用户名: 密码: 验证码:
苦参生物碱的结构修饰与改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化学尤其是有机化学研究中,天然产物化学长期以来一直占据着非常重要的地位,不仅是因为天然产物研究给有机化学家带来的巨大的挑战,而且是因为天然药物的研究成果能极大的改善人们的身体健康状况,因而和人们的生活息息相关。在药物研究方面,迄今为止在临床应用的药物中,有三分之一以上源自天然产物。我国天然产物资源丰富,种类繁多,中医药利用历史悠久。因而从事天然产物研究具有得天独厚的条件。天然产物历来都是我国有机化学家研究的重要对象,尤其是生物碱类天然药物,由于其广泛而优异的活性一直以来都是化学家和药理学家研究的热点。
     生物碱一般是指植物中除蛋白质、肽类、氨基酸及维生素B外的含氮的有机化合物。它是科学家们研究的最早的一类有生物活性的天然有机化合物,而且生物碱类化合物大多具有良好的生物活性。这类化合物往往是许多药用植物,包括许多中草药的有效成分。目前国内外对生物碱的研究如火如荼,近年来,由于分离纯化、结构鉴定、生物活性导向跟踪等方面技术上的长足进步,结构新颖、活性高的生物碱不断被发现,其数目不断增加。对已发现的生物碱的结构修饰与改性研究是天然药物研究的另一个重要的方面。因此为了进一步提高苦参生物碱的药理活性,我们对苦参碱进行了初步的结构修饰与改造研究,合成出了几种结构新颖的苦参碱的衍生物,论文主要分为以下四个部分:
     第一章首先就天然药物的研究现状及生物碱的研究进展进行了文献总结,重点介绍了当前对生物碱研究的一些新的方法、理念以及有关天然产物结构修饰与改造的原理;对我们的研究对象苦参碱的生物学特征和广泛的药理活性也做了详细的介绍,并就目前的研究情况做了总结。
     第二章以槐果碱为起始化合物,以形成多元醇为目的同时又可以增大苦参碱的水溶性,我们设计了对槐果碱的α,β-不饱和双键进行双羟化氧化,成功的合成出了13,14-二羟基苦参碱,并且对产物结构进行了表征。
     第三章中,应用组合化学中多组分反应的高效性、原子经济性的原则,同时又能体现出绿色无污染、对环境友好的有机合成理念,我们以槐果碱为原料,成功的提出了一个新颖、高效、绿色的一锅法合成二硫代(N,N-二烃基)氨基甲酸苦参碱酯的方法,合成出了两个结构新颖的苦参碱衍生物。反应过程中避免了使用一些毒性的有机溶剂如氯仿、DMF、DMSO等,同时反应也不需要加入任何的金属催化剂。我们还从可能的反应机理上解释了水在反应中的双重作用。该反应除了具有不需要催化剂、对有些胺类产率较高、反应清洁等优点外,还具有后处理过程简单的优点。产物的结构经二维核磁共振图谱表征及X射线单晶衍射测定,为我们的预期产物。
     第四章中仍以槐果碱为起始反应物,应用经典的Michael加成反应的原理,我们试验了在槐果碱的α,β-不饱和内酰胺的双键上进行亲核加成。反应中槐果碱作为电子受体,当用乙酰乙酸乙酯或硝基甲烷作为电子供体时,实验结果显示,槐果碱的反应活性较低,产率相比较典型的α,β-不饱和醛酮做电子受体时的反应偏低。通过对该反应的研究,我们补充了Michael反应的应用范围,取得了预期的成果。
Nature Pharmacological chemistry play an important role in chemistry, especially in organic chemistry at all time, not only because the study of nature pharmacological chemistry can take tremendous challenge to organic chemists, but also because the result of which can improve people's health situation greatly, so it has a close relationship with us. As far as the study of drugs is concerned, more than one third of the clinical drugs were derived from natural products so far. There is a great variety of the resources of natural products in our country which has been applied to Chinese traditional medicine for a long time. Chinese organic chemists always regard the natural products as significant targets of research because of the ascendant conditions. The natural products of alkaloids are especially listed among the hottest point by the chemists and pharmacologists for its broadly and excellently pharmacological activities at all times.
