用户名: 密码: 验证码:
藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏雅鲁藏布江蛇绿岩带是喜马拉雅特提斯洋壳和地幔的残余,被认为是中生代冈瓦纳板块裂解再拼合的一条缝合带。近年来,在西藏雅鲁藏布江缝合带中的罗布莎蛇绿岩型铬铁矿中,发现可能来自深部(>300km深度)异常地幔矿物群。引起国内外高度关注,引发了许多新的问题,例如,含有金刚石等异常地幔矿物的铬铁矿的成因?与其伴生的地幔岩的成因?产有这些铬铁矿和地幔岩的蛇绿岩的成因等等?本论文拟开展罗布莎地幔橄榄岩体中的康金拉铬铁矿床及其围岩地幔橄榄岩的研究,查明该铬铁矿矿体,尤其矿体围岩的地幔橄榄岩中是否也存在金刚石等特殊地幔矿物;通过详细的矿物学和岩石学的研究,探讨铬铁矿和地幔岩的成因,以及两者之间的成因联系。通过详细的野外调查和室内岩石薄片的岩相学、矿物成分、岩石地球化学和锆石SHRIMP U-Pb同位素年代学,铬铁矿和地幔橄榄岩的人工重砂大样的矿物学研究,取得以下进展和认识:
     (1)认为康金拉地幔橄榄岩为部分熔融MOR地幔残余,叠加了SSZ流体的改造。地幔橄榄岩主要由纯橄岩、方辉橄榄岩和二辉橄榄岩组成,为部分熔融残余地幔橄榄岩,成分表现为高度亏损的特征:铬尖晶石成分变化区间很大,被认为是熔融程度存在巨大差别的反映,可能代表多次熔融事件的产物。低Cr#30-40方辉橄榄岩和二辉橄榄岩属于深海橄榄岩类型;而高Cr#40-77的方辉橄榄岩和纯橄岩归于岛弧环境橄榄岩类,认为高Cr#的岩石是深海橄榄岩在洋内俯冲环境被再次熔融叠加的结果:岩石地球化学表现出的特征同样也分出LREE亏损和LREE富集的类型,前者为MOR型地幔橄榄岩特征,后者反映SSZ流体作用的印记。
     (2)人工重砂发现铬铁矿和地幔橄榄岩中的金刚石等特殊地幔矿物。1116 Kg铬铁矿和384Kg地幔橄榄岩大样经人工重砂分选和双目显微镜下挑选矿物,取得如下成果:(a)首次在康金拉11号铬铁矿体中发现了上千粒金刚石,以及碳硅石等强还原环境的超高压矿物,数量远远超过在罗布莎铬铁矿矿区中发现的金刚石;(b)首次在康金拉11号铬铁矿矿体的近矿围岩中发现了大量金刚石和碳硅石等一批异常地幔矿物,为探讨铬铁矿的成因及与近矿围岩地幔橄榄岩的关系奠定了基础;(c)除挑选出金刚石和碳硅石等超高压矿物,在康金拉11号铬铁矿矿体与围岩地幔橄榄岩中还发现了自然铁球、金属互化物、氧化物、硫化物、硅酸盐等一批异常地幔矿物。康金拉铬铁矿中发现的金刚石等特殊矿物组合,与罗布莎铬铁矿中发现的矿物组合可以对比,尤其从铬铁矿的围岩地幔岩中也发现同样矿物组合,对探讨铬铁矿的成因,铬铁矿与地幔岩的关系,以及地幔岩的成因提供了关键证据。
     (3)认为康金拉豆荚状铬铁矿是深部成因。康金拉铬铁矿石与矿体围岩地幔橄榄岩的铬尖晶石、橄榄石和单斜辉石等成分方面明显不同,认为矿石铬尖晶石并非是由副矿物铬尖晶石富集而成,与地幔橄榄岩也不存在成因联系,认为豆荚状铬铁矿床对于近矿围岩地幔橄榄岩而言为外来体,但两者可能均是由地幔深部被地幔柱带到上部。康金拉矿区的地幔橄榄岩的地球化学特征反映了其形成过程的复杂性,表现为:洋底扩张期间,扩张脊下的MOR型地幔的经历了不同程度的部分熔融,形成了亏损地幔橄榄岩,该地幔橄榄岩中赋存了来自深部的豆荚状铬铁矿。在洋盆扩张期间,发生了洋内俯冲作用,俯冲板片释放的富含轻稀土和大离子亲石元素的含水流体向上运移交代上覆的残留地幔橄榄岩。
     (4)围岩橄榄岩中发现地壳成因的老锆石,认为是地幔不均匀和地壳物质再循环的重要证据。锆石SHRIMP U-Pb测年发现两个样品锆石形态特征、锆石的Th/U值及测年结果均显示出相似特征,锆石形态的多样性、Th/U比的高易变性和年龄值的极度分散显示了锆石形成背景的复杂性和多源性。纯橄岩样品四个测点得到加权平均值为130.0±2.8Ma,属早白垩世,代表了纯橄岩的结晶年龄;研究中发现许多地壳成因的古老锆石(最老可达太古代2770Ma),远远早于目前主流观点中蛇绿岩的形成时间中生代晚期,综合考虑认为所选锆石有大量俯冲地壳成分,在地幔中保存,后随地幔循环运移出露地表。在异常地幔矿物和地壳循环物质共存的基础上,探讨了罗布莎豆荚状铬铁矿成因与地幔柱(Mantle plume)之间的可能关联。
The Yarlung Zangbo ophiolites in southern Tibet are remnants of the Neo-Tethys oceanic lithosphere and are considered as one of the suture zone representing the breakup and reconnection of Gondwana during Mesozoic. Recently, numerous unusual mantle minerals with the possible deep source (>300km) have been recovered from podiform chromities in the Luobusa ophiolite within the eastern Yarlung Zangbo suture zone, Tibet. This new finding has attracted high attention in geosciences field and arose many significant issues: does these deep mantle minerals also occur in the similar chromitite deposite in the Luobusa? Can we discover the similar mantle minerals from the mantle rocks associated with the chromitite? What is the origin of the chromitite and mantle rocks containing these minerals like diamond, together with the origin of the ophiolite? This study wants to perform researches on the Kangjinla chromitite and its host rock-mantle peridotite, to determine the existence of special mantle minerals, to discuss the origin of the chromtite and mantle peridotite together with the genetic relation between them. Basing on detailed field survey and laboratory researches on lithological features, mineralogical composition, geochemical and zircon SHRIMP U-Pb data, together with the mineralogical study of chromitite and mantle peridotite heavy mineral bulk sample, various proceedings and recognitions have been achieved:
     (1) The mantle peridotite is the remnants of partial melted MOR mantle altered by SSZ fluids. The evidences include: the mantle peridotite mainly consists of dunite, harzburgite and lherzolite; the highly depleted composition; significant variation of chrome spinel suggesting the huge difference in melting degree, which might indicate the production of various melting events; the harzburgite and lherzolite with low Cr#30-40 are abyssal peridotite while the harzburgite and dunite with high Cr#40-77 are island-arc peridotite, the latter is formed by the melting of the former during intra-ocean subduction; the geochemical characteristics can also separate the depleted and enriched LREE, the former is attribute to the MOR mantle peridotite and the latter is to the SSZ fluids action.
     (2) Special mantle minerals have been discovered from manual heavy minerals of chromitite and mantle peridotite. For a 1116Kg chromitite and a 384Kg mantle peridotite sample, by heavy mineral separation and picking up under a binocular microscope following productions are obtained: (a) the UHP minerals including moissanite and over 1000 diamond grains are discovered firstly from the Kangjinla chromitite orebody Cr-11, which is far more abundant than the Luobusa district; (b) a series of unusual mantle minerals like moissanite and a great deal of diamond grains are discovered firstly from the host rocks of chromitite orebody Cr-11, providing the foundation of discussing the chromitite origin and its relation with the host rocks; (c) besides the UHP minerals like moissanite and diamond, various special mantle minerals are revealed from the chromitite orebody Cr-11 and its host rocks including some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. The unusal minerals assembledge discovered from the Kangjinla district is similar to that from the Luobusa district. Especially, that the same mineral assembledge was found firstly from mantle peridotite, the host rocks of chromitite, which provided new key evidence for discussing the origin of the chromitite, the hosted mantle rocks and the relation between them.
     (3) The deep origin of Kangjinla podiform chromitite is suggested by: that for the Kangjinla chromitite and the mantle peridotite rocks, the compositions of the chrome spinel, olivine and clinopyroxene are rather different, which indicates that the chrome spinel in the chromitite is neither the simple concentration of that in the host rocks nor with certain genic relation with mantle peridotite. Though the chromitite might be exotic for host rocks, both of them were carried from deep mantle to the shallow place by mantle plum. According to the geochemical data, the formation of mantle peridotite might be: during the spreading of ocean floor, the MOR mantle underwent variable degrees of partial melting and formed the depleted mantle peridotite with podiform chromitite; during the spreading of ocean basin, intra-ocean subduction happened, REE and LILE rich fluids containing water derived from the subduction slab migrated upwards and metasomatism happened to peridotite relic.
     (4) The ancient crustal zircons discovered from the chromitite are key evidence of mantle inhomogenity and recycled crust materials. Zircon grains are separated from the mantle peridotite, the host rocks of the chromitite orebody Cr-11, and the SHRIMP U-Pb age reveals sophisticated background and multiple sources of zircons. The weighted mean value of four measuring points (130.0±2.8Ma) might be the crystallization age of dunite. Many crustal zircons have the age (up to 2770Ma) that is much earlier than the formation of ophiolite considered by previous researchers, indicated the abundant subduction crust components occur in the zircons separated, which was preserved in the mantle, and outcropped with the mantle cycle process. Considering the coexistence of unusual mantle minerals and possible cyclic crustal materials, the origin of the Luobusa chromitite might bear certain relationship with mantle plume.
