用户名: 密码: 验证码:
东喜马拉雅构造结西缘构造—岩浆事件及其地球动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南拉萨地块(狭义上的冈底斯带)出露的花岗岩类和火山岩形成于新特提斯洋板片向北俯冲以及随后印度-欧亚板块的碰撞阶段。近年来,随着测试技术的提高,大批高质量的锆石U-Pb年代学资料陆续报道,基本建立了南拉萨地块内岩浆岩的年代学格架。这些研究主要集中在南拉萨地块的中部,然而对于这些岩浆岩在东西走向上变化研究相对较少,并且很少有关于南拉萨地块变质作用的研究。本文以东喜马拉雅构造结西缘(南拉萨地块东段)出露的花岗岩类和高级变质基底林芝杂岩为研究对象,通过对其进行详细的野外地质观察、岩相学研究、全岩主量-微量元素、Sr-Nd同位素、锆石U-Pb定年和Hf同位素组成研究,讨论了东喜马拉雅构造结西缘出露的花岗岩类和变质岩的岩石成因,通过与南拉萨地块中部对比,进一步揭示了南拉萨地块东段的构造热演化历史。本研究获得的主要认识如下:
     1. LA-ICP MS锆石U-Pb定年结果显示,东喜马拉雅构造结西缘出露花岗岩类形成于~165Ma、90~80Ma、66~48Ma和26~22Ma四个阶段,与南拉萨地块中部的冈底斯岩基岩浆活动时间基本一致。
     2.中侏罗世(~165Ma)片麻状花岗岩的锆石εHf(t)值为+1.4~+3.5,低于南拉萨地块中部同时期的冈底斯岩基,反映其岩浆主要来自于地壳物质的部分熔融,但不排除有少量地幔物质的贡献,与新特提斯洋板片向北俯冲有关。晚白垩世(90~80Ma)花岗岩类岩浆源区多样,其中~83Ma花岗闪长质片麻岩的锆石εHf(t)值为+7.3~+10.7,反映其原岩岩浆来自新生地壳物质的部分熔融。~81Ma的含榴黑云母花岗岩中的锆石含大量继承锆石,且锆石Hf同位素组成变化较大,εHf(t)值为-0.9~+6.2,可能为源自新生地壳和古老地壳物质部分熔融产生的岩浆发生岩浆混合作用的产物。~80Ma的卧龙岩体具有埃达克质岩石的特征,Sr-Nd-Hf同位素组成显示其岩浆主要源自新生地壳物质的部分熔融,同时混染了少量古老地壳物质(林芝杂岩)。结合区域上存在同时期的高温变质作用,该埃达克质岩石可能为新特提斯洋中脊俯冲导致增厚下地壳发生熔融的产物。晚白垩世-始新世(66~48Ma)花岗岩类岩石成因复杂,其中~66Ma的花岗岩具有埃达克岩的特征,锆石εHf(t)值为-3.8-1.3,为新特提斯洋板片回转导致增厚下地壳发生部分熔融的结果。古新世(~61Ma)花岗岩经历强烈的构造变形和变质作用,锆石ε种)值为+5.4~+8.0,反映其岩浆来自新生地壳物质的部分熔融。两河口岩体(~49Ma)和始新世花岗岩捕虏体(~50Ma)都具有埃达克质岩石的特征,它们的初始(87Sr/86Sr)i=0.706939~0.708162,εNd(t)为-6.7~-4.3,锆石εHf(t)值为-11.8~-0.2。Sr-Nd-Hf同位素组成显示,它们主要源自林芝杂岩的部分熔融,同时有新生地壳物质的加入。天坡龙岩体(~53Ma)不具有埃达克质岩石的特征,锆石εHf(t)值为+5.3~+7.7,反映其岩浆主要源自新生地壳物质的部分熔融。始新世花岗岩类的形成可能与新特提斯洋板片的断离作用有关。板片断离导致软流圈地幔上涌并加热上覆地壳,使地壳不同深度的岩石发生部分熔融,由加厚的下地壳发生部分熔融形成埃达克质岩石,由较浅部地壳物质发生部分熔融形成非埃达克质岩石。渐-中新世(26~22Ma)花岗岩类都具有埃达克质岩石的特征,Sr-Nd-Hf同位素组成反映其主要源自林芝杂岩的部分熔融,同时混染了少量的新生地壳物质,为印度板块的断离作用导致增厚的拉萨地块下地壳发生部分熔融的结果。