     The alkaloids refer to some organic compounds which contain nitrogen atom except proteins, peptides, amino acids and vitamin B. It is a kind of pharmacologically active nature organic compounds and is earliest investigated by scientists. For the most of the compounds like alkaloids show excellent pharmacological activity, they are usually the effective components in many medical plants including many Chinese traditional medicines. The researches on alkaloids are undergoing actively in the domestic and in the foreign countries at present. Because the technology of separation, purification, character and biological activity's tracing have made great progress, some alkaloids with novel structures and excellent pharmacological activities were found continuously. The modification of alkaloids' structure which had been confirmed is an important field in the study of natural medicine. We aimed to further improve the pharmacological activities of the matrine, and some primitive modification to the structure of matrine was carried out. As a result, several novel derivatives of matrine were synthesized. This thesis comprises four parts shown as follows:
     In the first chapter, we summarized the studying progress of the natural medicine and the alkaloids firstly, emphasizing to introduce the new methods and ideas in the research of the alkaloids. We also introduced matrine's biological character and its comprehensive pharmacological activities in detail, and the summary of its presently studying progress was made as well.
     In the second chapter, for the good solubility of anticipated product we design an experiment in which sophocarpine was taken as the initiative material to be oxidized by potassium permanganate and the dihydroxylation product: 13, 14-dihydroxymatrine was given out successfully. The final product was determined by several methods.
     In the third chapter, according to the rule of high efficiency, atom economy in the combinatorial chemistry as well as green, zero pollution and environmentally benign idea in organic synthesis, we success to design an experiment to synthesize two novel derivatives of matrine. The method was confirmed to be a novel, high efficiency, green protocol for one-pot preparation of matrine dithiocarbamate. This protocol avoids the use of some toxic organic solvents, such as chloroform, DMF or DMSO, and some catalysts. The plausible dual role of water in promoting the reaction is rationalized by the mechanism we have described. In addition to the above advantages, the metal-free, non-hazardous and mild experimental conditions, simple experimental procedures, easy workup also show great superiority in this experiment. The desired products were confirmed by two-dimensional NMR spectrum and x-Ray single crystal diffraction anylysis etc.
     In the last chapter, with an attempt to apply the classic principle of Michael addition we still use the initiative material sophocarpine and try to make it as an electron acceptor and nitrocarbol or acetacetic ester as an electron donor in this reaction. The result has shown that the sophocarpine has poor reaction activity, and the yield was lower than the reaction in which the electron donor wereα,β-unsaturated aldehydes orα,β-unsaturated ketones. We broadened the application range of Michael addition reaction and get what we have anticipated through our study.
引文
[1] 徐任生,叶阳,赵维民.天然产物化学[M] ,第二版,北京:科学出版社,2004:1-2.
    [2] Adams R, Rideal E. K, Burnett W. B, et al.Chemical constistution, physiological action and physical properties in a series of alkyl para-aminobenzoates[J] , J. Am. Chem. Soc.,1926, 48(6): 1758-1770.
    [3] Wills J. H. Anticholinergic Compounds as adjuncts to atropine in preventing lethality by satin tn the rabbit[J] J. Med. Chem, 1961, 3(2): 353-359.
    [4] Moffett R. B, Aspergren B. D. Antispasmodics Ⅷ. scopolamine derivatives[J] J. Am. Chem. Soc., 1956, 78(14): 3448-3353.
    [5] 盛一珉,杭汉翔.乙酰胆碱酯酶抑制剂的研究进展[J] ,海峡药学,2005,17(4):10-12.
    [6] Maat L, Beyerman H. C. The Alkaloids[M] , New York, Academic Press, 1983, 22: 281.
    [7] Takano S, Ogasawara K. The Alkaloids[M] , Brossi A, Ed, New York: Academic Press, 1989, 36: 225.
