合过程中接触状态的变化。针对三维齿轮弯曲有限元建模的啮合接触线和作用载荷确定的核心问题进行了研究,根据斜齿轮的载荷接触线分布原理,提出了便于工程应用的三维齿轮弯曲有限元模型接触线确定方法和载荷假设,不但适用于齿轮不同啮合位置、齿轮齿廓及齿轮旋向的变化,而且解决了多对齿轮啮合时的齿向载荷分布和齿间载荷分配问题。
     (3)提出了齿轮齿面区域平均换热系数、齿轮单个齿面区域平均摩擦热流密度及其确定方法,避免了以往采用恒定换热系数和摩擦热流密度的不足,使结果更接近于真实的轮齿温度分布状态。通过对齿面瞬时加热和温升机理的研究,将随齿轮啮合过程不断变化的摩擦热,转变为随时间和位置变化的移动函数热源载荷问题,提出在ANSYS中处理移动热源函数的加载方法,不但可以解齿轮任意啮合位置的齿面瞬时温升,而且对于求解各种平面和曲面类型的移动函数载荷问题都具有借鉴意义。
     (4)应用APDL开发了齿轮参数化实体几何模型、与齿轮啮合过程对应的接触和弯曲有限元模型、齿轮瞬时温度分析有限元模型自动实现的计算机程序模块,只要输入齿轮的原始数据,就能自动完成齿轮承载能力的有限元分析。结合某变速器逆向设计的需要,联合应用齿轮承载能力经典分析计算机程序模块,全面实现了变速器齿轮接触、弯曲和胶合承载能力的一体化经典分析和有限元分析,克服了以往只能实现某一种承载能力分析的不足。
There are many different types of transmissions including:Manual Transmission, Automatic Transmission, Continuously Variable Transmission, Automated Mechanical Transmission, and Dual Clutch Transmission, while regardless of what type of transmissions, as the main components in the transmission, the strength and reliability of gears are directly related to the transmission quality, thus affecting the performance of the vehicle.
     The national standard for calculating gear load capacity includes large numbers of coefficients, the solution of which is very complicated, and the variation of displacement field, temperature field and stress field in the whole gears construction region can not be obtained. The gear fatigue life and permissible stress can just be obtained in gear test, while the stress and temperature in the process of gears rotating can not be directly measured. In order to ensure gears are not destroyed, gears have to be conservatively designed. With the rapid development of computer and software technology, as a numerical analysis method applied widely, finite element method has been applicable to the design and analysis of gears. The application of the method can not only achieve gear contact bending and scuffing load capacity, but also optimize gear tooth profile and design light-weighted gears.
     The research has been supported by the National 863 High Technology Research and Development Plan Key Project (2006AA110101) and the Technology Development Program of Jilin Province (20076029). According to characteristics of the automotive industry, the classical method and the finite element method for load capacity of transmission gears were studied. By analyzing a certain type of actual transmission, the appropriate processes and norms were explored.
     Firstly, the study compared the advantages and disadvantages of various types of transmissions, automobile transmission gears background and significance, and the gear load capacity status at home and abroad were analyzed. Three common gear failure modes:flanks spalling (pitting), breakage, and scuffing were reviewed and analyzed. Main contents in this dissertation were described as follows.
     Oriented engineering application, factors including load factors, nominal stress factors, permissible stress factors, and stress formulas used for calculating stress and permissible stress in gear contact and bending load capacity standard GB/T 3480-1997 were systematically analyzed and summarized. Computer program modules for analyzing gear contact and bending load capacity were developed by using APDL, which was conveniently applied, and provided necessary basis for validating the results of the finite element model for analysis of gear contact and bending load capacity.
     Oriented engineering application, basic parameters, flash temperature and its factors, integral temperature and its factors, flash temperature scuffing risk and integral temperature scuffing risk in scuffing load capacity of flash temperature method standard GB/Z 6413.1-2003 and integral temperature method standard GB/Z 6413.2-2003 were systematically analyzed and summarized. Computer program modules for analyzing gear scuffing load capacity were developed by using APDL, which could predict the temperature of the engaging gears quickly and accurately.
     Corresponding to the research of the finite element method for analyzing gear contact and bending stress in the engagement gears and the development of relevant computer program modules, parametric three-dimensional model was developed for the finite element analysis on contact, bending, and scuffing. The contact finite element model of meshing points, the bending finite element model for meshing gears on different locations, gear tooth profile and the rotation were developed. Oriented engineering application, parametric geometric model for gears and computer program modules for automatically building contact and bending finite element models in meshing gears were developed by using APDL.
     The fundamental parameters of the finite element model for the analysis of gear contact temperature were made a research. By analyzing the theory of the gear contact temperature, the boundary conditions of the analysis of gear contact temperature and the moving heat load changing with the time and location were developed. The method of moving heat load in ANSYS was proposed. Computer program modules which could analyze the finite element model of gear contact temperature were developed to predict the profile of the gear temperature condition accurately by using APDL.
