用户名: 密码: 验证码:
区域地质灾害评价的尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害是一种常见的自然现象,它是地质体在诱发因素(例如人类活动、降水等)的作用下演变发生的。因此研究地质灾害的演变规律,主要是分析其影响因素在地质灾害演变与发生过程中的作用机制。这种作用机制不仅包括各影响因素在地质灾害演变与发生过程中的地位(权重大小),也包括各影响因素之间的相互影响模式。目前主要的地质灾害评价方法包括基于物理模型的数值模拟法、基于概率的数学统计法以及一些基于这两类方法的定性或半定性的评价方法。数值模拟法一般需要非常苛刻的边界条件,主要用于单个地质灾害的评价,而对于区域地质灾害,由于其背景条件的复杂性与规模的过大性,一般采用基于概率的评价方法。
     区域地质灾害评价依赖于具体的时空尺度。首先,地质灾害作为一种自然现象,其演变与发生必然内蕴时空特征;其次,用于区域地质灾害评价的影响因素(例如地层岩性、地质构造、地形地貌、气象条件等)也具有时空尺度。因此,区域地质灾害评价必然会受尺度效应的影响,影响因素在时间上的非线性演变规律与在空间上的非均质性分布特征是导致这一现象的根本原因。但不同于其他领域(例如水文学、地理学等)的尺度效应,由于区域地质灾害评价是一个涉及多学科的技术,它表征出来的尺度效应不仅包含所涉及的学科中的尺度效应本身,同时还具有其独有的特征。区域地质灾害评价的尺度效应是指在进行区域地质灾害评价的过程中,由于利用了不同时间和空间尺度上的信息源进行分析,导致评价结果产生不确定性的现象。主要包括空间效应、时间效应与方法效应等。本文在探讨导致区域地质灾害评价尺度效应的内在因素的基础上,对其在上述三类尺度效应的表征进行了论述,然后结合具体的实例,分别探讨了大比例尺下区域地质灾害影响因素权重的修正分析(空间效应),区域地质灾害评价的有效周期分析(时间效应),以及不同方法的组合效应对区域地质灾害评价的影响分析(方法效应)。结果表明,在进行区域地质灾害评价时,应当考虑尺度效应对评价的可操作性与评价结果精度的影响。
Geological hazard is a common natural phenomenon, which is occurred from the geological body that is impacted by the induced factor, such as human activity, precipitation and so on. Thence the study of geological hazard evolution is mainly analyzing the mechanism that the influencing factors impact on the geological hazard. So this kind of mechanism includes not only the status (is weight) of the influencing factors of geological hazard evolution and occurrence, but also mutual impacting mode among the several of influencing factors. Presently, the main geological hazard assessment applications mainly include the numerical simulation model based on physical model, the mathematical statistics methods based on probability, and the qualitative and semi-qualitative method which based on them. However, there generally are a series of very harsh boundary conditions of numerical simulation model, and mainly applied in the single geological hazard assessment; and to the regional geological hazard assessment, because the background of the study area is generally very complicated, and the scale of it is always very large, so that it unable to applied the simulation model to assessment, and the mathematical statistics method is the most important application which is applied to assess the regional geological hazard.
     The regional geological hazard assessment should depend on the specific spatial and temporal scale. Firstly, the geological hazard, as a natural phenomenon, its own evolution and occurrence intrinsically contain the spatial and temporal characteristics inevitably; secondly, the influencing factors which are used in assessment, such as the lithology, geological structure, topography, weather condition and so on also contain the spatial and temporal scale. Thence, the geological hazard assessment is inevitably impacted by the scale effect, and the fundamental reason of it is the nonlinear evolution in the temporal scale and the heterogeneity in the spatial scale of the geological hazards. However, it's different from other subjects, such as hydrology, geography and so on, the scale effect of regional geological hazard assessment contains not only the scale effect of the subjects themselves which should be involved in assessment, but also its unique characteristics, because the regional geological hazard assessment is a technology which should involved in many subjects. The scale effect of regional geological hazard assessment is the uncertainty of the assessment result, which is caused by the application of the information which owns different spatial and temporal scale to analyze in the regional geological hazard assessment. It mainly contains the spatial effect, temporal effect and application effect. This thesis firstly analyzed the characteristics of these three kinds of scale effect based on the investigation of the foundational reason of each of them, and then explored the influence on the assessment result which was impacted by the modify of the weight of influencing factors (one of the spatial effect), the valid period of regional geological hazard assessment result (one of the temporal effect), and the associative effects to the assessment result of different regional geological hazard assessment applications respectively, and all of them combined with specific examples. Finally, the results of them showed that it should be considered the influence on the assessment operability and the accuracy of assessment result which was impacted by the scale effect when assessed the regional geological hazard risk.
