用户名: 密码: 验证码:
钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金Ti-6A1-4V借助其卓越的材料性能,已成为航空、航天领域应用最为广泛的材料之一。同时,它也是一种难加工材料,高速切削技术是解决该材料大量需求与加工困难这一矛盾的重要方法。研究高速切削机理最有效的途径是切削有限元仿真,而本构模型作为切削有限元仿真的核心技术已成为国内外研究的焦点。目前广泛应用于切削有限元仿真中的Johnson-Cook (J-C)本构模型由于没有考虑动态再结晶软化效应在切削中的重大作用,在表现高温高压下的应力状态、以及绝热剪切带与切屑形态等方面时显得力不从心。本文采用理论分析、试验研究与有限元仿真相结合的方法,由钛合金Ti-6A1-4V的微观结构入手,针对J-C本构模型存在的缺陷,提出一种考虑再结晶软化效应的修正J-C本构模型,经铣削试验与有限元仿真对比研究,证明了该修正J-C本构模型更适用于钛合金Ti-6A1-4V的高速铣削过程。论文的主要研究内容如下:
     (1)对钛合金Ti-6A1-4V在不同应变速率条件下的动态再结晶现象进行了系统的研究,找出了材料发生动态再结晶的条件与规律。通过对等温恒应变速率试验的动力学研究,建立了钛合金Ti-6A1-4V的Arrhenius方程和两相区变形的流动应力本构模型,证明了变形温度是材料发生再结晶的最重要因素,它与再结晶现象发生的频率成正比;对属于高应变速率范畴的高速切削进行了研究,主要是对切屑形态、绝热剪切带形态、以及切削力、表面粗糙度等进行了系统的研究,建立了切削要素、切屑形态、切削力、表面粗糙度等因素之间的关系,证明了切削过程中动态再结晶软化效应是不容忽视的。研究表明,不论在低应变速率下,还是在高应变速率下,材料均有发生动态再结晶的可能,再结晶软化效应使阻止局部塑性变形的阻力下降,加剧了材料的热塑性失稳,促进了绝热剪切带以及锯齿形切屑的产生。
     (2)为解决高温高压环境下J-C本构模型不再适用于钛合金Ti-6A1-4V切削有限元仿真的问题,建立了考虑再结晶软化效应的修正J-C本构模型。通过分离式Hopkinson压杆试验(SHPB)测得了的材料应力—应变数据,并利用变量分离法拟合出修正J-C本构模型,该本构模型以临界应变值为界,以不同的表达式描述不同的应变区间。经过计算校验,该修正J-C模型可以很好地逼近SHPB试验曲线,尤其是在高温区间,修正J-C本构模型比J-C本构模型更符合SHPB实验的应力—应变曲线特征。
     (3)利用子程序技术将两种本构模型嵌入到切削有限元软件AdvantEdge FEM中,通过与铣削试验的对比研究,证明了考虑再结晶软化效应的修正J-C本构模型比J-C本构模型更适用于高速铣削有限元仿真,更符合铣削的实际过程。以AdvantEdge FEM有限元软件为平台,利用增量法对本构模型进行了建模,建立了两种模型的Recht剪切失稳模型,采用回退映射应力积分算法编写了子程序,将两种本构模型嵌入到切削有限元软件中,对比研究了高速铣削时的应力特征与切屑形态。研究表明,在表现高速切削时的切屑形态变化、应力与剪切力等特征时,修正后的J-C本构模型比J-C本构模型更适用。
     (4)利用网络数据库、DNC、遗传算法等技术建立了新型高速切削数据库系统,该系统集高速切削参数优化与推荐、材料本构自动生成、有限元仿真、以及刀具库管理等为一体,实现了高速切削全生命周期中参数的推荐与管理。
Ti-6A1-4V titanium alloy is often used in the aircraft industry due to the good compromise. However, this material is known to be difficult to machine. The high speed machining is one of the most effective process technologies for the contradiction between increasing machining demand and poor machining performance. The high speed machining is one of the most important approaches to the difficult-to-cut material, and the numerical simulation technology is the most effective way for the high speed machining.While the constitutive models study is the key technology in the high speed machining mechanism research. The widely used Johnson-Cook constitutive model is not suitable for Ti-6A1-4V alloy in the high-speed cutting finite element simulation; it has not response material dynamic recrystallization softening effect under high pressure and high temperature, and thus can not correctly reflect the stress state, and deformation characteristics of adiabatic shear band and serrated chips, and so on during high-speed cutting. In view of the complexity in nature, a method combining theoretical analysis with experiment and finite element simulation is proposed in this dissertation. Starting from the microscopic structure of titanium alloy Ti-6A1-4V, a new modified constitutive model of Ti-6A1-4V titanium alloy based on recrystallization is proposed considering the phenomenon during machining. The main investigation contents are listed as following:
     (1)The dynamic recrystallization condition and law of Ti-6A1-4V alloy at all strain rates are investigated in the paper. The isothermal constant strain rate experiments are performed on Ti-6A1-4V alloy, which discoveried that the deformation temperature is proportional to the frequency of dynamic recrystallization, and a Arrhenius equation of Ti-6A1-4V alloy is established. It is systematically researched from the microstructure of chips, surface roughness and cutting force during the high-speed cutting. The relationship between the cutting factors, chip formation, cutting force and surface roughness is built. The research shows that it has the possibility of dynamic recrystallization at all strain rates. The plastic deformation resistance decline and the thermoplastic instabilitydue occur due to the dynamic recrystallization softening effect, and the adiabatic shearing band and serrated chip is found in the Ti-6A1-4V alloy.