     3.对林芝杂岩麻粒岩相变质单元中的含榴斜长角闪岩和不纯大理岩进行了详细研究。含榴斜长角闪岩的峰期变质矿物组合为石榴子石+斜方辉石+高Ti角闪石+斜长石+石英+金红石,退变质矿物组合为斜长石+低Ti角闪石+石英+金红石。峰期矿物组合中的石榴子石、石英和角闪石中含有大量的针状金红石出溶体,指示其经历了高温变质作用。利用石英中Ti含量(TitaniQ)温度计获得含榴斜长角闪岩峰期变质温度为803-924℃。全岩主量-微量元素、Sr-Nd同位素和锆石Hf同位素组成显示含榴斜长角闪岩的原岩为亚碱性岛弧玄武岩。锆石U-Pb定年结果显示其原岩岩浆结晶年龄为89.3±0.6Ma,变质年龄为81.1±0.8Ma。不纯大理岩中的碎屑岩浆锆石的年龄为86~167Ma,变质年龄为81.4±0.5Ma。碎屑岩浆锆石的年龄分布和Hf同位素组成与南拉萨地块侏罗纪-白垩纪花岗岩类的年龄分布和Hf同位素组成相似,反映其原岩碎屑物源主要来自冈底斯岩浆弧,沉积环境为弧前盆地。南拉萨地块东部的弧前盆地和岛弧岩浆岩同时在~81Ma发生高温麻粒岩相变质,说明弧前盆地有异常高的热量输入。结合区域上存在同期埃达克质岩石,本文认为晚白垩世高温麻粒岩相变质作用与新特提斯洋中脊俯冲有关。
     4.林芝杂岩中地壳深熔作用发育,多期长英质岩脉间的穿插关系反映林芝杂岩经历了多期地壳深熔作用。对四个代表性的露头中的混合岩的淡色体和长英质岩脉进行了锆石U-Pb定年和Hf同位素组成研究。结果显示林芝杂岩主要经历了65~63Ma、50~48Ma和30~25Ma三期地壳深熔事件。脉体中的继承锆石的年龄分布和锆石Hf同位素组成反映其母岩主要为林芝杂岩中的变沉积岩和片麻状花岗岩,少部分为古老的基性地壳物质。同时区域上还发育与三期深熔事件相对应的变质事件。这三期变质-深熔事件与南拉萨地块古-中新世冈底斯岩浆活动在时间上是耦合的。本文认为65~63Ma、50~48Ma和30-25Ma深熔-变质事件分别与新特提斯洋板片的回转、断离和印度板块断离所诱发的地幔热扰动有关。
     5.对林芝杂岩中不同层位的变沉积岩类进行了碎屑锆石U-Pb年代学研究。在林芝杂岩下段,石英云母片岩和变质粉砂岩互层产出,并被变流纹岩所覆盖。石英云母片岩和变质粉砂岩中的碎屑锆石主要存在1000~1250Ma和1400~1800Ma两个年龄群,其中最年轻的碎屑锆石的谐和年龄为1006±51Ma,变流纹岩的原岩年龄为507±4Ma,因此林芝杂岩下段变沉积岩的原岩沉积年龄为1006~507Ma之间。这些变沉积岩明显不同于同时期的特提斯喜马拉雅和高喜马拉雅地层中的碎屑锆石年龄分布特征,而与澳大利亚板块西部碎屑岩类的碎屑锆石年龄分布特征相似,因此支持拉萨地块在古生代时位于澳大利亚北缘的观点。林芝杂岩中段和上段变沉积岩形成于234~165Ma之间,碎屑锆石主要存在330~370Ma、450~650Ma、1000~1250Ma和1400~1800Ma四个年龄群,其物源主要来自拉萨地块本身,其中大量330-370Ma碎屑锆石反映拉萨地块内存在强烈的泥盆纪-石炭纪岩浆活动。
     6.全岩Sr-Nd同位素和锆石Hf同位素组成显示,东构造结西缘出露的花岗岩类的岩浆主要源自古老(0.9~1.5Ga)地壳物质的部分熔融,明显不同于南拉萨地块中部的花岗岩类,反映东构造结西缘南拉萨地块存在中元古代地壳基底。南拉萨地块中部与东部花岗岩类在Sr-Nd-Hf同位素组成上的差异,反映了在印度-欧亚板块汇聚过程中,南拉萨地块中部以地壳生长为主,而东部则以地壳物质再循环为主。
     7.南拉萨地块中部和东部具有相似的构造热演化历史。中侏罗世-晚白垩世(165~80Ma)时,新特提斯洋板片向北俯冲于南拉萨地块之下,在俯冲带之上发育岛弧岩浆作用。-80Ma时,新特提斯洋中脊发生俯冲,并导致弧前盆地和岛弧地区都发生了高温麻粒岩相变质作用,同时导致底侵的新生玄武质下地壳发生部分熔融形成埃达克质岩浆。由于俯冲的洋壳是年轻的,且具有高的温度和低的密度,因此具有较大的浮力,俯冲板片将从正常角度俯冲转为平板俯冲。68~40Ma时,俯冲板片发生回转作用,岛弧岩浆作用重新开始启动。同时在板片回转的拖拽力下,软流圈地幔顺着板块回转的方向注入,导致上覆地壳发生变质和深熔作用。在~50Ma时,俯冲的特提斯洋壳发生断离,导致地壳不同尺度的岩石发生了变质和深熔作用,增厚下地壳发生部分熔融形成埃达克质岩石。渐-中新世(26~22Ma)时,持续俯冲的印度板块发生断离,导致早期加厚的南拉萨地块下地壳发生部分熔融形成埃达克质岩。