引文
白文吉,李行.1993.内蒙古贺根山蛇绿岩型铬铁矿中固体包裹体矿物化学成分研究.矿物学报,13(3):204-213
    白文吉,周美付,P.T.Robmson,方青松,张仲明,颜秉刚,胡旭峰,杨经绥.2000.西藏罗布莎豆荚状铬铁矿金刚石及伴生矿物成因.北京:地震出版社
    白文吉,杨经绥,P.T.Robinson,等.2001a.西藏蛇绿岩铬铁矿中的金刚石研究.地质学报,75(3):404-409
    白文吉,杨经绥,方青松,等.2001b.寻找超高压地幔矿物的储存库——豆荚状铬铁矿.地学前缘,8(3):111-121
    白文吉,施倪承,杨经绥,等.2002a.西藏蛇绿岩中二种合金矿物变种.矿物学报.22(3):201-206
    白文吉,杨经绥,方青松等.2002b.西藏蛇绿岩超高压矿物:FeO、Fe、FeSi、Si和SiO2组合及其地球动力学意义.地球学报,23(5):395-402
    白文吉,杨经绥,方青松,等.2003&西藏蛇绿岩中不寻常的地幔矿物群.中国地质,30(2):144-150
    白文吉,杨经绥,陶淑风,等.2003b.西藏蛇绿岩中碳铁合金组合及成因探讨.岩石矿物学杂志,22(3):279-284
    白文吉,杨经绥,方青松,等.2004a.西藏蛇绿岩地幔中的主要自然金属矿物.地学前缘,11(1):179-187
    白文吉,杨经绥,方青松,等.2004b.西藏罗布莎豆荚状铬铁矿中的合金成分.地质学报,78(5):675-682
    白文吉,杨经绥,施倪承,等.2004c.西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁.地质论评,50(2):184-188
    白文吉,杨经绥,方青松,任玉峰,颜秉刚,戎合.2005.西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究.地质学报,79(6):814-822
    白文吉,杨经绥,方青松,等.2006.雅鲁藏布江蛇绿岩中超高压矿物硅尖晶石的研究.中国地质,33(6):1379-1385
    白文吉,施倪承,杨经绥,等.2007a.西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其高压成因.地质学报,81(11):1538-1549
    白文吉,陶淑风,杨经绥,等.2007b.来自蛇绿岩地幔的硫(砷)化物矿物组合.岩石矿物学杂志,26(5):418-428
    鲍佩声,王希斌。彭根永,陈方远.1999.中国铬铁矿床.北京:科学出版社,98-142
    黄圭成.2006.西藏雅鲁藏布江西段蛇绿岩及铬铁矿研究.中国地质大学(北京)博士学位论文
    E.A.林伍德著,杨美娥,等译.1981.地幔的成分与岩石学.北京:地震出版社
    刘敦一,简平,张旗,等.2003.内蒙古图林凯蛇绿岩中的埃达克浅色岩SHRIMP U-Pb测年. 地质学报,77(3):317-327
    刘家军,毛光剑,马星华,李立兴,郭玉乾,刘光智.2008.甘肃寨上金矿床中Cu-Ni-Zn-Sn-Fe 多金属互化物、S合金矿物的发现及其地质意义.中国科学D辑(地球科学),38(4):414-423
    刘英俊,曹励明,李兆麟,等.1984.元素地球化学.北京:科学出版社
    裴荣富主编.1995.中国矿床模式.北京::地质出版社,1-357
    波良塔尼诺娃.1999.极乌拉尔超镁铁岩的区域矿物学,圣彼得堡科学出版社,圣彼得堡分社
    陕西省地矿局.1995.中华人民共和国区域地质调查报告(1:20万),加查幅(846-27,地质部分),99-101
    施倪承,白文吉,李国武,熊明,方青松,杨经绥,马喆生,戎合.2009.雅鲁矿:一种金属碳化物新矿物.地质学报,83(1):25-30
    宋彪,张玉海,刘敦一.2002.微量原位分析仪器的产生与锆石同位素地质年代学.质谱学报,23(1):58-62
    韦栋梁,夏斌,周国庆,王冉,钟立峰,万哨凯.2006.西藏泽当蛇绿岩的Sm-Nd等时线年龄及其意义.地球学报,27(1):31-34
    韦振权,夏斌,张玉泉,王冉,杨之青,韦栋梁.2006.西藏休古嘎布蛇绿岩中辉绿岩锆石SHRIMP定年及其地质意义.大地构造与成矿学,30:93-97
    王成善,刘志飞,何政伟.1999.西藏南部早白至世雅鲁藏布江古蛇绿岩的识别与讨论.地质学报,73(1):7-14
    王成善,李亚林,刘志飞,李祥辉,唐菊兴,Rejean,H.2005.雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录.地质学报,79(3):323-330
    王恒升,白文吉,王炳熙,柴耀楚.1983.中国铬铁矿床及成因.北京:科学出版社
    王冉,夏斌,周国庆,张玉泉,杨之青,李文铅,韦栋梁,钟立峰,徐力峰.2006.西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄.51(1):114-117
    王希斌,鲍佩声.1987a.豆荚状铬铁矿床的成因—以西藏自治区罗布莎铬铁矿床为例.地质学报,2:166-181
    王希斌,鲍佩声,邓万明,王方国.1987b.西藏蛇绿岩.北京:地质出版社
    王希斌,鲍佩声,戎合.1996.中国蛇绿岩中变质橄榄岩的稀土元素地球化学.岩石学报,11(增刊):24-41
    武汉地质学院岩石教研室.1980.岩浆岩岩石学,北京:地质出版社
    夏斌,李建峰,刘立文,徐力峰,何观生,王洪,张玉泉,杨之青.2008.西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U-Pb年龄:对特提斯洋盆发育的年代学制约.地球化学,37(4):399-403
    肖序常,陈国铭,朱志直.1978.祁连山古蛇绿岩的地质构造意义地质学报,54(1):287-295
    肖序常.1984.中国蛇绿岩概论.中国地质科学院院报,9:19-30
    肖序常.1995.从扩张速率试论蛇绿岩的类型划分.岩石学报,11(增):10-23
    徐向珍,杨经绥,巴登珠,陈松永,方青松,白文吉.2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石.岩石学报,24(7):1453-1462
    杨凤英,康志琴,刘淑春.1981.蛇纹石的八面体假象及其成因的初步探讨.矿物学报,(1):52-54
    杨经绥,白文吉,方青松,等.2004.西藏罗布莎蛇绿岩铬铁矿中发现超高压矿物柯石英.地球科学—中国地质大学学报,29(6):651-660
    杨经绥,白文吉,方青松,盂繁聪,陈松永,张仲明,戎合.2007.极地乌拉尔蛇绿岩铬铁矿中发现金刚石和一个异常矿物群.中国地质,34(5):950-952
    杨经绥,白文吉,方青松,戎合.2008a.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述).地球学报,29(3):263-274
    杨经绥,张仲明,李天福,李兆丽,任玉峰,徐向珍,巴登珠,白文吉,方青松,陈松永,戎合.2008b.西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物.岩石学报,24(7):1445-1452
    叶先仁,陶明信,余传螯,张铭杰.2007.用分段加热法测定的雅鲁藏布江蛇绿岩的He、Ne 同位素组成:来自深部地幔的信息.中国科学(D),37(5):573-583
    喻亨祥,夏斌,梅厚钧,郭令智,漆亮,涂湘林.2000.西藏大竹卡蛇绿岩中地幔橄榄岩铂族元素分布特征.科学通报,45(22):2446-2452
    张浩勇,巴登珠,郭铁鹰,莫宣学,薛君治,阮桂甫,王志宜.1996.西藏自治区曲松县罗布莎铬铁矿床研究.西藏:西藏人民出版社
    张旗,周云生,李达周.1982.西藏日喀则—白朗地区蛇绿岩中的席状岩墙群.见中国科学院地质研究所主编,岩石学研究,北京:地质出版社
    张旗,周国庆,王焰.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1-8
    中国地质科学院地质研究所金刚石组.1981.西藏阿尔卑斯型超基性岩中发现金刚石.地质论评,22:455-457
    钟立峰,夏斌,崔学军,周国庆,陈根文,韦栋梁.2006a.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因.大地构造与成矿学,30(2):231-240.
    钟立峰,夏斌,周国庆,张玉泉,王冉,韦栋梁,杨之青.2006b.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年.地质论评,52(2):224-229
    中国地质科学院地质研究所金刚石组.1981.西藏阿尔卑斯型超基性岩中发现金刚石.地质论评,22:455-457
    周美付,白文吉.1994.对豆荚状铬铁矿床成因的认识.矿床地质,13(3):242-249
    周肃,莫宣学,Mahoney,J.J.,等.2001.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报,46(16):1387-1390
    Ahmed,A.H.,Arai,S.,Attia,A.K.2001.Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt.Mineralium Deposita,36:72-84