     Finally, in accordance with characteristics of the automotive industry and the need of reversal design of transmissions, the automatic finite element model was developed and applied. Moreover, aiming at the problem in analyzing load capacity of transmission gears, the load capacity of transmission gears in terms of contact, bending and scuffing was studied and analyzed.
     The creative contents in this dissertation are:
     (1) Oriented engineering application, the national standards were analyzed and summarized as follows:gear contact and bending load capacity of standard GB/T 3480-1997, scuffing load capacity of flash temperature method standard GB/Z 6413.1-2003 and integral temperature method GB/Z 6413.2-2003. By using APDL, computer program modules which could analyze the load capacity of gear contact, bending, flash integral and temperature integral were developed. Just applying the original datas of gear load capacity, the analysis of gear load capacity could be automatically completed. This method could not only improve efficiency and accuracy, but also avoid the errors caused by using simplified formulas or charts.
     (2)Based on the geometric relationship among gears, the finite element model of main meshing points for the engagement gears was developed in order to make a comprehensive analysis of gear contact states in the process of gears meshing. The most important question determined by the gear contact line and the load in the finite element model of gear bending was considered. According to the load distribution principle of helical gear contact line, the convenient method for engineering application to determine the contact line and the load assumptions for gear bending finite element model was put forward, which could not only be appropriate for meshing gears on different locations, gear tooth profile and the rotation, but also solve the problem of the face load and transverse load in the process of multi-tooth gears meshing.
     (3) Gear tooth average heat transfer coefficients, the average single gear tooth heat flux and their determination methods were proposed, which could avoid the weakness of using constant heat transfer coefficients and heat flux, making the results more close to the real distribution of gears temperature. Through the research of the tooth heating and the mechanism of transient temperature, the friction heat continuously varying during gears meshing was converted into a mobile function of heat load changing with time and location. The method dealing with loading moving heat function was proposed in ANSYS, which not only solved flash temperature on gears teeth, but also made a significance in solving various types of moving load function problems.
     (4) By using APDL, computer program modules for automatically building parametric gear solid geometry model, contact and bending finite element model corresponding to the process of gears meshing and contact temperature finite element model were developed. Just applying the original gear datas, the analysis of gear loading capacity could be automatically completed. Combined with the reverse design of a transmission and the computer program modules for classical analysis, the integration of classical analysis and finite element analysis of transmission gears contact, bending and scuffing load capacity was fulfilled, and the lack that only a certain load capacity could be analyzed in the past was overcame.
引文
[1]陈家瑞.汽车构造[M].北京:机械工业出版社,2001
    [2]Brigham Erickson, Zac Tselios, Becky Trierweiler et al. Development of the MTU Automatic Shifting Manual Six Speed Transmission[C]. SAE Paper 2006-01-0747
    [3]Toshihiro Saito. Application of Stress Simulation under Transient Condition for Metal Pushing V-belt of CVT[C]. SAE Paper 2008-01-0415
    [4]Yulong Lei, Mingkui Niu, Anlin Ge. A Research on Starting Control Strategy of Vehicle with AMT[C]. SAE Paper 2000-06-12
    [5]Syed T. Razzacki. Design Methodology for a Compact Dual Clutch Transmission (DCT) [C]. SAE Paper 2009-01-0511
    [6]龚桂义,陈式糟,王永洁.渐开线圆柱齿轮强度计算与结构设计[M].北京:机械工业出版社,1986
    [7]蔡春源,刘志善,曹仁政.齿轮承载能力分析[M].北京:高等教育出版社,1992
    [8]王望予.汽车设计[M].北京:机械工业出版社,2004
    [9]张士军.圆柱齿轮参数计算及接触疲劳强度校核程序设计[J].山东农机,2003(10):7-9
    [10]B. Bhushan. Modern Tribology Handbook [M]. CRC Press,2001
    [11]高创宽,周谋,元秀梅.齿面摩擦力对齿轮接触应力的影响[J].机械强度,2003,25(6):642-645
    [12]李秀莲,董晓英,曹清林.基于摩擦的斜齿轮齿面接触疲劳强度计算[J].农业机械学报,2005,36(4):123-124
    [13]孟兆明,许基清,汪惠琴.渐开线齿轮点蚀位置的确定及其计算综合曲率半径的误差修正[J].青岛科技大学学报,2004,25(4):339-342
    [14]刘鹄然.齿轮接触应力进一步精确[J].重型机械科技,2005(4):34-35
    [15]赵菊初.渐开线直齿圆柱齿轮接触强度和油膜厚度计算[J].机械设计与制造,1999,16(3):11-13
    [16]E. A. Wilson and B. Parsons. Finite Element Analysis of Elastic Contact Problems Using Differential Displacements[J]. International Journal for Numerical Methods in Engineering,1970,2 (3):387-395
    [17]S. Ohte. Finite Element Analysis of Elastic Contact Problems[J]. Bulletin of the JSME, 1973,16 (95):797-804
    [18]N. Okamoto and M. Nakazawa. Finite Element Incremental Contact Analysis With Various Frictional Conditions [J]. International Journal for Numerical Methods in Enigneering,1979,14 (3):337-357
    [19]R. N. Skinner and P. Streiner. ASKA-CA Analysis of Linear Contact Problems UM229[D]. Institut fur Statik and Dynamik University of Stuttgart, Stuttgart,1979.