     (2)J-C constitutive model is inaccurate for machining simulation of titanium alloy with high temperature and heavy impact.In the paper, a new modified J-C constitutive model of Ti-6A1-4V alloy based on recrystallization softening effect is established. High-temperature SHPB (Split Hopkinson Pressure Bar) test was conducted to determine the true flow stress-strain relationship of Ti-6A1-4V alloy. With the SHPB test data, the modified constitutive model was developed by the variable separation method. The modified J-C constitutive model expresses as two expressions according to the different characteristics of material constitutive during critical strain values. The modified J-C constitutive model is proved correct and more suitable for the SHPB test curve than the J-C constitutive model, especially in the high-temperature range.
     (3)A subroutine is coded and embedded in the finite element simulation software AdvantEdge FEM with the return mapping stress integration algorithm. The comparison is carried between the experimental data of milling and the simulation, and it shows that the modified J-C constitutive model is more suitable for the practical milling process. The new modified J-C constitutive model is built by the incremental method, and the the comparison is carried on of stress characteristics and chip formation in high-speed milling. It shows that the modified J-C constitutive model is more suitable than J-C constitutive when it express formation process of adiabatic shear band, chip morphology, stress and shear characteristics in the high-speed milling.
     (4) A new high-speed cutting database system is established by the network database technology, DNC technology, genetic algorithms and other technical. The system combines high-speed cutting parameter optimization and recommendation, the material constitutive generated automatically, finite element simulation, as well as tool database management, which realizes the recommendation and management of the HSM parameter in its full life cycle.
引文
[01]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [02]刘战强,黄传真,郭培全.先进切削加工技术及应用[M].北京:机械工业出版社,2005.
    [03]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2000,24(3).
    [04]张喜燕,赵永庆,白晨光等.钛合金及应用[M].北京:化学工业出版社,2005:1-2.
    [05]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986:16-22.
    [06]王贵成,王树林,董广强.高速加工工具系统[M].北京:国防工业出版社,2005:2-2.
    [07]刘志新.高速铣削过程动力学建模及其物理仿真研究[D].天津:天津大学,2006.
    [08]朱文明.高速切削Ti-6Al-4V切屑形成仿真研究[D].南京:南京航空航天大学,2007.
    [09]吕杨,李晓岩.航空航天用钛合金的切削加工现状及发展趋势[J].航空制造技术.2012(14):55-57.
    [10]耿国盛.钛合金高速铣削技术的基础研究[D].南京:南京航空航天大学,2006.
    [11]E.O.Ezugwu.Key improvements in the machining of difficult-to-cut aerospace superalloys [J].International Journal of Machine Tools & Manufacture,2005,45:1353-1367.
    [12]H.Schulz,T.Moriwaki..High speed machining[J].Ann.CIRP,1992,41(2):637-643.
    [13]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].济南:山东大学,2009.
    [14]李兴泉.航空钛合金结构件高效铣削工艺研究[D].沈阳:东北大学,2010.
    [15]姜峰.不同冷却润滑条件Ti6A14V高速加工机理研究[D].山东大学,2009.
    [16]颜渝.钛合金切削加工的条件及参数[J].航空动力技术,2008,28(4):35-38.
    [17]张伯霖主编.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [18]Zienldewiez O.C.Analysis of the mechanism of orthogonal machining by the finite element method[J].Journal of the Japan Society for Precision Engineering,1971, 37(7):503-508.