    [8] 丁丽丽,施松善,崔健等.麻黄化学成分与药理作用研究进展[J] ,中国中药杂志,2006,31(20):1661-1664.
    [9] Kopet J. C, Dille J. M. The quantitative separation of ergometrine from other ergot alkaloids[J] , J. Am. Pharm. Assoc., 1942, 30(10): 260-262.
    [10] Gordin H. M, Prescott A. B. Emetine octoiodide and the extraction and estimation of alkaloids generally[J] , J. Am. Chem. Soc., 1899, 21(3): 231-239.
    [11] Viehoever A, Capen R. G. New sources of santonin l[J] , J. Am. Chem. Soc., 1923, 45(8): 1941-1944.
    [12] Moore W. N, Taylor L. T. Extraction and quantitation of digoxin and acetyldigoxin from the digitalis lanata leaf via near-supercritical methanol-modified carbon dioxide[J] , J. Nat Prod, 1996, 59(7): 690-693.
    [13] Vergara B. U. Extraction of reserpine and other alkaloids from Colombian Rauwolfia hirsute[J] , J. Am. Chem. Soc., 1955, 77(7): 1864-1866.
    [14] Mangeney P, Andriamialisoa R. Z, Langlois N, et al. Preparation of vinblastine, vincristine, and leurosidine, antitumor alkaloids from Catharanthus species (Apocynaceae)[J] , J. Am. Chem. Soc., 1979, 101(8): 2243-2245.
    [15] Skwarczynski M, Hayashi Y, Kiso Y. Paclitaxel prodrugs: toward smarter delivery of anticancer agents[J] , J. Med. Chem(Perspective), 2006, 49(25): 7253-7269.
    [16] Wall M. E, Wani M. C, Cook C. E, et al. Plant antitumor agents. Ⅰ. the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camototheca acuminate[J|, J. Am. Chem. Soc., 1966, 88(16): 3888-3889.
    [17] 吴毓林.一个奇特的植物成分—青蒿素[J] ,自然杂志,1978,1(8):483.
    [18] Corey E. J, Weigel L. O, Chamberlin A. R, et al. Total synthesis of maytansine[J] , J. Am. Chem. Soc., 1980, 102(21): 6613-6615.
    [19] 于德全,吴毓林.天然产物化学进展[M].北京:化学工业出版社,2005:599.
    [20] Daly J. W. Thirty years discovering of arthropod alkaloids in amphibian skin[J]. J. Nat. Prod, 1998, 61(1): 162-172.
    [21] Olive H. F, Hemenway M. S. Recent syntheses of epibatidine[J] , Org Prep Proc Int, 2002, 34: 1-25.
    [22] Chen Z. M, Trudell M. L. Chemistry of 7-azabicyclo[2.2.1] hepta-2,5-dienes, 7-azabicyclo[2.2.1] hept-2-enes, and 7-azabicyclo[2.2.1] heptanes[J] , Chem. Rev, 1996, 96(3): 1179-1193.
    [23] Szantay C, Kaesoa-Balogh Z, Szantay Jr. C. in The alkaloids[M] , Academic Press, 1995, 46: 95-125.
    [24] Trost B. M, Cook G. R. An asymmetric synthesis (-)-epibatidine [J] , Tetrahedron Lett, 1996, 37(42): 7485-7488.
    [25] Gunasekera S. P, McCarthy P. J, Kelly-Borges M. Hamacanthins A and B, new antifungal bis-indole alkaloids from the deep-water marine sponge, Hamacantha Sp[J] , J. Nat. Prod, 1994, 57(10): 1437-1441.
    [26] Jiang B, Yang C. G, Wang J. Enantioselective synthesis of marine indole alkaloid Hamacanthin B[J] , J. Org. Chem, 2002, 67: 1396-1398.
    [27] Sakai R., Higa T, Jefford C. W, et al. Manzamine A, a novel antitumor alkaloid from a sponge[J] , J. Am. Chem. Soc., 1986, 108(20): 6404-6405.