    Aitchison,J.C.,Ba,D.Z.,Davis,A.M.,Liu,J.,Luo,H.,Malpas,J.,McDermid,I.,Wu,H.,Ziabrev,S.,Zhou,M.F.2000.Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture(southern Tibet).Earth and Planetary Science Letters,183:231-244
    Arai, S. 1997. Origin of podiform chromitites. Journal of Asian Earth Sciences, 15(2-3):303-310
    Arai, S. and Matsukage, K.1996. Petrology of the gabbro-troctoliterperidotite troctolite-periodotite complex from Hess Deep, equatorial Pacific: Implications for mantle-melt interation within the oceanic lithosphere. Proc.ODP, Sci. Results, 147:135-155
    Arai, S. and Matsukage, K. 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparision between abyssal and alpine-type podiform chromitite. Lithos, 43:1-14
    Arai, S. and Yurimoto, H. 1995. Possible sub-arc origin of podiform chromitites. The Island Arc, 4:104-111
    Auge, S. 1987. Chromite deposits in the northern Oman ophiolite: Mineralogical constrains. Mineralium Deposita, 22:1-10
    Auge, T., Maurizo, T. P. 1995. Stratiform and alluvial platinum mineralization in the Caledonia ophiolite complex. Can Mineral, 33:1023-1045
    Bai, W. J., Zhou, M. E, Robinson, P. J. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Dongqiao ophiolites, Tibet. Can. J. Earth Sci, 30: 1650-1659
    Bai, W. J., Robinson, P. T, Fang, Q. S., Yang, J. S., Yan, B. G, Zhang, Z. M., Hu, X. F., Zhou, M. F. and Malpas, J. 2000.The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet. The Canadian Mineralogist, 38: 585-598
    Bai, W.J., Shi, N.C., Fang, Q.S., Li, GW., Xiong, M., Yang, J. S. and Rong, H. 2006. Luobusaite : A New Mineral. Acta Geologica Sinica, 80(5):656-659
    Barnes, S. J., Naldrett, A. J. and Gorton, M.P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical geology, 53: 303-323
    Barnes, S. J., Maier, W. D. and Ashwal, L. D. 2004. Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chemical Geology, 208(1-4): 293-317
    Buick, I. S., Maas, R. and Gibson, R. 2001. Precise U - Pb titanite age constraints on the emplacement of the Bushveld Complex,South Africa. J. Geol. Soc. Lond, 158:3-6
    Ballhaus, C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156(3-4):185-193
    Bodinier, J. L., Mnzies, M. A., Shimizu, N., Frederick, A. F. and Mcpherson, E. 2004. Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. Journal of Petrology,45: 299-320
    Buchl, A., Brugmann G E., Batanova, V. G And Hofmann, A. W. 2004. Os mobilization during melt percolation: The evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochimica et Cosmochimica Acta, 68(16): 3397-3408
    Cameron, E. N. 1963. Structure and rock sequences of the Critical Zone of the eastern Bushveld Complex. Mineral. Soc. Amer. Spec. 1:93-107
    Cameron, E. N. 1971. Problems of the eastern Bushveld Complex. Fortschr. Mineral. 48: 86-108
    Carl, S., John, M. and Richard, A. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geology, 33(11): 893-896
    Cawthorn, R. G, Webb, S. J. 2001. Connectivity between the Eastern and Western limbs of the Bushveld Complex. Tectonophysics, 330:195-209. doi:10.1016/S0040-1951(00)00227-4
    Chen, M., Goresy, A. E., and Gillet, P. 2004. Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs, PNAS 101: 15033-15037
    Chien, M. S. and Roger, G B. 1976. Kinetics of the olivine-spinel transition: implications to deep-focus Earthquake genesis. Earth and Planetrary Science Letters, 32:165-170
    Claoue-long, J. C, Compston, W, Roberts, J., et al.1995. Two carboniferous ages : A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Berggren, W. A., Kent, D. V., Aubry, M.P., et al. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication, 4: 3-31
    Clarke, B., Uken, R. and Reinhardt, J.2008. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa, Lithos, 111(1-2): 21-26
    Coleman, R.G. 1977. Ophiolites, Ancient Oceanic Lithosphere? New York, Spinger- Verlag, 229
    Compston, W., Williams, I. S. and Meyer, C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Geophys Res, 89: B525-534
    Condie, K. 2001. Mantle plumes and their record in Earth history. Cambridge University Press, 1-306
    Davis, D. W., Williams, I. S., Krogh, T. E. 2003. Historical Development of Zircon Geochronology. Reviews in Mineralogy & Geochemistry, 53:145-173
    DePaolo, J. and Wasserburg, G J. 1979. Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium. Geochimica et Cosmochimica Acta, 43: 999-1008