    [20]B. R. Torstenfelt. An Automatic Increment on Technique For Contact Problems With Friction[J]. Computers & Structures,1984,19 (3):393-400
    [21]陈兵奎,李润方.连续运转轮齿静动力接触有限元前处理技术[J].机械传动,1994,18(3):60-61
    [22]程燕,鲍务均.齿轮参数化精确建模及其有限元分析[J].起重运输机械,2004(11):9-12
    [23]龙慧,张光辉,许洪斌.微车变速箱齿轮有限元应力分析[J].机械传动,1994,18(3) :53,61
    [24]吴忠鸣,王新云,夏巨谌.基于ANSYS的直齿圆锥齿轮建模及动态接触有限元分析[J].机械传动,2005,29(5):49-52
    [25]李润方,刘鹤然.分阶式双圆弧齿轮有限元应力计算[J].机械科学与技术,1994,13(3) :65-66
    [26]李剑锋,张准,王寿佑.圆柱斜齿轮多齿对耦合瞬时啮合刚度的有限元分析[J].济南大学学报,1994,4(1):69-72
    [27]刘辉,吴昌林.斜齿轮啮合过程中载荷及应力分布的计算与模拟[J].武汉纺织工学院学报,1998,11(1):39-43
    [28]张卧波.有限元法计算齿轮接触强度的理论研究[J].农业机械学报,1999,30(3):89-92
    [29]杨生华,王统.齿轮轮齿变形中的接触有限元仿真分析[J].煤矿机械,1999,20(8):9-11
    [30]尉晓霞,任家骏,林卫虹.直齿圆柱齿轮三维接触应力边界元分析[J].太原理工大学学报,2002,33(1):68-70
    [31]丁能根.斜齿轮三维有限元网格和接触单元的自动生成[J].合肥工业大学学报(自然科学版),2003,26(5):1094-1097
    [32]刘红雨,赵韩,梁锦华.微段渐开线齿轮接触强度与弯曲强度的分析[J].上海理工大学学报,2003,25(3):277-280
    [33]杨生华.齿轮接触有限元分析[J].计算力学学报,2003,20(2):189-193
    [34]杨汾爱,张志强,龙小乐.基于精确模型的斜齿轮接触应力有限元分析[J].机械科学与技术,2003,22(2):206-208
    [35]刘道玉,迟毅林,徐兆红.渐开线直齿圆柱齿轮有限元仿真分析[J].陕西工学院 学报,2004,20(3):19-21
    [36]包家汉,张玉华,薛家国.齿轮啮合过程齿间载荷分配的有限元分析[J].机械传动,2004,28(5):14-16
    [37]周长江,唐进元,吴运新.齿根应力与轮齿弹性变形的计算方法进展与比较研究[J].机械传动,2004,28(5):1-5
    [38]王超,覃文洁.齿轮轮齿三维动力接触有限元分析[J].车辆与动力技术,2004,94(2) :41-45
    [39]姚英姿,邓召义,莫云辉.齿轮的精确建模及其接触应力有限元分析[J].现代机械,2004(6):16-17
    [40]Wangquan (Winston) Cheng, Shan Shih. Physics Based Contact Fatigue Analysis of Vehicle Powertrain Gears[C]. SAE Paper 2002-01-3132
    [41]Andrzej K. Sikorski. Detection of Contact Stresses and Tooth Meshing Ratio in Planetary Gears Using Image Correlation and Holographic Interferometry[C]. SAE Paper 2006-01-0529
    [42]程乃士,孙大乐.齿轮应力和位移分析保角映射法[J].机械传动,1992,16(1):40-46
    [43]L. Wilcox and W. Coleman. Application of Finite Element to the Analysis of Gear Tooth Stresses [J]. Trans. ASME., Journal of Engineering for Industry,1973,95 (4): 1139-1148
    [44]张力,王军,周彦伟.不同齿根过渡曲线的齿轮弯曲强度的有限元分析[J].矿山机械,1997(6):45-47
    [45]贺艺,赵尊群,王莹.齿轮啮合传动强度分析[J].洛阳大学学报,2004,19(4):80-82
    [46]周长江,唐进元,吴运新.齿根应力与轮齿弹性变形的计算方法进展与比较研究[J].机械传动,2004,28(5):1-5
    [47]杨连顺,朱如鹏,曾英.正交面齿轮弯曲应力的分析[J].机械科学与技术,2001,20(5):708-709
    [48]周延泽,吴继泽.直齿锥齿轮齿根应力的有限元分析[J].北京航空航天大学学报,1996,22(1):88-92
    [49]包家汉,张玉华,胡晓丽.基于啮合过程的齿根应力仿真分析[J].机械传动,2005,29(1):19-22
    [50]Cetin Morris Sonsino and Klaus Lipp. Fatigue Design of PM-Gears Under Consideration of Herzian Pressure with Sliding and Tooth Bending [C]. SAE Paper 2005-01-0709
    [51]International Organization for Standardization. ISO/TR 13989-1 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 1:Flash Temperature Method[S]. Geneva, Switzerland,2000
    [52]International Organization for Standardization. ISO/TR 13989-2:2000 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 2:Integral Temperature Method[S]. Geneva, Switzerland,2000
    [53]全国齿轮标准化技术委员会.GB/T 4613.1-2003/ISO/TR 13989-1圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第1部分:闪温法[S].北京:中国标准出版社,2003