The granitoid batholiths and volcanic rocks, distributed in the southern Lhasa terrane (Gangdese belt), resulted from the northward subduction of the Neo-Tethys oceanic slab under the southern Lhasa terrane, and the collision between Indian and Asian continents. A large number of high-quality zircon U-Pb and Hf isotope data for these rocks have been published in recent years. The geochronological framework of the granitoids and volcanic rocks has been established. However, the previous work mainly focused on the central part of the southern Lhasa terrane. How the Gangdese magmatism evolved along the strike of Himalayan-Tibet collisional belt remains poorly known. In addition, the metamorphism of the southern Lhasa terrane is still not clear. In order to better understand the geological evolution of the southern Lhasa terrane, this study focuses on the granitoids and metamorphic rocks of the Nyingchi Complex in the western margin of the eastern Himalayan syntaxis (EHS). We present an integrated study of detiailed field geology, petrography, whole rock geochemistry (including major elements, trace elements and Sr-Nd isotope), zircon U-Pb dating and Hf isotope composition for the granitoids and metamorphic rocks, and further discuss their petrogenesis and geodynamic implications. The main results related to this study are given as follows.
     1. The zircon U-Pb dating results reveal that the granitoids in the western margin of the EHS formed during at~164Ma,90~80Ma,66~48Ma and26-22Ma, which are consistent with those in the central part of the southern Lhasa terrane.