引文
[1]Carrara A.Multivariate models for landslide hazard evaluation[J]. Mathematical Geology,1983,15(3):403-426.
    [2]Varnes D.IAEG Commission on Landslides[A].Landslide hazard zonation:a review of principles and practic[C].Paris:UNESCO,1984.
    [3]Murat Ercanoglu, Candan Gokceoglu. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey) [J]. Engineering Geology,2004,75:229-250.
    [4]Fernando Saboya Jr., Maria da Gloria Alves, Wendell Dias Pinto. Assessment of failure susceptibility of soil slopes using fuzzy logic[J]. Engineering Geology.86:211-224.
    [5]Netra R. Regmi, John R. Giardino, John D. Vitek,2010. Assessing susceptibility to landslides:Using models to understand observed changes in slopes[J]. Geomorphology, 2006,122,25-38.
    [6]Pece V. Gorsevski, Piotr Jankowski. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter[J]. Computers & Geosciences,2010,36:1005-1020.
    [7]Chang-Jo Chung, Andrea G. Fabbri. Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique[J]. Geomorphology,2008,94:438-452.
    [8]E. Yesilnacar, T. Topal. Landslide susceptibility mapping:A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) [J]. Engineering Geology,2005,79:251-266.
    [9]Iswar Das, Sashikant Sahoo, Cees van Westen, Alfred Stein, Robert Hack. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India) [J]. Geomorphology,2010,114:627-637.
    [10]Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data[J]. International Journal of Remote Sensing,2005,26:1477-1491.
    [11]Lee, S., Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides,2007,4:33-41.
    [12]Carrara, A., Cardinali, M., Detti, R.,et al. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms,1991,16: 427-445.
    [13]Baeza, C., Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques[J]. Earth Surface Processes and Landforms,2001,26: 1251-1263.
    [14]Marko Komac. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia[J]. Geomorphology.74:17-28.
    [15]Lee, S., Chwae, U., Min, K. Landslide susceptibility mapping by correlation between topography and geological structure:the Janghung area, Korea[J]. Geomorphology, 2002,46:149-162.
    [16]Fabbri, A.G., Chung, C.J., Cendrero, C., et al. Is prediction of future landslides possible with a GIS?[J]. Natural Hazards,2003,30:487-503.
    [17]Chung, C.J.F., Fabbri, A.G.. Validation of spatial prediction models for landslide hazard mapping[J]. Natural Hazards,2003,30:451-472.
    [18]Lee, S. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS[J]. Environmental Management,2004,34:223-232.
    [19]Chang-Jo Chung. Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment J]. Computers & Geosciences,2006,32:1052-1068.
    [20]C. Melchiorre, M. Matteucci, A. Azzoni, et al. Artificial neural networks and cluster analysis in landslide susceptibility zonation[J]. Geomorphology,2008,94:379-400.
    [21]Leonardo Ermini, Filippo Catani, Nicola Casagli. Artificial Neural Networks applied to landslide susceptibility assessment[J]. Geomorphology,2005,66:327-343.
    [22]Biswajeet Pradhan, Saro Lee. Landslide susceptibility assessment and factor effect analysis:backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling[J]. Environmental Modelling & Software,2010,25:747-759.
    [24]Daisaku Kawabata, Joel Bandibas. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)[J]. Geomorphology,2009,113:97-109.
    [25]Shivani Chauhan, Mukta Sharma, M.K. Arora, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12:340-350.
    [26]Mohammad H. Vahidnia, Ali A. Alesheikh, Abbas Alimohammadi, et al. A GIS-based neuro-fuzzy procedure for integrating knowledgeand data in landslide susceptibility mapping[J]. Computers & Geosciences,2010,36:1101-1114.