    [28] Rao K. V, Kasanah N, Wahyuono S, et al. Three new manzamine alkaloids from common Indonesian and their activity against infectious tropical parasitic diseases[J] , J. Nat. Prod, 2004, 67(8): 1314-1318.
    [29] Morris B. D, Prinsep M. R. Amathaspiramide A~F, novel brominated alkaloids from the marine bryozoan amathia wilsoni[J] , J. Nat. Prod, 1999, 62(5): 688-693.
    [30] Hufhes C. C, Trauner D. The total synthesis of (-)-Amathaspiramide F [J] , Angew. Chem. Int. Ed, 2002, 41(23): 4556-4559.
    [31] kashman Y, Hirsh S, McConnell O. J. Ptilomycalin A: a novel polycyclic guanidine alkaloid of marine origin [J] , J. Am. Chem. Soc., 1989,111(24): 8925-8926.
    [32] Moore C. G, Murphy P. J, Williams H. L, et al. A synthesis of crambescidin 359[J] , Tetrahedron Lett, 2003, 44(2): 251-254.
    [33] Aron Z. D, Overman L. E. The tethered biginelli condensation in natural product synthesis[J] , Chem. Commun, 2004, (3): 253-265.
    [34] Mori M, Hori M, Sato Y. Atmospheric nitrogen fixation, short-step syntheses of monomorine[J] , J. Org. Chem, 1998, 63(14): 4832-4833.
    [35] Rae L. D, Rosenberger M, Yates P. Haplophytine[J] , J. Am. Chem. Soc., 1967, 89(12): 3061-3062.
    [36] He F, Bo Y. X, Corey E. J. Enantioselective total syntheses of aspidophytine[J] , J. Am. Chem. Soc., 1999, 121(29): 6771-6772.
    [37] 龙湘俊.青藤碱研究进展[J] ,中南药学,2003,1(5):299-131.
    [38] Wagner H, et al. New dimeric aporphine-benzylisoquinoline alkaloids from thalictrum faberi[J] , Tetrahedron, 1984, 40(11): 2133-2136.
    [39] Rouffiac R, Fouraste I, Stanislas E. Alkaloids of monnieriatrifolia 1.characterization of skimmianine[J] , Planta Med, 1969, 17(4): 361-365.
    [40] Ionescu M, Mester I. Alkaloids of Haplophyllum suaveolens: isolation of dictamnine and skimmianine[J] , Phytochemistry, 1970, 9(5): 1137-1138.
    [41] 赵承嘏,谢毓元.常山叶中之抗疟质素[J] ,中国科学A,1951,2(04):455-457.
    [42] Moore J. M, Casale J. F, Hays P. A, et al. Hygrine, bona fide alkaloid or artifact: its chemical reduction, novel di-heptafluorobutyrylation and sensitive detection in South American coca leaves using capillary gas chromatography-electron capture detection[J] , Journal of Chromatography A, 1995, 704(2): 483-494.
    [43] 刘珂,Roeder E.大花千里光中吡咯里西啶生物碱的分离与鉴定[J] ,中草药,1996,27(4):203-205.
    [44] Wang L, Li O, Ye C. F, et al. Chemical constituents of securinega suffruticosa[J] , Chinese Journal of Natural Medicines, 2006, 4(4): 260-263.
    [45] Pilli R. A, et al. Recent progress in the chemistry of the Stemona alkaloids[J] , Nat. Prod. Rep, 2000, 17: 117-127.
    [46] Lucas R. A, et al. Progross in medical Chemistry[M]. New York Academic Press, 3: 146.
    [47] Liu J. S, Zhu Y. L, Yu C. M, et al. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity [J] , Can. J. Chem, 1986, 64(4): 837-839.
    [48] 郭宗儒.药物分子设计[M] ,北京:科学出版社,2005:10-11.
    [49] 尤启东.药物化学[M] ,北京:化学工业出版社,2004:35-38.