    [19]Klamecki B. E. Incipient Chip Formation in Metal Cutting:A Three Dimension Finite El-ement Analysis [D].University of Illinois at Urbana-Champaign,1973.
    [20]Shirakashi T., Usui E. Simulation analysis of orthogonal metal cutting process[J]. Journal of the Japan Society for Preeision Engineering,1974,42(5):535-540.
    [21]Strenkowski J. S., Carroll J. T. Finite element model of orthogonal metal cutting[J]. Ameriean Soeiety of Mechanical Engineers,1984, (12):157-166.
    [22]Strenkowski J. S., Moon K. J. Finite element predietion of chip geometry and tool workpiece temperature distribution in orthogonal metal cutting[J]. Tran ASME J England 1990,112(4):313-318.
    [23]J. Q. XIE, A. E. BAYOUMI, H. M. ZBIB. A study on shear banding in chip formation of orthogonal machining[J]. International Journal of Machine Tools and Manufacturing, 1996,36:835-847.
    [24]Lei S., Shin Y. C., Incropera F. P. Thermo-mechanical Modeling of Orthogonal Machini-ng Process by Finite Element Analysis [J]. International Journal of Machine Tools & Manufa-cture,1999,39(5):731-750.
    [25]Dirikolu M.H, Childs T.H.C., Maekawa K.Finite element simulation of chip flow in metal machining [J].International Journal of Mechanical Sciences,2001,43:2699-2713.
    [26]Ohbuchia Y., Obikawab T. Adiabatic shear in chip formation with negative rake angle [J]. International Journal of Mechanical Sciences,2005,47:1377-1392.
    [27]Bil H., Kilic S. E. and Tekkaya A. E. A comparison of orthogonal cutting data from experiments with three different finite element models [J]. International Journal of Machine Tools & Manufacture,2004,44:933-944.
    [28]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645.
    [29]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(3):317-320.
    [30]成群林,柯映林,董辉跃等.高速硬加工中切屑成形的有限元模拟[J].浙江大学学报(工学版),2007,41(3):509-513.
    [31]宫爱红,阮景奎,杨勇等.合金铸铁高速切削的有限元模型[J].制造技术与机床,2007,(8):36-40.
    [32]杨勇,柯映林,董辉跃.钛合金切削绝热剪切带形成过程的有限元分析[J].浙江大学学报(工学版),2008,42(3):534-538.
    [33]陈明,袁人炜,凡孝勇等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报,2002,38(7):76-79.
    [34]张东进.切削加工热力耦合建模及其试验研究[D].上海:上海交通大学,2008.
    [35]梁作斌.镍基高温合金GH4169高速切削加工性能的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [36]唐志涛,刘战强,艾兴等.金属切削加工热弹塑性大变形有限元理论及关键技术研究[J].中国机械工程,2007,18(6):746-751.
    [37]陈建岭,李剑峰,孙杰等.钛合金高速切削切屑形成机理的有限元分析[J].组合机床与自动化加工技术,2007,(1):25-28.
    [38]杨奇彪.高速切削锯齿形切屑的形成机理及表征[D].济南:山东大学,2012.
    [39]李川平.Ti6A14V钛合金动态本构模型与高速切削有限元模拟研究[D].兰州:兰州理工大学,2011.
    [40]王礼立,余同希,李永池.冲击动力学进展[M].合肥:中国科学技术大学出版社,1992.
    [41]Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel[J]. Journal of Applied Physics,1944.15(1):22.
    [42]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击,2001,21(02):81-88.
    [43]Wingrove A L,Wulf G L.Some aspects of target and projectile properties on penetration. J.Aust.Inst.Met.,1973,18:167-172.
    [44]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994.29-32.
    [45]Recht R.Catastrophic thermoplastic shear. Trans.ASME,J.Appl.Mech,1964,31:189-193.
    [46]Culver R S. In metallurical effect at high strain-rates.ed.R W Rhode. B M Butcher,J R Holland and C. H Karnes, New York:Plenum Press,1973:519-530
    [47]S.E.Schoenfeld, T.W.wright. A failure criterion based on material instability [J]. International Journal of Solids and Structures,2003 (40):3021-3037
    [48]M.A.Meyers, Y.B.Xu, Q.Xue, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia,2003(51):1307-1325
    [49]Y.B.Guo, David W. Yen. A FEM study on mechanisms of discontinuous chip formation in hard machining [J]. Journal of Materials Processing Technology,2004:1350-1356
    [50]Grady D E. Properties of an adiabatic shear-band process zone [J]. Journal of the Mechanics and Physics of Solids,1992,40(6):1197-1215
    [51]谭成文,王富耻.材料绝热剪切敏感性表征及测试方法研究[J].北京理工大学学报,2004,24(5):377-38.