    [27]D.P. Kanungo, M.K. Arora, S. Sarkar, et al. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas[J]. Engineering Geology,2006,85:347-366.
    [28]H.A. Nefeslioglu, C. Gokceoglu, H. Sonmez. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps[J]. Engineering Geology,2008, 97:171-191.
    [29]张业成.近40年中国地质灾害基本情况与主要特征[J].灾害学,1992,7(4):50-54.
    [30]张业成.中国崩塌、滑坡、泥石流灾害基本特征与防治途径[J].地质灾害与环境保护,1993,4(1):11-18.
    [31]张业成.中国地质灾害基本情况与研究工作建议[J].中国减灾,1992,2(2):29-31.
    [32]张业成,张春山,张梁.中国地质灾害系统层次分析与综合灾度计算[J].中国地质科学院院报,1993:139-154.
    [33]张梁,张业成,张春山.中国地质灾害防治学报[J].1993,4(1):1-8.
    [34]唐川,刘希林,朱静.泥石流堆积泛滥区危险度的评价与应用[J].自然灾害学报,1993,2(4):79-84.
    [35]刘希林,唐林,张松林,等.泥石流堆积扇地貌特征及其模型试验研究[J].中国地质灾害与防治学报,1992,3(4):32-40.
    [36]刘希林.泥石流危险度分区的理论和方法[J].中国地灾害与防治学报,1993,4(3):51-56.
    [37]刘希林,唐川,朱静,等.泥石流危险范围的流域背景预测法[J].自然灾害学报,1992,1(3):56-67.
    [38]刘希林,唐川,陈明,等.泥石流危险范围的模型实验预测法[J].自然灾害学报,1993,2(3):67-73.
    [39]刘希林,张松林,唐川.泥石流危险区划中相对分布密度的数学模型[J].灾害学,1992,7(3):8-13.
    [40]刘希林,张松林,唐川.泥石流相对分布密度的确定方法[J].水土保持学报,1992,6(1):57-62.
    [41]罗元华.泥石流灾害的危害方式及破坏损失评价[J].中国减灾,2000,10(2):38-42.
    [42]罗元华.泥石流堆积区灾害破坏损失评价方法[J].中国地质矿产经济,2000, 4:33-36.
    [43]罗元华.泥石流灾害破坏损失风险评价方法[J].国土资源管理,17(5):6-9.
    [44]罗元华,陈崇希.泥石流堆积过程数值模拟及防灾效益评估方法[J].现代地质,2000,14(4):484-488.
    [45]曾玉清,匡文龙.湖南省万古金矿矿山地质环境质量综合评价[J].山地学报,2009,27(5):593-599.
    [46]王永清,宋卫东,杜翠凤,等.金属矿山井下泥石流发生机理分析[J].金属矿山,2006,362(8):62-67.
    [47]刘丽,陈洪凯.矿山泥石流灾害成因与防治对策[J].重庆交通大学学报(自然科学版),2009,28(5):915-920.
    [48]田秋菊,王现国,吴东民,等.小秦岭矿区泥石流灾害特征及其防治[J].中国水土保持SWCC,2005,8:20-21.
    [49]徐友宁,何芳,陈华清.西北地区矿山泥石流及分布特征[J].山地学报,2007,25(6):729-736.
    [50]郑国强,张洪江,刘涛,等.基于Bayes判别分析法的密云县山洪泥石流预报模型[J].水土保持通报,2009,29(1):93-87.
    [51]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,28(1):89-92.
    [52]高克昌,崔鹏,赵纯勇,等.基于地理信息系统和信息量模型的坡危险性评价——以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996.
    [53]杨宗佶,乔建平.基于熵权的典型滑坡危险度评价[J].自然灾害学报,2009,18(4):31-36.
    [54]赵忠海.北京地区突发性地质灾害危险度评价[J].地质灾害与环境保护,2009,20(3):39-44.
    [55]马平均,龙万学,孔纪名.基于模糊综合评价的地质灾害危险性分区[J].贵州工业大学学报(自然科学版),2007,36(6):70-74.