    [54]全国齿轮标准化技术委员会.GB/T 4613.2-2003/ISO/TR 13989-2圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第2部分:积分温度法[S].北京:中国标准出版社,2003
    [55]叶敏.齿轮胶合试验在线监测方法研究[J].安徽工学院学报,1996,15(4):84-88
    [56]张秀英.40Cr、35CrMo调质齿轮抗胶合承载能力的研究[J].河北煤炭建筑工程学院学报,1994(3):18
    [57]李光辉,陈绍云.齿面胶合及对润滑油的选择[J].科技资讯,2006(17):83
    [58]江亲瑜,王松年,陈谌闻.齿轮胶合中的磨粒效应研究[J].大连铁道学院学报,1994,15(1):15-19
    [59]江亲瑜,王松年.含磨粒油润滑齿轮胶合失效的计算模型与试验研究[J].摩擦学学报,1995,15(2):152-159
    [60]江亲瑜,王松年.齿轮胶合临界温度的变化新规律[J].大连铁道学院学报,1996,17(3):52-56
    [61]江亲瑜,王松年,李曼林.反推齿轮胶合临界温度可靠性的试验研究[J].润滑与密封,1997(1):15-17
    [62]江亲瑜,王松年.齿轮抗胶合强度计算方法研究[J].润滑与密封,2001(5):9-13
    [63]赵菊初.渐开线直齿圆柱齿轮接触强度和油膜厚度计算[J].机械设计与制造,1999,16(3):11-13
    [64]赵菊初.渐开线直齿圆柱齿轮胶合承载能力的计算[J].机械设计,2001,21(11):29-33
    [65]王优强,黄丙习,佟景伟.渐开线直齿轮时变热弹流润滑模拟[J].机械强度,2006,28(3):363-368
    [66]马先贵,丁津元,孙德志.齿轮传动抗胶合机理探讨[J].机械传动,1994,18(3):39-40
    [67]卢金生,陈秀玉,刘更新.齿轮低温化学热处理渗层抗疲劳抗胶合特性[J].金属热处理,1996(5):16-19
    [68]邵正宇.渐开线圆柱齿轮抗胶合可靠性计算[J].现代机械,1994(4):27-31
    [69]桂长林,尹延国,谢如霖.齿轮胶合的试验研究及其监测技术[J].摩擦学学报,1994,14(3):220-228
    [70]李威,于照,王小群.基于闪温法的传动齿轮抗胶合可靠度分析与计算[J].机械传动,2003,27(3):40-47
    [71]屈文涛,沈允文,徐建宁.双圆弧齿轮传动的温度场和热变形分析[J].石油机械,2006,34(3):13-15
    [72]黄靖龙,缪协兴,罗善明.齿轮压力角对润滑油膜厚度的影响[J].润滑与密封,2006(5):40-47
    [73]武彩岗,秦俊奇,马吉胜.齿轮啮合温升模型建立及仿真研究[J].军械工程学院学报,2006,18(3):70-74
    [74]Masanori Iritani, Hiroshi Aoki. Prediction Technique for the Lubricating Oil Temperature in Manual Transaxle[C]. SAE Paper 1999-01-0747
    [75]Christoph Wincierz, Roland Schweder, Ingo Kreutzer. Influence of VI Improvers on the Operating Temperature of Multi-Grade Gear Oils[C]. SAE Paper 2000-01-2029
    [76]Tomasz S. Wisniewski. Experimental Study of Heat Transfer on Exhaust Valves of 4C90 Diesel Engine[C]. SAE Paper 981040
    [77]T. M. CameronFlash. Temperature in Clutches[C]. SAE Paper 2005-01-3890
    [78]Dirk Wienecke, Wilfried J. Bartz. Influence of Base Oil and Formulation of Gear Oils on Friction Power Losses of Gears[C]. SAE Paper 1999-01-3465
    [79]D.Wienecke, W. J.Bartz. Influence of Gear Oil Formulation on Oil Temperature[C]. SAE Paper 2002-01-1693
    [80]Mario Vitor Leite, Janaina Tomazoni, Jose Alberto Cerri ect. Influence of Temperature on the Rheological Properties of ISO Lubricants[C]. SAE Paper 2004-01-3383
    [81]Masanori Iritani, Hiroshi Aoki. Prediction Technique for the Lubricating Oil Temperature in Manual Transaxle[C]. SAE Paper 1999-01-0747
    [1]International Organization for Standardization. ISO 6336-1:1996, Calculation of load capacity of spur and helical gears-Part 1:Basic principles, introduction and general influence factors[S]. Geneva, Switzerland,1996
    [2]International Organization for Standardization. ISO 6336-2:1996, Calculation of load capacity of spur and helical gears-Part 2:Calculation of surface durability (pitting) [S]. Geneva, Switzerland,1996
    [3]International Organization for Standardization. ISO 6336-3:1996, Calculation of load capacity of spur and helical gears-Part 3:Calculation of tooth bending strength[S]. Geneva, Switzerland,1996