    [52]M.A.Meyers, Y.B.Xu, Q.Xue, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia,2003(51):1307-1325
    [53]Komanduri R, Brown R H. On the mechanics of chip segmentation in machining[J]. Journal of engineering for industry,1981,103(1):33-51.
    [54]Recht R F. A dynamic analysis of high speed machining[J]. Journal of engineering for industry,1985,107:309-315
    [55]A.Vyas, M.C.Shaw. Mechanics of saw-tooth chip formation in metal cutting[J]. Journal of Manufacturing Science and Engineering,1999,121(2):163-172.
    [56]Nakayama K.The formation of saw-toothed chip in metal cutting. Japan Soeiety of Preeision Engineering[C]. Proceedings of international conference on Production engineering, Japan,1974,Tokyo:571-581.
    [57]Y. Bai, B. Dodd, Adiabatic Shear Localization:Occurrence, Theories and Applications. Pergam on Press, Oxford,1992.
    [58]A.E. Bayoumi, J.Q. Xie. Some metallurgical aspects of chip formation in cutting Ti-6A1-4V alloy. Materials Science and Engineering,1995,A190(1-2):173-180.
    [59]S.Sun, M.Brandt, M.S.Dargusch. Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools and Manufacture,2009,49(7-8):561-568
    [60]T.Ahmed.Rack H J.Mater Sci Eng,A243 (1998):206.
    [61]Margolin H,Cohen P.Evolution of the equiaxed Morphology of phases in Ti-6A1-4V[J]. Titanium 80:Science and Technology,1980:1554-1561.
    [62]J.Flaquer,J.Gil,Sevillano[J].Mater.Sci,1984:423-427.
    [63]Andrade U., Meyers M. A., VecchioK. S., et al. Dynamic Recrystallization in High Strain, High Strain Rate Plastic Deformation of Copper. Acta Metall Mater,1994,42(9): 3183-3195.
    [64]Nesterenko V. F., Meyers M. A., LaSalvia J. C., et al. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Materials Science and Engineering A,1997,229(12):23-41.
    [65]王敏杰.金属动态力学性能与热塑剪切失稳的正交切削试验方法[D].大连:大连理工大学,1989.
    [66]段春争.正交切削高强度钢绝热剪切行为的微观机理研究[D].大连:大连理工大学,2005.
    [67]B.Derby and M.F.Ashby, Scripta Metall.1987(21):879-884.
    [68]J.C. M.Li.J.APPl.Phys.1962(33):2958-2965.
    [69]R.D.Doherty and J.A.SzPunar,Aeta Metall.1984(32):1789-1798.
    [70]W.A. Johnson, R.F. Mehl. Trans. Am. Inst. Miner. (Metall.) Eng.,135 (1939), p.416
    [71]康国政.非弹性本构理论及其有限元实现[M].成都:西南交通大学出版社,2010.
    [72]S.R.Bodner,Y.Partom.Constitutive equations for elastic plastic strain harding materials [J].ASME J.Appl.Mech,1975,42:385-389.
    [73]P.S.Follansbee, U.F.Kocks. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta.Metall,1988,36:81-93.
    [74]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistic. Amsterdam,The Netherlands:The Hague,1983: 541-547.
    [75]Nemat-Nasser S. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys:experiments and modelling [J]. Mechanics of Materials,2001,33(8): 425-439.
    [76]Zerilli F J, ARMSTRONG R W. Dislocation mechanics based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics,1987,61(5):1816-1825.
    [77]S.H. Rhim,S.I.Oh. Prediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steel. Journal of Materials Processing Technology, 2006,171 (3):417-422.
    [78]Calamaz M, Coupard D, GIROT F.A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V [J]. International Journal of Machine Tool and Manufacture,2008,48 (3/4):275-288.
    [79]o ZEL T, SIMA M, SRIVASTAVA A K, et al. Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations [J]. CIRP Annals:Manufacturing Technology,2010,59(1):77-82.
    [80]Shi B, Atti H. Part Ⅰ:An analytical model describing the stress, strain, strain rate and temperature fields in the primary shear zone in orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering,2010,132(5):051008.1-051008.11.