    [56]李公岩,李元仲,杨蕊,等.模糊数学评判山东省枣庄地质灾害现状与发展趋势[J].中国地质灾害与防治学报,2009,20(3):81-84.
    [57]吕远强,林杜军,罗伟.基于人工神经网络的区域地质灾害危险性预测评价[J].中国地质灾害与防治学报,2007,18(1):95-98
    [58]张丽,李广杰,周志广,等.基于灰色聚类的区域地质灾害危险性分区评价[J].自然灾害学报,2009,18(1):164-168.
    [59]李光辉,潘懋,杨志双,等.基于灰色聚类法的鞍山城区岩溶塌陷危险性区划[J].吉林大学学报(地球科学版),2006,36:75-79.
    [60]刘勇健,张丽娟,杨雪强.拓聚类预测方法在地质灾害危险性评价中的应用[J].地质灾害与环境保护,2009,20(3):108-113.
    [61]王卫东,钟晟.基于GIS的Logistic回归模型在地质灾害危险性区划中的应用[J].工程勘察,2009,11:5-10.
    [62]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    [63]孙庆先,李茂堂,路京选,等.地理空间数据的尺度问题及其研究进展[J].地理与地理信息科学,2007,23(4):53-56.
    [64]Simon A Levin.The problem of pattern and scale in ecology[J]. Ecology,1992,73(6): 1943-1967.
    [65]Sten Bergstrm, Phil Graham L. On the scale problem in hydrological modeling[J]. Journal of Hydrology,1998,211:253-265.
    [66]David A Perry. Self-organizing systems across scales[J]. Tree 1995,10(6):241-244.
    [67]Marcel R Hoosbeek. Incorporating scale into spatio-temporal variability:applications to soil quality and yield data[J]. Geoderma,1998,85:113-131.
    [68]Heather A Viles. Scale issues in weathering studies [J]. Geomorphology,2001,41: 63-72.
    [69]Stein A, Riley J, Halberg N. Issues of scale for environmental indicators [J]. Agriculture, Ecosystems and Environment,2001,87:215-232.
    [70]Roland Schulze. Transcending scales of space and time in impact studies of climate and climate change on agrohydrological responses[J]. Agriculture, Ecosystems and Environment,2001,82:185-212.
    [71]Fred L Bunnell, David J Huggard. Biodiversity across spatial and temporal scales: problems and opportunities [J]. Forest Ecology and Management,1999,115:113-126.
    [72]Clark C Gibson, et al. The concept of scale and human dimensions of global change:a survey[J]. Ecological Economic,2000,32:217-239.
    [73]Philip C Elkie, Robert S Rempel. Detecting scales of pattern in boreal forest landscapes[J]. Forest Ecology and Management,2001,147:253-261.
    [74]Gupta R K, et al. Problems in up scaling of high resolution remote sensing data to coarse spatial resolution overland surface[J]. Adv. Space Res.,2000,26(7):1111-1121.
    [75]Lau L, et al. Downscaling global information for regional benefit:coupling spatial models at varying space and time scales[J]. Environmental Modelling & Software, 1999,14:519-529.
    [76]Payn T W, et al. Scaling up or scaling down:the use of foliage and soil information for optimizing the phosphate nutrition of radiata pine[J]. Forest Ecology and Management, 2000,138:79-89.
    [77]Linati I, et al. A numerical comparison between two up scaling techniques:non-local inverse based scaling and simplified renormalization[J]. Advances in Water Resources, 2001,24:913-929.
    [78]蔡运龙.自然地理学的创新视角[J].北京大学学报(自然科学版),2000,26(4):576-582.
    [79]张颢,李小文.直方图尺度效应研究[J].中国科学(D辑),2002,32(4):307-316.
    [80]吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2096-2105.
    [81]吴树仁,石菊松,张春山,等.地质灾害风险评估技术指南初论[J].地质通报,2009,28(8):995-1005.
    [82]赵忠海.北京地区突发性地质灾害危险度评价[J].地质灾害与环境保护,2009,20(3):39-44.
    [83]黄润秋,向喜琼,巨能攀.我国区域地质灾害评价的现状及问题[J].地质通报,2004,23(11):1078-1082.