    [50] 中国科学院西北植物研究所.秦岭植物志[M] ,北京:科学出版社,1981:11-12.
    [51] 国家药典委员会.中华人民共和国药典[M] ,北京:北京化工出版社,2005:141.
    [52] 张兰珍,李家实等.苦豆子种子生物碱成分研究[J] ,中国中医药杂志,1997,22(12):7402—7431.
    [53] 马方励,程怡.苦参碱多种制剂的药效学研究进展[J] ,中成药,2004,26(5):420-421.
    [54] 余建强,蒋袁絮.氧化槐定碱和氧化苦参碱对小鼠中枢的抑制作用[J] ,宁夏医学杂志[J] ,2002,24(1):13-14.
    [55] 罗学亚,张学梅,高卫等.苦参碱的镇痛作用部位及机制研究剂[J] ,中草药[J] ,2000,32(1):41-46.
    [56] 蒋袁絮,余建强,彭建中.氧化苦参碱对小鼠中枢的抑制作用[J] ,宁夏医学院学报[J] ,2000,22(3):157-158.
    [57] Xu C. Q, Dong D. L, Du X. M, et al. Comparison of the antiarthythmic effects of matrine berbamine with amiodadarone and RP 58866[J] , Acta Pham Sin (药学学报), 2004, 39: 691-694.
    [58] Huang C. Y, Xie S. R, Huang S. Y, et al. Experimental studies of antiarthythmic effects of matrine[J] , J Dalian Med Univ, 2002, 24: 176-179.
    [59] Shang H. L, Yang B. F, Zhou Y. H, et al. Effects of matrine on aconitine induced electrophysiological changes in rat ventricularmyocytes[J]. J Chin Pham Sin, 2004, 13: 193-198.
    [60] 张莹,杜鹃,张勇.苦参碱、氧化苦参碱和百藜芦醇对HERG钾通道表达的影响[J] ,药学学报[J] ,2007,4(2):139-144.
    [61] 李丹,王平全,张楠森.苦参碱类生物碱的研究进展及临床应用[J] ,中草药,1996,27(5):208-311.
    [62] 陈曙霞,彭旭,刘晶星.苦参对感染萨奇B3m病毒乳鼠搏动心肌细胞的保护作用[J] ,中华实验和临床病毒学杂志,2000,14(2):137-140.
    [63] 陈曙霞,谢龙山,马睿.萨柯奇B病毒性心肌炎、扩张型心脏病中病毒持续感染及中药干预的研究,中西医结合心脑血管病杂志[J] ,2003,1(3):129-131.
    [64] 张宝恒等,全国第二届抗炎免疫药理学术会议论文汇编[C] ,山东泰安,1986:151.
    [65] 陈学荣等.苦参素对实验性接触皮炎的作用[J] ,北京医科大学学报,1990,22(5):372-373.
    [66] Chang M. S, Xiao J. G, et al. Prevention of ocular inflammation by matrine, prednisolone, and cyclooxygenase and lipoxygenase inhibitors[J] , Acta Pharmacol Sinica, 1991, 12(2): 121-125.
    [67] 王学武等.苦参碱栓剂的研制[J] ,中草药,1983,14(3):10-12.
    [68] 李先荣等.苦参生物碱抗小鼠移植性肿瘤的实验研究[J] ,中西医结合志,1982,2(1):42-43.
    [69] 司维柯,尚桃元,康格非.苦参碱对人肝癌细胞HepG2的细胞形态影响和相关增殖因素的变化[J] ,第三军医大学学报,2000,22(6):553-556.
    [70] Zhang L. P, Jiang J. K, Effects of matrine on proliferation and differentiation in K562cells, Leuk. Res[J] , 2001, 25(9): 793-800.
    [71] Zhang Y, Jiang Y. K, Liu X. S, et al. Differentiation and apoptosis in K562erythroleukemia induced by matrine[J] , Nature Medicine, 1998, 52(4): 295-299.