    [81]Arrazola P J, Barbero O,Urresti I. Influence of material parameters on serrated chip prediction in finite element modeling of chip formation process[J]. International Journal of Material Forming,2010,3(Sup.l):519-522.
    [82]Umbrello D, Saoubi R M, Outeiro J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J].International Journal of Machine Tools and Manufacture,2007,47(3):462-470.
    [83]程国强,李守新.金属材料在高应变率下的热粘塑性本构关系[J].弹道学报,2004,16(4):18-22.
    [84]彭建祥,李大红.温度与应变率对钽流变应力的影响[J].高压物理学报,2001,15(2):146-150.
    [85]邹静,钟伟芳.形状记忆合金的多维本构关系[J].固体力学学报,1999,20(2):171-176.
    [86]李海涛,彭向和,黄尚廉.形状记忆合金的一种基于经典塑性理论的两相混合本构模型[J].固体力学学报,2004,25(1):58-62.
    [87]陈斌,彭向和,王军.形状记忆合金单晶细观本构关系的一种相变动力学模型及算法[J].固体力学学报,2012,33(1):8-15.
    [88]郭伟国.一种新型奥氏体不锈钢的塑性流变行为研究[J].西北工业大学学报,2001,19(3):476-479.
    [89]陈刚,陈忠富.TC4动态力学性能研究[J].实验力学,2005,20(4):605-609.
    [90]鲁世红.高速切削锯齿形切屑的实验研究与本构建模[D].南京:南京航空航天大学,2009.
    [91]KAHLES J F. Machinability data requirements for advanced machining systems[J]. Annals of the CIRP,1987,36(2):523-529.
    [92]M. V.Ribeiro,N.L.Coppini. An applied database system for the optimization of cutting conditions and tool selection[J] Journal of Materials Processing Technology,2002, 92-93.
    [93]I.Black,S.A.J.Livingstone,K.L.Chua. A laser beam machining(LBM) database for the cutting of ceramic tile. Journal of Materials ProcessingTechnology,2001,84:47-55
    [94]S.V.Wong,A.M.S.Hamouda,M.A.El Baradie. Generalized fuzzy model formetal cutting data selection[J] Journal of Materials Processing Technology,1999:89-90.
    [95]B.Mursec,F.Cus.Integral model of selection of optimal cutting conditions from different database of tool makers[J] Journal of Materials Processing Technology,2003(133):158 -165.
    [96]高强等.最新有色金属金相图谱大全[M].北京:中国冶金工业出版社,2005.
    [97]韩冬峰,郑子樵等.高强可焊2195铝-锂合金热压缩变形的流变应力[J].中国有色金属学报.2004,14(12):2090-2095.
    [98]C.C. Chen, J.E. Coyne, Metall. Trans.7A (1976):1931-1941.
    [99]W.A. Bryant, J. Mater. Sci.10 (1975):1793-1797.
    [100]S.M.L. Sastry, R.J. Lederich, T.L. Mackay, W.R. Kerr, J. Metals. (1983):48-53.
    [101]T. Sheppard, J. Norley, Mater. Sci. Technol.4 (1988):903-908.
    [102]V. Seetharaman, L. Boothe, C.M. Lombard. Microstructure:Property Relationships in Titanium Aluminides and Alloys[J]. TMS Warrendale,1991:605-622.
    [103]Tarnura I, Sekina H, Tanaka T, et al. Therrnornechanical processing of high-strength low-alloy steels[M]. London:Butterworth & Co.(Publishers) Ltd,1988.
    [104]薛克敏,张青,李萍等.β21S钛合金高温变形行为研究[J].材料工程,2008(4):14.
    [105]Tan M J,Chen G W,Thiruvarudchelvan S.High temperature deformation in Ti-5A12.5Sn alloy[J].Joural of Material processing Technology,2007:192-193.
    [106]R. Komanduri, B.F.V. Turkovich. New observations on the mechanism of chip formation when machining titanium alloys.Wear,69 (1981):179-188.
    [107]J. Barry, G. Byrne, D. Lennon, Observations on chip formation and acoustic emission in machining Ti-6A1-4V alloy[J], International Journal of Machine Tools and Manufacture, 41 (2001):1055-1070.
    [108]M. A. Davies, T. J. Burns, C. J. Evans. On the Dynamics of Chip Formation in Machining Hard Metals[J]. Annals of the C1RP,1997(46):25-30.