    [84]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    [85]Wiens J A. Spatial scaling in ecology. Funct. Ecol.,1989,3:385-397.
    [86]谢红强,何江达,肖明砾.大型水电站厂区三维地应力场回归反演分析[J].岩土力学,2009,30(8):2471-2476.
    [87]刘瑞平,朱桦,亢明仲,等.大荔县地下水环境质量评价及成因浅析[J].西北地质,2009,42(2):0116-0125.
    [88]刘棠洪,董克刚,周俊,等.残差灰色预测模型在地面沉降监测中的应用[J].城市环境与城市生态,2007,20(5):32-38.
    [89]唐红梅,祝辉,李明,等.范数灰色理论在三峡库区危岩形成影响因子综合评价中的应用[J].岩石力学与工程学报,2006,25(1):2694-2699.
    [90]李洪然,李广杰,秦胜伍.和龙市东城镇泥石流灾害趋势多元分析与危险性评价[J].吉林大学学报(地球科学版),2005,35(1):0097-0103.
    [91]王仁超,谭学奇,王秀杰,等.区域性地面沉降量预测的灰色与时间序列方法[J].水利水电技术,2005,36(2):32-35.
    [92]杨宗估,乔建平.基于熵权的典型滑坡危险度评价[J].自然灾害学报,2009,18(4):31-36
    [93]铁永波,唐川,周春花.基于信息熵理论的泥石流沟谷危险度评价[J].灾害学,2005,20,(4):43-47.
    [94]王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报(自然科学版),2007,43(2):211-215.
    [95]李向军,陈亚宁,欧阳辉.运用灾害熵浅析沙尘暴强度[J].干旱区地理,2002,25,(4):350-353.
    [96]任鲁川.灾害熵:概念引人及应用案例[J].自然灾害学报,2000,9,(2):26-31.
    [97]仪垂祥,史培军.熵产生和自然灾害,北京师范大学学报(自然科学版)[J].1994,30(2):276-280.
    [98]时光新,尹成信.基于熵的小流域治理效益评价模型及其应用[J].水土保持通报,1999,19(5):38-40.
    [99]Mon D L, Cheng C H, Lin J C. Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight [J]. Fuzzy Sets and Systems,1994,62(2):127-134.
    [100]Reid M E, Nielsen H P, Dreiss S J. Hydraulic factors triggering a shallow hill slope failure[J]. Bulletin of the association of engineering geologists,1988,25(3):349-361.
    [101]徐则民,黄润秋,范柱国.滑坡灾害孕育—激发过程中的水-岩相互作用[J].自然灾害学报,2005,14(1):1-9.
    [102]Yoichi O, Hikaru K, Hirotaka O, et al. Landslide fluidization process by flume experiments [J]. Engineering Geology,2002,66:65-78.
    [103]Wang GH, Sassa K. Pore-pressure generation and movement of rainfall-induced landslides:effects of grain size and fine-particle content [J]. Engineering Geology, 2003,69:109-125.
    [104]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社, 1997:227-279.
    [105]Lam L, Fredlund DG. Saturated-unsaturated transient finite element seepage model for geotechnical engineering [J]. Advances in Water Resources,1984,7(3):132-146.
    [106]Jaehong K, Sangseom J, Seong P, et al. Influence of rainfall-induced wetting on the stability of slopes in weathered soil [J]. Engineering Geology,2004,75:251-262.
    [107]张明,胡瑞林,谭儒蛟,等.降雨型滑坡研究的发展现状与展望[J].工程勘察,2009,3:11-17.
    [108]马建华.系统科学及其在地理学中的应用[M].北京:科学出版社,2003:56-99.
    [109]桑燕芳,王栋,吴吉春,等.水文序列分析中基于信息熵理论的消噪方法[J].水利学报,2009,40(8):919-926.
    [110]杨宗佶,乔建平,田宏岭,等.地震后降雨激发区域地质灾害危险性预测[J].四川大学学报(工程科学版),2010,42(增1):38-42.
    [111]NGECU W M, ICHANG'I D W. Environmental impact of landslides on the population living on the eastern footslopes of the aberdare ranges in Kenya:a case study of Maringa Village landslide[J]. Environmental Geology,1999,38(3):259-264.