    Dick, H.J.B. 1977. Partial melting in the Josephine Peridotite-1, the effect of mineral composition and its consequence from geobarometry and geothermometry. Am. J. Sci,227:801-832
    Dick, H. J. B. and Bullen, T. 1984. Chromium spinel as a petrogenetic indicator in abyssal and alpine - type peridotites and spatially associated lavas. Contr. Miner. Petrol., 86(l):54-76
    Distler, V. V., Kryachko, V. V. and Yudovskaya, M. A. 2008. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineralogy and Petrology,92: 31-58. DOI 10.1007/s00710-007-0207-3
    Dresser, J. A. 1913. Preliminary report on the serpentine and associated rock of Southern Quebec. Memoir - Geological Survey of Canada, 22:1-103
    Edwards, S. J. 1990. Harburgites and refractory melts in the Lewis hills massif, Bay of Island ophiolite complex: the base-metals and precious - metals story. Can. Mineral, 28: 537-552
    Edwards, S. J., Pearce, J.A. and Freeman, J. 2000. New insights concerning the influence of water during the formation of podiform chromite. In: Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A. (Eds.), Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program. Geological Society of America Special Paper, 349:139-147
    Fang, Q.S., Ren, Y. F., Yang, J. S., et al. 2005. The discovery of free SiO_2 in mantle peridotite of ophiolite, Tibet.Acta Petrologica et Mineralogica, 24 (5): 385-392
    Qingsong Fang , Wenji Bai, Jingsui Yang, Xiangzhen Xu , Guowu Li, Nicheng Shi, Ming Xiong, And He Rong. 2009. Qusongite (WC): A new mineral. American Mineralogist. 94: 387-390
    Frey, F. A. 1984. Rare earth elements abundances in upper mantle rocks. In: Henderson P (ed): Rare Earth Elements Geochemistry. 153-203
    Garuti, G., Fershtater, G., Bea, F., et al. 1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes, of the central and southern Urals: preliminary results. Tectonophysics, 276:181-194
    Gijbels, R. H., Millard, H. T., Desborough, G A. and Bartel, A. J.1974. Osmium, ruthenium, indium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 38:319-337
    Goarant, R, Guyot, R, Peyronneau, J., Poirier, J. P. 1992. High-pressure and high -temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. Journal of Geophysical Research, B, Solid Earth and Planets, 97 (4): 4477-4487
    Godard, M., Jousselin, D. and Bodinie, J.L. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters. 180(1-2): 133-148
    Gueddari, K., Piboule, M. And Amosse, J. 1996. Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera). Chemical geology, 134: 181-197
    Hall, A. L. 1932. The Bushveld igneous complex in the central Transvaal. Geol. Soc. S. Afr. Memoir 28, 544
    Hawkins, J. W. 2003. Geology of supra-subduction zones-Implications for the origin of ophiolites. In: Dilek, Y., and Newcomb,S., eds., Ophiolite concept and the evolution of geological thought: Boulder, Colorado, Geological Society of America Special Paper, 373: 227-268
    Hess, H. H. 1960. Complementary evidence from the Bushveld Complex, Great Dyke, and Skaergaard intrusion. In Stillwater Igneous Complex, Montana-A Quantitative Mineralogical Study, 9:151-167. Geol. Sot. Amer. Mem. 80
    Ionov, D. A., Shirey, S. B., Weis, D. and Brugmann, G 2006. Os-Hf-Sr-Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: Effects of pervasive metasomatism in shallow refractory mantle. Earth and Planetary Science Letters, 241(1-2): 47-64
    Ireland, T. R., Williams, I. S. 2003. Considerations in Zircon Geochronology by SIMS [J]. Reviews in Mineralogy & Geochemistry, 53:215-227
    
    Irivine, T. N.1967. Chromian spinel as a petrogenetic indicator. Canada Jour. Earth Sci., 4: 71-97
    Jackson, E. D. 1967. Ultramafic cumulates in the Stillwater, Great Dyke, and Bushveld intrusions. In Ultramafic and Related Rocks, (editor P. J. Wyllie), 20-38
    John, S. and Dickey, J.1974. A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta, 39:1061-1074
    Kawada, K. 1977. The system Mg_2SiO_4-Fe_2SiO_4 at high pressure and temperature and Earth' s interior. Tokyo: Univ of Tokyo
    Kidd, and Cann. 1974. Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet. Sci. Lett, 24(1):151-155
    Knittle, E. and Jeanloz, R. 1989. Simulating the core-mantle boundary: An experimental study of high-pressure reactions between silicates and liquid iron. Geophys. Res. Lett., 16: 609-612