    [4]American Gear Manufacturers Association. AGMA 908-B89:1989, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth[S]. American, Virginia,1989
    [5]American Gear Manufacturers Association. ANSI/AGMA 2001-C95:1995, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth [S]. American, Virginia,1995
    [6]Japan Gear Manufacture Association. JGMA 6101-01:2001, Calculation of Bending Strength for Spur and Helical Gears[S]. Japan,2001
    [7]Japan Gear Manufacture Association. JGMA 6102.01:2001, Calculation of Surface Durability (Pitting Resistance) for Spur and Helical Gears[S]. Japan,2001
    [8]全国齿轮标准化技术委员会.GB/T 3480-1997/ISO 6336-1-3 1996渐开线圆柱直齿轮和斜齿轮承载能力计算[S].北京:中国标准出版社,1997
    [9]周长江,唐进元,刘艳萍等.齿轮传动设计两种计算标准的比较研究[J].机械传动,2006,30(3):9-10
    [10]孔庆梅,李成涛,欧宗瑛.基于r OCT21354-83标准的齿轮强度计算软件的开发[J].机械科学与技术,1995,14(5):143-147
    [11]张士军.圆柱齿轮参数计算及接触疲劳强度校核程序设计[J].山东农机,2003(10):7-9
    [12]全国齿轮标准化技术委员会.GB/T 1356-2001/ISO 53 1998通用机械和重型机械用圆柱齿轮标准基本齿条齿廓[S].北京:中国标准出版社,2001
    [13]International Organization for Standardization. ISO 53:1998 Cylindrical Gears for General and Heavy Engineering Standard Basic Rack Tooth Profile[S]. Geneva, Switzerland,1998
    [14]于少春.汽车变速器齿面接触分析建模与仿真[D].吉林大学硕士学位论文,2007
    [15]赵强.变速器齿轮弯曲应力分析建模与仿真[D].吉林大学硕士学位论文,2009
    [16]Andrzej K, Jerzy W, and Dariusz C. Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification[J]. ASME, Journal of Mechanical Design,2006,128 (9):1141-1158
    [17]Kadir C, Fatih K, and Fatih C. B. Computer Aided Analysis of Bending Strength of Involute Spur Gears with Asymmetric Profile[J]. ASME, Journal of Mechanical Design,2005,127 (3):477-484
    [1]International Organization for Standardization. ISO/TR 13989-1:2000 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 1:Flash Temperature Method[S]. Geneva, Switzerland,2000
    [2]International Organization for Standardization. ISO/TR 13989-2:2000 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 2:Integral Temperature Method[S]. Geneva, Switzerland,2000
    [3]全国齿轮标准化技术委员会.GB/T 4613.1-2003/ISO/TR 13989-1 2000,圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第1部分:闪温法[S].北京:中国标准出版社,2003
    [4]全国齿轮标准化技术委员会.GB/T 4613.2-2003/ISO/TR 13989-2 2000,圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第2部分:积分温度法[S].北京:中国标准出版社,2003
    [5]M. C. Shen, H. S. Cheng, P. C. Stair. Scuffing Failure in Heavily Loaded Slow Speed Conformal Sliding Contacts[J]. Journal of Tribology,1991,113 (1):182-191
    [6]Christoph Wincierz, Klaus Hedrich. Formulation of Multigrade Gear Oils for High Efficiency and Low Operating Temperature[C]. SAE Paper 2002-01-2822
    [7]Long H, Lord A A, Gethin D T et al. Operating Tempera-tares of Oil-lubricated Medium-speed Gears:Numerical Models and Experimental Results[J]. Journal of Aerospace,2003,217 (2):87-106
    [8]刘元林,刘元柱,刘银庆.防止齿轮齿面胶合的措施[J].煤矿机械,2000(1):47-48
    [9]黄康,田杰,赵韩等.斜齿微线段齿轮胶合承载能力的研究[J].合肥工业大学学报,2005,28(2):118-124