    [112]AU S W C. Rain-induced slope instability in Hong Kong[J]. Engineering Geology,1998, 51(1):1-36.
    [113]鲁光银,韩旭里,朱自强,等.地质灾害综合评估与区划模型[J].中南大学学报(自然科学版),2005,36(5):877-881.
    [114]吴越,刘东升,陆新,等.基于功-能关系的滑坡典型受灾体易损性评估模型[J].岩石力学与工程学报,2011,30(增1):2946-2952.
    [115]潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002:93-111.
    [116]韩金良,吴树仁,汪华斌.地质灾害链[J].地学前缘,2007,14(6):11-23.
    [117]徐岳仁,何宏林,申旭辉,等.利用CBERS数据开展资兴市东江水库库区地质灾害动态监测试验研究[J].北京大学学报(自然科学版),2011,47(4):689-697.
    [118]陈晓清,崔鹏,赵万玉.汶川地震区泥石流灾害工程防治时机的研究[J].四川大学学报(工程科学版),2009,41(3):125-130.
    [119]张帆宇,刘高,谌文武,等.袁家湾滑坡在切坡开挖过程中的演化机理[J].岩土工程学报,2009,31(8):1248-1254.
    [120]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [121]HUANG R Q, CHAN L S. Human-induced landslides in China:mechanism study and its implications on slope management [J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(16):2766-2777.
    [122]罗攀.人为物质流及其对城市地质环境的影响[J].中山大学学报(自然科学版),2003,42(6):120-149.
    [123]张桂荣,殷坤龙.区域滑坡空间预测方法研究及结果分析[J].岩石力学与工程学报,2005,24(23):4297-4302.
    [124]单晓云,姜耀东,王乐杰,等.地下采煤对巍山山体裂缝影响的有限元分析[J].煤炭学报,2008,33(1):23-27.
    [125]韦京莲,董桂芝.北京市地质灾害的危害及防治对策[J].水文地质工程地质,2001,28(3):31-34.
    [126]赵忠海.北京地区突发性地质灾害危险度评价[J].地质灾害与环境保护,2009,20(3):39-44.
    [127]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):434-454.
    [128]陈剑,杨志法,刘衡秋.滑坡的易滑度分区及其概率预报模式[J].岩石力学与工程学报,2005,24(13):2392-2396.
    [129]Mohammad H. Vahidnia, Ali A. Alesheikh, Abbas Alimohammadi, et al. A GIS-based neuro-fuzzy procedure for integrating knowledgeand data in landslide susceptibility mapping[J]. Computers & Geosciences,2010,36(9):1101-1114.
    [130]D.P. Kanungo, M.K. Arora, S. Sarkar, R.P. Gupta. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas [J]. Engineering Geology, 2006,85,347-366.
    [131]H.A. Nefeslioglu, C. Gokceoglu, H. Sonmez. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps[J]. Engineering Geology,2008, 97,171-191.
    [132]Pece V. Gorsevski, Piotr Jankowski. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter [J]. Computers & Geosciences,2010,36,1005-1020.
    [133]Ebru Akcapinar Sezer, Biswajeet Pradhan, Candan Gokceoglu. Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping:Klang valley, Malaysia[J]. Expert Systems with Applications,2011,38(7):8208-8219.
    [134]Jason N. Goetz, Richard H. Guthrie, Alexander Brenning. Integrating physical and empirical landslide susceptibility models using generalized additive models [J]. Geomorphology,2011,129:376-386.
    [135]H. Aksoy, M. Ercanoglu. Fuzzified kinematic analysis of discontinuity-controlled rock slope instabilities [J]. Engineering Geology,2007,89:206-219.
    [136]薛新华,张我华,刘红军.基于遗传算法和模糊神经网络的边坡稳定性评价[J].岩土力学,2007,28(12):2643-2648.
    [137]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641.
    [138]柴春岭,陈守煜.模糊优选神经网络模型在泥石流平均流速预测中应用研究[J].大连理工大学学报,2008,48(6):887-891.
    [139]郭瑞清,木合塔尔·扎日,刘新喜.基于自适应神经元模糊推理系统的岩质边坡稳定性评价方法[J].岩石力学与工程学报,2006,25(增1):2785-2789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700