    Lago, L., Rabinowicz, M., and Nicolas, A. 1982. Podiform chromite ore bodies: A genetic model. Jour. Petrol., 23(1):123-124
    Leblanc, M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineral. Deposita, 15(2): 201-210
    Leblanc, M. and Nicolas, A. 1992. Ophiolitic chromitites. International Geological Review, 34: 653-686
    Lennykh, V. I., Valizer, P. M., Beane, R., Leech, M. and Ernst, W. G 1995. Petrotectonic evolution of the Maksyutov Complex, southern Urals, Russia: implications for ultrahigh-pressure metamor-phism. Int Geol Rev, 37: 584-600
    Liu, L. G. 1974. Silicate perovskite from phase transformation of pyope-garnet at high pressure and temperature. Geophys Res Lett, 1: 277-280
    Liu, L. G. 1975. Post-oxide phases of olivine and pyroxene and mineralogy of the mantle. Nature, 258:510-512
    Liu, L. G. 1987. Effects of H_2O on the phase behaviour of the forsterite-enstatite system at high pressure and temperatures and implications for the Earth. Phys Earth and Planetary Inter, 49:142-167
    Ludwig, K. R. 2000. Users Manual for Isoplot/Ex: A Geochronoligical Toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, Berkeley, CA, USAA, 53
    Ludwig, K R. 2001. Squid 1.02: A user manual. Berkeley Geochronological Center Special Publication, 2:19
    Lugovic', B., Altherr, R., Raczek, I., Hofmann, A. and Majer, V. 1991. Geochemistry of peridotites and mafic igneous nicks from the Central Dinaric Ophiolite belt, Yugoslavia. Contrib. Mineral. Petrol, 106:201-216
    Makeev, A. B., Agafonov, L. V. and Goncharenko, A. I. 1984. The relation of the chemical composition to the physical properties of chrome spinels in alpinotypic ultrabasites. Sov Geol Geophys, 25(2): 125-129
    Malpas, J. and Robinson, P. F. 1987. Chromite mineralization in Troodos ophiolites and mantle diapirs of New foundland. Geochimica et Cosmochimica Acta, 39:1045-1060
    Malpas, J., Zhou, M. F., Robinson, P. T., and Reynolds, P. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung-Zangbo ophiolites, Southern Tibet. In Ophiolites in Geological History, Geological Society of London, Special Publication, 218:191-206
    Marcantonio, F., Zindler, A., Reisberg, L., and Mathez, E.A. 1993. Re-Os isotopic systematics in chromitites from the Stillwater Complex, Montana, USA. Geochimica et Cosmochimica Acta, 57:4029-4037 Mathez,E. A., Kent, A. J. R. 2007. Variable initial Pb isotopic compositions of rocks associated with the UG2 chromitite, eastern Bushveld Complex. Geochimica et Cosmochimica Acta, 71: 5514-5527
    McDermid, I., Aitchison, J. C, Davis, A. M., Harrison, T. M., Grove, M. 2002. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Zangbo suture zone, southeastern Tibet. Chemical Geology, 187: 267-277
    McDonough, W. F. and Sun, S. S. 1995. The composition of the Earth. Chemical Geology, 120: 223-254
    Mcelduff, B. and Stumpfl, E. F. 1990. Platinum-group minerals from the Troodos ophiolite complex, Cyprus. Mineral. Petrol, 42: 211-232
    Melcher, F., Grum, W., Simon, G, Thalhammer, T. V. and Stumpfl, E. F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan; a study of solid and fluid inclusions in chromite. Journal of Petrology, 38 (10): 1419-1458
    Melcher, F., Grum, W., Thalhammer, T.V. and Thalhammer, O.A.R. 1999. The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineralium Deposita, 34:250-272
    Melcher, F., Meisel, T., Puhl, J. and Koller, F. 2002. Petrogenesis and geotectonic setting of uliramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos, 65: 69-112
    Ming, L. C. and Bassett, W. A. 1975. Decomposition of FeSiO_3 into FeO + SiO_2 under very high pressure and high temperature. Earth and Planetary Science Letters, 25(1): 68-70
    Moores, E. M. and Jackson, E. D. 1974. Ophiolites and oceanic crust. Nature, 250: 136-139
    Moores, E.M., and Vine, F.J. 1971. Troodos massif Cyprus as oceanic crust: evaluation and implications. Philosophical Transactions Royal Society of London, ser.A, 268:443-466
    Moreno, T., Gibbons, W., Prichard, H. M., et al. 2001. Platiniferous chromitite and the tectonics setting of ultra mafic rocks in Cabo Ortegal, NW Spain. Journal of the Geological Society London, 158:601-614
    
    Morimoto, N. 1988. Nomenclature of pyroxene. Acta Mineralogica, 8(4):289-305