    [72] 林勇,陈伟忠,谢渭芬等.端粒酶逆转录酶及其基因表达与调控[J].癌症,2001,20(6):669-670.
    [73] 张莉萍,蒋纪恺,刘小珊等.端粒酶活性与白血病细胞系的分化[J] ,中国肿瘤临床,1999,26(3):178-181.
    [74] 李旭芬,张苏展,郑树等.苦参碱对K-562细胞端粒酶hTERT-mR NA表达及其酶活性影响作用的研究[J] ,癌症,2001,20(4):391-393.
    [75] 陈伟忠,曾欣,林勇等.苦参碱对肝癌细胞HepG2增殖的影响及端粒酶活性调控的体外研究[J] ,第二军医大学学报,2002,23(5):498-500.
    [76] 唐勇.苦参碱抗肿瘤活性研究进展[J] ,中华实用中西医结合,2005,21:18-20.
    [77] 史焱.苦参碱诱导小鼠S180肉瘤细胞凋亡的研究[J] ,实用中医内科杂,2007,21(1):37-38.
    [78] Zhang L. P, Jiang J. K, Tam J. W, et al. Effects of matrine on proliferation and differentiation in K-562 cells[J] , Leuk Res, 2001, 25(9): 793-800.
    [79] 黎雪如,戴寿芝,李为等.苦豆子的7种生物碱对小鼠免疫功能的影响[J].中草药,1987,18(5):22-23.
    [80] 徐广伟,满世军,王志等.氧化苦参碱对荷瘤小鼠免疫功能的影响[J] ,中国肿瘤临床与康复,2001,8(5):9-10.
    [81] 王会贤,喻学忠,钱玉昆.氧化苦参碱对淋巴细胞第二信使的影响[J] ,中国免疫学杂志,1993,9(5):315-318.
    [82] 鲍淑娟,李淑芳,周文正.苦参碱平喘作用机理探讨[J] ,中药药理与临床,1995,11(5):33-34.
    [83] Chen C, Guo S. M, Liu B. A. A randomized controlled trial of kurorinone versus interferon-alpha2a treatmenting patients with chronic hepatitis B[J] , Viral Hepat, 2000, 7(3): 225-229.
    [84] Shigenobu O, Masafumi Y, Kyosuke T. Lipine alkaloids Ⅳ: total synthesis of optically active matrine and allomatrine[J] , Chem Pharm Bull, 1966, 14(3): 275-179.
    [85] Mandell L, Singh K. P, Gresham J. T, et al. Total synthesis of dl-matrine[J] , J. Am. Chem. Soc., 1963, 85(17): 2682-2683.
    [86] Chen J, Browne J, Gonnella N. C. Total synthesis of ±-matrine[J] , J. Chem. Soc.,Chem. Commun, 1986, (12): 905-907.
    [87] Hartmuth C, Kolb M. S, VanNieuwenhze K, et al. Catalytic asymmetric. dihydroxylation[J] , Chem. Rev, 1994, 94(8): 2483-2547.
    [88] Sharpless K. B, Sharpless. Searching for new reactivity (Nobel Lecture)[J] , Angew. Chem. Int. Ed, 2002, 41(12): 2024-2032.
    [89] Jacobsen E. N, Marko I, Mungall W. S, et al. Asymmetric dihydroxylation via ligand-accelerated catalysis[J] , J. Am. Chem. Soc., 1988, 110(6): 1968-1970.
    [90] Lohray B. B, Kalantar T. H, Sharpless K. B, et al. Documenting the scope of the catalytic asymmetric dihydroxylation [J] , Tetrahedron Lett, 1989, 30(16): 2041-2044.
    [91] Shibata T, Giheany D. G, Sharpless K. B, et al. Ligand-based improvement of enantioselectivity in the catalytic asymmetric dihydroxylation of dialkyl substituted olefins [J] , Tetrahedron Lett, 1990, 31(27): 3817-3820.