    [109]Bally J,Byme G,Lennon D.obsevration on chip formation and acoustic emission in machinnigTi-6A1-4V alloy[J]. Intl.J.Mach. Tools and Manufacture,2001,41:1055-1070.
    [110]Wright, T.W., Ockendon, H.,1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands[J]. Int. J. Plasticity,12,927.
    [111]Dinzart, F., Molinari, A.,1998. Structure of adiabatic shear bands in thermo-viscoplastic materials. Eur.J. Mec, A/Solids,17,923.
    [112]Wright T W, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands[J].Int. J.Plasticity,1996,12:927-934.
    [113]Molinari A. Collective behavior and spacing of adiabatic shear bands[J].Mech.Phys. Solids.1997(45):1551-1578.
    [114]王晓琴,钛合金Ti6A14V高效切削刀具摩擦磨损特性及刀具寿命研究[D].济南:山东大学,2009.
    [115]G. Sutter, A. Molinari. Analysis of the Cutting Force Components and Friction in High Speed Machining [J]. Journal of Manufacturing Science and Engineering,2005(127): 245-251.:
    [116]SHIH-CHIEH, LIAO, J DUFFY. Adiabatic shear bands in a Ti-6A1-4V titanium alloy. J Mech Phys Solids[J],1998,46:2201.
    [117]Hines J A, Vecchio S K Ahzi S. A model for microstructure evolution in adiabatic shear bands[J].Metall Mater Trans,1998,29:191-202.
    [118]Derby B. The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater,1991,39:955-962.
    [119]胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991(122):4047.
    [120]Kolsky H.An investigation of the mechanical properties of materials very high rates of loading[J]. Proc Phys Soc(London),1994:B63:676-700.
    [121]刘丽娟,吕明,武文革.Ti-6A1-4V合金的修正本构模型及其有限元仿真[J].西安交通大学学报,2013,47(07):73-79.
    [122]ANDRADE U R, MEYERS M A, VECCHIO K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metall Mater,1994, 42(31):83-95.
    [123]M.E.Kassner,M.Z.Wang,M.T.Perez-Prado,S.Alhajeri. Large-strain softening of aluminium in shear at elevated temperature[J].Metallurgical and Materials Transactions, 2002:3145-3153.
    [124]ZEL T, SIM A M, SRIVASTAVA A K, et al. Investigations on the effects of multi-layered coated inserts in machining Ti-6A1-4V alloy with experiments and finite element simulations [J]. CIRP Annals:Manufacturing Technology,2010,59(1):77-82.
    [125]M.Baker,J.Rosler,C.Siemers,A finite element model of high speed metal cutting with adiabatic shearing[J].Computers and Structures,80 (2002):495-513.
    [126]Usui E., Shirakashi T. Mechanics of Machining-from Descriptive to Predictive Theory[J]. On the Art of Cutting Metals Years Later a Tribute to F W Taylor, ASME PED. 1982,(7):13-30.
    [127]Mackerle J. Finite element analysis and simulation of machining:a bibliography (1976-1996) [J]. Journal of Material Processing Technology,1999,86:17-44.
    [128]Iwata K, Osakada K,Terasala T. Process modeling of orthogonal cutting by the rigid-plastic finite element method[J]. Journal of Manufacturing Science and Engineering, 1984(106):132-138.
    [129]Zhang L C. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J] Journal of Materials Processing Technology,1999(88-89): 273-278.
    [130]程信林Ti-6A1-4V绝热剪切形迹中热、力学参量的数值模拟及其剪切带内微观组织演化机制的探讨[D].长沙:中南大学,2004.
    [131]刘丽娟,吕明,武文革.基于神经网络的高速切削智能系统的设计[J].制造业自动化,2012,34(11):12-15.
    [132]徐晶宏.CNC高速机切削用量的选择[J].模具制造,2003(11):48-49.
    [133]人见胜人.制造系统工程[M].北京:中国农业机械出版社,1983:80-150.
    [134]人见胜人.生产管理工程:机械工业出版社,1987:85-106.
    [135]B.H.Amstead,hillip F.Ostwald,Myron L.Begeman.Manufacturing Processes (eighth edition) [M].NewYork:Wiley,1987.
    [136]陈日曜.金属切削原理[M].北京:机械工业出版社,2007.
    [137]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997:21-27.
    [138]刘丽娟,吕明,武文革.基于DNC的高速切削刀具库系统的研究[J].制造技术与机床,2013(03):126-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700