    Naldrett, T, Kinnaird, J., Wilson, A. and Chunnett, G. 2008. The Concentration of PGE In the Earth' s Crust with Special Reference to the Bushveld Complex(铂族元素在地壳中的富集: 以布什维尔德杂岩为例).地学前缘,15(5):264-297
    Nicolas, A. 1986. Structure and petrology of peridotites. Rev. Gelphys, 24: 875-895
    
    Nicolas, A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic Publishers, 223-252
    Nicolas, A., Azri, H. A. 1991. Chromite-rich and chromite-poor ophiolites: the Oman case. In: Peter T, et al.Ophiolite Genesis and Evolution of the Oceanic Lithosphere. 1261 -274
    Orberger, B., Xu,Y. G, Reeves, S. J. 1998. Platinum group elements in mantle xenoliths from eastern China (in Continents and their mantle roots). Tectonophysics, 296(1-2): 87-101
    Page, N. J. 1977. Stillwater complex, Montana: Rock succession, metamorphism contents. Amer. Mineral, 64:768-775
    Paktunc, A. D. 1990. Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle.Ore Geology Reviews,5: 211-222
    Parlak O. and Delaloye, M. 1999. Precise ~(40)Ar/~(39)Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics, 301:145-158
    Pattou, L., Lorand, J.P. and Gros, M. 1996. Non-chondritic platinum-group element ratios in the Earth' s mantle. Nature, 379:712-715
    Pearce, J. A., Lippard, S. J. and Robert, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar B P, Howells M F. Marginal Basin Geology, Volcanic and Ancient Marginal Basins. London: Blackwell Scientific Publication, 77-94
    Pearce, J. A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Ophiolite concept and the evolution of geological thought (eds.Dilek Y and Newcomb S )Colorado,Geological Society of American Special Paper,373:269-293
    Poitrasson, F., Hanchar, J. M., Schaltegger, U. 2002. The Current State of Accessory Mineral Research. Chemical Geology, 191:3-24
    Prichard, H. M. and Lord, R. A. 1990. Platinum and palladium in the Troodos ophiolite complex, Cyprus. Canadian Mineralogist, 28:607-617
    Prinzhofer, A. and Alle' gre, C. J. 1985. Residual peridotite and the mechanism of partial melting, Earth Planet Sci. Lett., 74:251-265
    Proenza, J. A., Gervilla, R, Melgarejo, J. C, et al. 1999. Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (Eastern Cuba):consequence of interaction between volatile-rich nelts and peridotites in supra subduction mantle. Economic Geology, 194: 547-566
    Ren, Y., Fei, Y., Yang, J., Bai, W. J., Xu, Z. Q. 2005. SiO_2 Solubility in Rutile at High Pressure and Temperature. American Geophysical Union, AGUFM.V51E.07R
    Robertson, A. H. F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65:1-67
    Robinson, P. T., Bai, W. J., Malpas, J., Yang, J. S., Zhou, M. R, Fang, Q. S., Hu, X. R, Cameron, S. and Staudigel, H. 2004. Ultra-high pressure minerals in the Luobusa ophiobite, Tibet and their tectonic implications. Aspects of the Tectonic Evolution of China.Geological Society, London, Special Publications, 226:247-271
    Robinson, P. T., and Yang, J. S.2008. Unusual minerals in podiform chromitites from ophiolites; A window into the upper mantle. 33rd IGC Abstract, http:// www. cprm. gov.br / 33IGC /1340078.html
    Rudashevsky, N. S., Dmitrenko, G G, Mochalov, A. G, et al. 1987. Native metals and carbides in alpine type ultramafics of Koryak Highland. Mineral Zh., 9 (4): 71-82 (in Russian)
    Saccani, E., Photiades, A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 73(3-4): 229-253
    Savelieva, G N. and Nesbitt, R. W. 1996. A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites. Journal of the Geological Society, 153: (4):525-537
    Savelieva, G. N., Sharaskin, A. Y., Saveliev, A. A., Spadea, P. and Gaggero, L. 1997. Ophiolites of the southern Uralides adjacent to the East European continental margin. Tectonophysics, 276: 117-137
    Stachel, T., Harris, J. W., Brey, G P. 1998. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology, 132: 34-47
    Stishov, S. M. and Popova, S. V. 1961. A new dense modification of silicas. Geokhimiya, 10: 837-839
    Stockman, H. W., and Hlava, P. F. 1984. Platinum-group minerals in Alpine chromitites from southwestern Orogen, Ecnomic Geology, 79,491-508
    Stuphin, D.M. and Page, N. J. 1986. International strategic minerals inventory summary report-platinum-group metals. US Geol, Surv., Circular,930-E