    [92] Sharpless K. B, Amborg W, Chen H, et al. New ligands double the scope of the catalytic asymmetric dihydroxylation of olefins[J] , J. Org. Chem, 1991, 56(15): 4585-4588.
    [93] 闻韧.药物合成反应[M] ,北京:化学工业出版社,2003:324-328.
    [94] 段行信.实用精细有机合成手册[M] ,北京:化学工业出版社,2000:59
    [95] 樊能廷,有机合成事典[M] ,第一版,北京:北京理工大学出版社,1992:669-670.
    [96] Plietker B, Niggemann M. An improved protocol for the RuO4-catalyzed dihydroxylation of olefins[J] , Org. Lett, 2003, 5(18): 3353-3356.
    [97] Bergstad K, Jonsson S. Y, Backvall J. E. A new coupled catalytic system for dihydroxylation of olefins by H_2O_2[J] , J. Am. Chem. Soc. 1999., 121(44): 10424-10425.
    [98] Schroder M. Osmium tetraoxide cis hydroxylation of unsaturated substrates[J] , Chem. Rev, 1980, 80(2): 187-213.
    [99] Demko Z. P, Sharpless K. B. Preparation of 5-substituted 1H-tetrazoles from. nitriles in water[J] , J. Org. Chem, 2001, 66(24): 7945-7950.
    [100] Kobayashi S, Manabe K. Development of novel Lewis Acid catalysts for selective: organic reactions in aqueous media[J] , Acc. Chem. Res, 2002, 35(4): 209-217.
    [101] Manabe K, Kobayashi S. Catalytic asymmetric carbon-carbon bond-forming reactionsin in aqueous media[J] , Chem. Eur. J, 2002, 8(18): 4094-4101.
    [102] Lindstrom U. M. Stereoselective organic reactions in water[J] , Chem. Rev, 2002, 102(8): 2751-2772.
    [103] Li C. J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update[J] , Chem. Rev, 2005, 105(8): 3095-3165.
    [104] Boas U, Jakobsen M. H. A new synthesis of aliphatic isothiocyanates front primary amines, convenient for in situ use[J] , J. Chem. Soc., Chem. Commun, 1995, (19): 1995-1996.
    [105] Elgemeie G. H, Sayed S. H. Synthesis and chemistry of dithiols[J] , Synthesis, 2001, (12): 1747-1771.
    [106] Mukerjee A. K, Ashare R. Isothiocyanates in the chemistry of heterocyclest[J] , Chem. Rev, 1991, 91(1): 1-97.
    [107] Boas U, Gertz H, Jφrn B, et al. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents[J] , Tetrahedron Lett, 2004, 45(2): 269-272.
    [108] Dhooghe M, Kime N. D. Synthetic approaches towards 2-iminothiazolidines: an overview[J], Tetrahedron, 2006, 62(4): 513-535.
    [109] Fernandez J. M. G, Mellet C. O, Blanco J. L. J, et al. Isothiocyanates and cyclic thiocarbamates of alpha, alpha-trehalose sucrose and cyclomaltooligosaccharides- [J], Carbohydr. Res, 1995, 268(1): 57-60.
    [110] Suh Y. G, Lee Y. S, Min K. H. Novel potent antagonists of transientreceptor potential channel, vanilloid subfamily member 1: structure-activity relationship of 1,3-diarylalkyl thioureas possessing new vanilloid equivalents [J], J. Med. Chem, 2005,48(8): 5823-5836.
    [111]Muccioli G. G, Wouters J, Gerhard K. E, et al. 1-Benzhydryl-3-phenylurea and 1-Benzhydryl-3-phenylthiourea derivatives: new templates among the CB1 cannabinoid receptor inverse agonists[J], J. Med. Chem, 2005,48(23): 7486-7490.
    [112] Tilles H. Thiolcarbamates preparation and molar refractions [J], J. Am. Chem. Soc, 1959, 81(3): 714-727.
    [113] Wang C. H. Phase-transfer-catalysed preparation of S-alkyl thiocarbamates [J], Synthesis, 1981, (8): 622-623.