    [10]张明秀.汽车齿轮“胶合”失效分析[J].安徽工学院学报,1993,12(3):86-89
    [11]赵菊初.渐开线直齿圆柱齿轮胶合承载能力的计算[J].机械设计,2001(11):29-33
    [12]Xuefeng Tian, Francis E. Kennedy, Jr. Maximum and Average Flash Temperatures in Sliding Contacts[J]. Journal of Tribology,1994,116 (1):167-174
    [13]Yufen Li, Aric R. Kumaran. The Determination of Flash Temperature in Intermittent Magnetic Head/Disk Contacts Using Magnetoresistive Heads:Part I-Model and Laser Simulation[J]. Journal of Tribology,1993,115 (1):170-178
    [14]邱良恒,辛行,王统.齿轮本体温度场和热变形修形计算[J].上海交通大学学报,1995,29(2):79-86
    [15]江亲瑜,王松年.齿轮胶合临界温度的变化新规律[J].大连铁道学院学报,1996,17(3):52-56
    [16]赵兴中,王翠云,戚文正等.中硬调质齿轮胶合承载能力试验[J].机械传动,1994, 18(3) :18
    [17]全国齿轮标准化技术委员会.GB/T 19936.1-2005/ISO 14635-1 2000,齿轮FZG试验程序第1部分:油品的相对胶合承载能力FZG试验方法A/8.3/90[S].北京:中国标准出版社,2005
    [18]中国石油化工总公司石油化工科学研究院.GB/T 1885-1998/1SO 91-2 1991石油计量表[S].北京:中国标准出版社,1998
    [19].李咏,杨晓飞,王坚等.润滑油运动粘度测定影响因素分析[J].实验科学与技术,2010,8(4):16-19
    [20]杨文通,丁津原,马先责等.润滑油温度对齿轮胶合承载能力的影响[J].东北工学院学报,1990,11(6):549-552
    [1]马爱庆.减速器齿轮发生点蚀的分析[J].煤炭技术,2006,25(2):22-23
    [2]许贤泽.齿轮弯曲强度的有限元分析法[J].武测科技,1996(4):25-27
    [3]程燕,鲍务均.齿轮参数化精确建模及其有限元分析[J].起重运输机械,2004(11):9-12
    [4]徐步青,王立彬,李皓玉.齿轮模型应力的确定及有限元分析[J].石家庄铁道学院学报,2002,15(4):56-58
    [5]王春燕,陆风仪.机械原理[M].北京:机械工业出版社,2001
    [6]全国齿轮标准化技术委员会.GB/T 1356-2001通用机械和重型机械用圆柱齿轮标准基本齿条齿廓[S].北京:中国标准出版社,2001
    [7]吴继泽,王统.齿根过渡曲线与齿根应力[M].北京:国防出版社,1989
    [8]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998
    [9]全国齿轮标准化技术委员会.GB 3480-83渐开线圆柱齿轮承载能力计算方法[S].北京:中国标准出版社,1983
    [10]全国齿轮标准化技术委员会.GB/T 3480-1997/ISO 6336-1-6336-13:1996,渐开线圆柱齿轮承载能力计算方法[S].北京:中国标准出版社,1997
    [11]李杰,张磊,赵旗.中轻型货车变速器齿轮的接触应力分析[C].中国汽车工程2008年年会,2008
    [12]于少春.汽车变速器齿面接触分析建模与仿真[D].吉林大学硕士学位论文,2007
    [13]王哲,胡迎锋.齿轮建模与接触应力分析[J].湖北工业大学学报,2006,21(3):56-59
    [14]黄亚玲,秦大同,罗同云等.基于ANSYS的斜齿轮接触非线性有限元分析[J].理论与探索,2006(4):31-39
    [15]杨汾爱,张志强,龙小乐等.基于精确模型的斜齿轮接触应力有限元分析[J].机械科学与技术,2003,22(2):206-208
    [16]叶友东.基于ANSYS的渐开线直齿圆柱齿轮有限元分析[J].煤矿机械,2004(6):43-45
    [17]吴忠鸣,王新云,夏巨谌等.基ANSYS的直齿圆锥齿轮建模及动态接触有限元分析[J].机械传动,2005,29(5):49-52
    [18]阎树田,梁继斌,沙成梅等.精确模型下斜齿轮接触应力的有限元分析[J].兰州理工大学学报,2006,32(3):47-49
    [19]屈文涛,沈允文,郭辉.双圆弧齿轮的有限元综合分析方法[J].机械强度,2006,28(3):415-418
    [20]李常义,卢耀辉,周继伟.基于ANSYS的渐开线圆柱齿轮参数化造型与有限元建模及分析技术[J].机械传动,2004,28(6):25-28
    [21]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社出版社,2004
    [22]小枫工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004
    [23]博嘉科技.有限元分析软件一-ANSYS融会与贯通[M].北京:中国水利水电出版社,2002
    [24]吴忠鸣,王新云,夏巨谌等.基ANSYS的直齿圆锥齿轮建模及动态接触有限元分析[J].机械传动,2005,29(5):49-52
    [25]雷镭,武宝林,谢新兵.基于ANSYS有限元软件的直齿轮接触应力分析[J].机械传动,2006,30(5):50-51
    [26]丁能根.斜齿轮三维有限元网格和接触单元的自动生成[J].合肥工业大学学报(自然科学版),2003,26(5):1094-1097
    [27]包家汉,张玉华,薛家国.齿轮啮合过程齿间载荷分配的有限元分析[J].机械传动,2004,28(5):14-16
    [28]S. H. Cheng, R. L. Huston, J. J. Coy. A Finite Element Stress Analysis of Spur Gear Including Fillet Radii and Rim Thickness Effects [J]. Journal of Mechanical Transactions and Automation in Design,1983,105 (3):327-330.