    Tamayo, R. A, Yumul, G P., Maury, R. C, et al. 2001. Petrochemical investigation of the antique ophiolite (Philippines): implications on volcanogenic massive sulfide and podiform chromitite deposits. Resource Geology, 51(2): 145-164
    Taylor, W. R., Milledge, H. J., Griffin, B. J., Nixon, P. H., Kamperman, M., and Mattey, D. P. 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet; authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts. Proceedings of the International Kimberlite Conference, 6: 623-624
    Thayer, T. P. 1964. Principal features and origin of podiform chromite deposites, and some observations on the Guleman-Soridag district, Turkey, Econ. Geol, 59:1497-1524
    Thomas, O., Donald, W. D., Thomas, G B., Axel, H. 2002. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe-constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research, 113(3-4): 293-305
    Webb, S. J., Cawthorn, R. G., Nguuri, T., et al. 2004. Gravity modeling of Bushveld Complex connectivity supported by South African seismic results. South African Journal of Geology, 107:207-218
    Wager, L. R. and Brown, G M. 1967. The Bushveld Intrusion, South Africa. In Layered Igneous Rocks, 14:343-407
    
    Wager, L. R. and Brown, G. M. 1968. Layered igneous rocks. Edinburgh: Oliver and Boyd, 588
    Willemse, J. 1969.The geology of the Bushveld Igneous Complex, the largest repository of magmatic ore deposits in the world. In Magmatic Ore Deposits-A Symposium, (editor H. D. B. Wilson), 1-22, Econ. Geol. Monograph 4
    Williams, I. S. 1992. Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Trans R Soc Edinburgh - Earth Sci, 83:447-458
    Wilson, A.H. and Prendergast, M. D. 1989. The Great Dyke of Zimbabwe-I: tectonic setting, stratigraphy, petrology, structure, emplacement and crystallization. In: Prendergast, M. D., Jones, M. J. (Eds), Magmatic sulphides-the Zimbabwe volume. Instn. Mining Metallurgy, London, 1-20
    Wirth, R., Rocholl, A. 2003. Nanocrystalline diamond from the Earth' smantle underneath Hawaii. Earth and Planetary Science Letters, 211:357-369
    
    Worst, B.G. 1960. The Great Dyke of Southern Rhodesia. S. Rhod. Geol. Surv., Bulletin, 47
    
    Xu ,X. Z., Yang, J. S., Chen, S. Y., Fang, Q. S., Bai, W. J. and Ba, D. Z. 2009. An unusual mantle mineral group from chromitite orebody Cr-11 in the Luobusa ophiolite of the Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science, 20 (2 ): 284-302
    Yang, J. S., Bai, W. J., Fang, Q. S., Yan, B. G, Shi, N. C., Ma, Z. S., Dai, M. Q. and Xiong, M. 2003. Silicon-rutile-an ultrahigh pressure (UHP) mineral from an ophiolite. Progress in Natural Science, 13 (7): 528-531
    Yang, J. S., Larissa, D., Bai, W. J., et al. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875-878
    Yumul, G P. 2001.The Acoje block platiniferous dunite horizon, Zambales ophiolite complex, Philippines: melt type and associated geochemical controls. Resource Geology,51(2): 165-174
    Zaccarini, F., Pushkarev, E. and Garuti, G 2008.Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia). Ore Geology Reviews, 33:20-30
    Zhou, M. F. and Bai, W. J. 1992. Chromite deposits in China and their origin. Mineral Deposits, 27: 192-199
    Zhou, M. F., Robinson, P. T., Bai, W. J. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita, 29:98-101
    Zhou, M. F., Robinson, P. T., Malpas, J. and Li, Z. 1996. Podiform chromitites in the Luobusa Ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology. 37 (1): 3-21
    Zhou, M. F., Robinson, P. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92:259-262
    Zhou, M. F., Sun, M., Keaysr, R., et al. 1998. Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62: 677-688
    Zhou, M. F., Robinson, P. T., Malpas, J., Edwards, S. J. and Qi, L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46: 615-639
    Zhou, S., Mo, M. X., Mahoney, J. J., Zhang, S. Q., Guo, T. J., and Zhao, Z. D. 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusa ophiolite, Tibet. Chinese Science Bulletin, 47:143-146
    Ziabrey, S.V., Aitchison, J.C., Abrajevitch, A.V., Badengzhu, Davis A.M., Luo, H. 2003. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane,Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society, London 160: 591-599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700