    [114] Franz R. A, Applegath F. A new urea synthesis I the reaction of ammonia, carbon monoxide and sulfur[J], J. Am. Chem. Soc, 1961, 26(9): 3304 - 3305.
    [115] Franz R. A, Applegath F, Morriss V. A new synthesis of ureas II the reaction of primary aliphatic amines with carbon monoxide and sulfur[J], J. Am. Chem. Soc.,1961, 26(9): 3306-3308.
    [116]Mizuno T, Iwai T, Ishino Y. Solvent-assisted thiocarboxylation of amines and alcohols with carbon monoxide and sulfur under mild conditions [J], tetrahedron, 2005, 61(38): 9157-9163.
    [117] Salvatore R. N, Sahab S, Jung K. W. Mild and efficient synthesis of thiocarbonates and thiocarbamates via a three-component coupling utilizing Cs_2CO_3 and TBAI[J], Tetrahedron Lett, 2001, 42(11): 2055-2058.
    [118] Buess C. M. The reaction of dithiocarbamates with acrylamide[J], J. Am. Chem. Soc, 1955, 77(24): 6613-6615.
    [119] Guo B., Ge Z, Cheng T. Conjugated addition reaction of amine,carbon disulfide to electrophilic alkenes in the presence of anhydrous potassium phosphate[J], Synthetic Communications, 2001, 31(19): 2021-2025.
    [120] Busque F, March P. D, Figueredo M, et al. A study of the conjugate addition of thionucleophiles to 2(5H)-furanones[J], Eur. J. Org. Chem, 2004, (7): 1492-1499.
    [121]Bunce R. A. Recent advances in the use of tandem reactions for organic synthesis[J], Tetrahedron, 1995, 51(48): 13103-13159.
    [122]Tietze L. F, Beifuss U. Sequential transformations in organic chemistry: a synthetic strategy with a future[J], Angew. Chem. Int. Ed, 1993, 32(2): 131-153.
    [123] Azizi N, Aryanasab F, Torkiyan L, et al. One-pot synthesis of dithiocarbamates accelerated in water[J], J. Org. Chem, 2006, 71(9): 3634-3644.
    [124] Khatik G L, Kumar R, Chakraborti A. K. Catalyst-Free conjugated addition of thiolsto a, β-unsaturated carbonyl compounds in water[J], Org Lett, 2006, 8(11): 2433-2436.
    [125] Zhang Z. T, Yang B. L, Liu Q. G. Crystal structure of stereoisomers of matrinefrom soplzora flavescens in the Qin Mountain[J], Acta Chimica Sinica, 2003, 61(7): 1058-1064.
    [126] Albertson N. F, Alkylation with non-ketonic Mannich bases.aminothiazoles and pyrrole[J] J. Am. Chem. Soc, 1948, 70(2): 669-670.
    [127] Schultz A. G, Lee Y. K. Conjugate and direct addition of ester enolates to cyclohexenone. selective control of reactioncomposition[J], J. Org. Chem, 1976, 41(25): 4044-4045.
    [128] Clemens R. J, Rector F. D. A comparison of catalysts forcrosslinking acetoacetylated resins via the Michael reaction[J],.J. Coat. Technol, 1989, 61: 83-91.
    [129] Mather B. D, Viswanathan K, Miller K. M, et al. Michael addition reactions in macromolecular designfor emerging technologies[J], Prog. Polym. Sci, 2006, 31:487-531.
    [130] Bartlett P. D, Woods G F. Some reactions of Δ~2-cyclohexenone, including the synthesis of bicyclo(2,2,2)-octanedione-2,6[J], J.Am. Chem. Soc, 1940, 62(11): 2933-2938.
    [131] Feher B. I., Fischli A, Wick A. Rac-dicyano-( 1,2,2,7,7,12,12-heptamethylcorrin) cobalt(Ir1)[J], Angew. Chem. Int. Ed, 1967, 6(10): 864-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700