    [29]S. Oda, K. Nagamura, K. Aoki. Stress Analysis of Thin Rim Spur Gears by Finite Element Method[J]. Bulletin of JSME,1981,24 (193):127-1280.
    [30]杨连顺,朱如鹏,曾英.正交面齿轮弯曲应力的分析[J].机械科学与技术,2001,20(5):708-709
    [31]周延泽,吴继泽.直齿锥齿轮齿根应力的有限元分析[J].北京航空航天大学学报,1996,22(1):88-92
    [32]朱东华,赵娥.基于I-DEAS,MATLAB环境斜齿轮有限元分析及参数优化[J].机械设计与制造,2004(3):79-81
    [33]于同辉,陈谌闻.斜齿轮接触线上载荷分布的弹流润滑解[J].机械设计与制造,1994,18(1):5-7
    [34]顾守丰,连小瑕,丁能根等.斜齿轮弯曲强度三维有限元分析模型的建立及其程序实现[J].机械科学与技术,1996,15(2):167-171
    [35]李润方,刘鹤然.分阶式双圆弧齿轮有限元应力计算[J].机械科学与技术,1994,13(3) :65-66
    [36]崔德立,陈卫华,王洋.基于ANSYS的滚齿直齿圆锥齿轮弯曲应力有限元分析[J].长春工业大学学报(自然科学版),2006,27(1):46-48
    [1]International Organization for Standardization. ISO/TR 13989-1:2000 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 1:Flash Temperature Method[S]. Geneva, Switzerland,2000
    [2]International Organization for Standardization. ISO/TR 13989-2:2000 Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears-Part 2:Integral Temperature Method[S]. Geneva, Switzerland,2000
    [3]全国齿轮标准化技术委员会.GB/T 4613.1-2003/ISO/TR 13989-1:2000圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第1部分:闪温法[S].北京:中国标准出版社,2003
    [4]全国齿轮标准化技术委员会.GB/T 4613.2-2003/ISO/TR 13989-2:2000圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第2部分:积分温度法[S].北京:中国标准出版社,2003
    [5]AGMA. Gear Scoring Design Guide for Aerospace Spur and Helical Power Gears[S].217.01, AGMA,1965
    [6]Christoph Wincierz, Klaus Hedrich. Formulation of Multigrade Gear Oils for High Efficiency and Low Operating Temperature [C]. SAE Paper 2002-01-2822
    [7]Long H, Lord A A, Gethin D T, et al. Operating tempera-tares of oil-lubricated medium-speed gears:Numerical models and experimental results[J]. Journal of Aerospace,2003,217 (2):87-106
    [8]龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,40(8):24-29
    [9]苏话福,朱晖,李曼林.齿轮胶合计算准则的分析与研究[J].大连铁道学院学报,1989,10(1):70-74
    [10]马先贵,丁津原,姚玉泉.关于齿轮胶合强度计算方法的研究[J].东北工学院学报,1984(1):79-84
    [11]张明秀.汽车齿轮“胶合”失效分析[J].安徽工学院学报,1993,12(3):86-89
    [12]黄康,田杰,赵韩.斜齿微线段齿轮胶合承载能力的研究[J].合肥工业大学学报(自然科学版),2005,28(2):118-124
    [13]M. C. Shen, H.S.Cheng, P. C. Stair. Scuffing Failure in Heavily Loaded Slow Speed Conformal Sliding Contacts [J]. Journal of Tribology,1991,113 (1):182-191
    [14]汝艳.低速重载齿轮本体温度场的研究[D].合肥工业大学硕士学位论文,2007
    [15]龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感性分析[D].重庆大学博士学位论文,2001
    [16]屈文涛.非常规条件下双圆弧齿轮传动工作能力研究[D].西北工业大学博士学位论文,2006
    [17]赵宁,孙晓玲,陈国定.双圆弧齿轮传动的有限元热分析[J].现代制造工程,2006(4):50-52
    [18]钱作勤,厉海祥,陆瑞松等.ANSYS在求解点线啮合齿轮稳态温度场中的应用[J].武汉造船,1999(4):20-22
    [19]朱孝录,鄂中凯.齿轮承载能力分析[M].北京:高等教育出版社
    [20]邱良恒,辛行,王统.齿轮本体温度场和热变形修形计算[J].上海交通大学学报,1995,29(2):79-86
    [21]张和庆.直齿圆柱齿轮本体温度场分析[D].西北工业大学硕士学位论文,1999
    [22]刘正平.齿轮温度场的有限元方法[J].华东交通大学学报,1996,13(3):33-37
    [23]费国标.船用斜齿轮三维动力接触及温度场仿真研究[D].武汉理工大学硕士学位论文,2006
    [24]陈国定,李剑新,刘志全.基于斜齿轮温度场研究的有限元分析模型[J].机械科学与技术,1999,18(3):401-405
    [25]孙首群,朱卫光,赵玉香.渐开线轮齿温度场影响因素分析[J].机械设计,2009,26(2):59-62
    [26]陈国定,李剑新,刘志全等.斜齿轮非定常温度场的计算[J].西北工业大学学报,2000,18(1):11-14
    [27]李绍彬,李润方,林腾蛟.行星齿轮传动装置内齿轮轮齿热有限元分析[J].机械传动,2003,27(1):1-2
    [28]李威于照,王小群.基于闪温法的传动齿轮抗胶合可靠度分析与计算[J].机械传动,2003,27(3):48-50
    [29]李绍彬.高速重载齿轮传动热弹变形及非线性混合动力学研究[D].重庆大学博士 学位论文,2004
    [30]方宗德,陈国定,沈允文.内啮合斜齿轮的齿面闪温计算[J].航空动力学报,1992,7(4):335-338
    [31]R. F. Handschuh, T. P. Kicher. A method for Thermal Analysis of Spiral Bevel Gears [J]. Journal of Mechanical Design,1996,118 (4):580-585
    [32]戴振东,吴林丰,潘升才.齿轮胶合判定方法的分析[J].南京航空学院学报,1990,22(1) :122-125
    [33]靳广虎,朱如鹏,朱自等.面齿轮传动齿面瞬时接触温度的分析[J].机械科学与技术,2009,28(3):302-305
    [34]小枫工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004
    [35]王霖,葛培琪,秦勇等.基于有限元法的湿式磨削温度场分析[J].机械工程学报,2002,38(9):155-158
    [1]何国旗,罗志勇,曹咏梅.变速器机械传动方案计算机辅助分析[J].中国机械工程,2006,17(14):1504-1508
    [2]张轶.变速器产品设计开发流程探讨[J].汽车科技,2008(1):7-11
    [3]全国汽车标准化技术委员会.QC/T 465-1999汽车机械式变速器分类的术语及定义[S].北京:中国标准出版社,1999
    [4]刘庆起,葛序风.渐开线斜齿圆柱齿轮齿形参数的测量与计算[J].机械研究与应用,2004,17(3):35-36
    [5]周君.汽车变速器传动比参数优化及软件开发[D].武汉理工大学硕士学位论文,2008
    [6]蔡炳炎,徐勇,林宁.机械式汽车变速器的速比配置分析[J].机械研究与应用,2005,18(2):19-21
    [7]康保利.汽车动力传动装置参数匹配及软件实现[D].南京航空航天大学大学硕士学位论文,2008
    [8]任思义,钱友军.中型卡车变速操纵轻便性设计[J].合肥工业大学学报(自然科学版),2007,30(增):64-67
    [9]王望予.汽车设计[M].北京:机械工业出版社,2000
    [10]全国齿轮标准化技术委员会.GB 10095-88/ISO 1328:1975渐丌线圆柱齿轮精度[S].北京:中国标准出版社,1988
    [11]International Organization for Standardization. ISO 1328:1975 Accuracy of Involute Cylindrical Gears[S]. Geneva, Switzerland,1975
    [12]张少亭.变速箱齿轮剩余疲劳寿命预测及再制造可行性研究[D].合肥工业大学硕士学位论文,2009
    [13]全国汽车标准化技术委员会.QC/T 29063-92汽车机械式变速器总成技术条件[S].北京:中国标准出版社,1992
    [14]江亲瑜,王松年,陈堪闻.油池润滑齿轮本体温度计算新公式[J].机械,1996,23(6):16-19
    [15]中国石油化工总公司石油化工科学研究院.GB/T 1884-92石油和液体石油产品密度测定法(密度计法)[S].北京:中国标准出版社,1992
    [16]中国石油化工总公司石油化工科学研究院.GB/T 2540-81石油产品密度测定法(比重瓶法)[S].北京:中国标准出版社,1981
    [17]苏春峰,艾延廷,娄小宝.接触非线性仿真中接触刚度因子选取的方法研究[J].沈阳航空上业学院学报,2009,2(3):5-9
    [18]杨凡,孙首群,于建华.齿轮啮合过程中接触应力的精确分析[J].机械传动,2010,34(7):56-59
    [19]贺静,夏尊凤,唐勇.渐开线齿轮齿根应力分析[J].机械传动,2007,31(2):9-13
    [20]唐进元,周长江,吴运新.齿轮弯曲强度有限元分析精确建模的探讨[J].机械科学与技术,2004,23(10):1146-1148
    [21]罗齐汉,李成刚,厉海祥.齿轮弯曲强度有限元精确分析方法研究[J].机械科学与技术,2007,26(9):1212-1215
    [22]于华波,高奇帅,柳东威.基于ANSYS的渐开线斜齿轮的齿根应力分析[J].机械设计与制造,2009(1):84-86
    [23]石万凯,姜宏伟,秦大同.蜗轮稳态温度场的模拟及影响因素[J].重庆大学学报,2009,32(5):487-491
    [24]靳广虎,朱如鹏,朱自冰.面齿轮传动齿面瞬时接触温度的分析[J].机械科学与技术,2009,28(3):301-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700