     2. The middle Jurassic granitic gneiss (165Ma) has εHf(t) values of+1.4to+3.5, which is lower than coeval granitoids in the central part of southern Lhasa terrane, suggesting that they mainly sourced from partial melting of crustal materials. We attribute the petrogenesis to the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous (90-80Ma) granitoids have diversity magma source.The~-83Ma granodioritic gneiss is characterized by positive εHf(t) values of+7.3to+10.7, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. The~81Ma granitic gneiss shows variablei(t) values from-0.9to+6.2, indicating a binary mixing between juvenile and old crustal materials. The~80Ma Wolong pluton displays adakitic characteristics. The Sr-Nd-Hf isotopic compositions indicate that it can be generated by melting of juvenile lower crust, accompanied by small degrees of contamination by older crustal materials. Combined with the coeval HT granulite facies metamorphism, we suggest that the~80Ma adakitic rocks resulted from Neo-Tethyan ocean ridge subduction. The-66Ma granite also shows adakitic characteristics, and has εHf(t) values of-3.8to-1.3, indicating it sourced from partial melting of old crustal materials. The Paleocene (61Ma) granodioritic gneiss hasεHf(t) values of+5.4to+8.0, suggesting that it originated from partial melting of a juvenile crustal material. Both the Comfluence granite (-49Ma) and the granite enclave (-50Ma) show adakitic characteristics, and have (87Sr/86Sr)i of0.706939to0.708162, εNd(t) of-6.7to-4.3and zircon εHf(t) of-11.8to-0.2, suggesting that they mainly derived from partial melting of old crustal materials. The Tianpolong pluton (-53Ma) hasεHf(t) values of+5.3to+7.7, and does not show adakitic characteristics, suggesting it formed under relatively upper crustal level. We attribute the petrogenesis of Eocene granitoids to the break-off of the Neo-Tethyan oceanic slab, which resulted in the upwelling of asthenospheric mantle. The asthenospheric upwelling heated the base of lower crust and resulted in partial melting of the lower crust to generated adakitic magma (lower crust) and non-adakitic magma (relatively upper crust). All the Oligocene-Miocene granitoids (26-22Ma) shows adakitic geochemical characteristics. The Sr-Nd-Hf isotopic compositions suggest that they sourced from partial melting of the Nyingchi Complex. The late Oligocene adakitic rocks resulted from the break-off of the subducted Indian continental crust starting at-25Ma.
     3. The garnet-bearing amphibolite and impure marble from the granulite fancies unit of Nyingchi Complex have been studied. Petrographic study indicates that the garnet-bearing amphibolite underwent two stages of peak granulite-fancies and retrograde amphibole-facies metamorphism. The peak mineral assemblage is characterized by Grt+high-Ti Amp+Opx+Pl+Qtz+Rt, and the retrograde amphibole-facies assemblage is characterized by low-Ti Amp+Pl+Czo+Qtz+Rt. There are a large number of rutile exsolutions in the garnet, quartz and amphiboles, suggesting that the primary composition of these minerals had high Ti contents and formed under high temperature conditions. Based on the Ti-in-quartz (TitaniQ) thermometer, the peak metamorphic temperatures is803~924℃. The whole rock geochemical characteristics indicate that the protolith of the garnet-bearing amphibolites are sub-alkaline island arc basalt. The zircons U-Pb dating results show that the crystallization age for the protolith of the garnet-bearing amphibolite is89.3±0.6Ma, and the peak metamorphic age is81.1±0.8Ma. Detrital zircons from the marble show core-rim structure in the CL images. The cores yielded206pb/238U ages ranging from86.3t0167Ma, and the metamorphic rims yielded206Pb/238U age of81.4±0.5Ma. The age distribution and Hf isotopic compositions of zircon cores match well with the age spectra of the Jurassic-Cretaceous Gangdese batholiths, suggesting that the protolith of the impure marble deposited in the fore-arc basin of the Gangdese arc. The above results indicate that both the arc magmatic rocks and the fore-arc sedimentary rocks undergone HT granulite facies metamorphism at~81Ma, suggesting a significant heat input into the forearc area. Combined with the presence of coeval adakitic rocks near studied area, we suggest that the~81Ma high-temperature metamorphism resulted from the upwelling of asthenosphere through the slab window opened as a result of ridge subduction.
     4. The Nyingchi Complex underwent strongly migmatization. Multiphase felsic melts can be recognized based on the intercalating relationships in the field. This study concentrates on four localities where typical migmatite and leucogranite vein crop out. The zircon U-Pb dating results reveal three stages of crustal anatectic events:65~63Ma,50~48Ma and30-25Ma. The inherited zircons and Hf isotope compositions in these felsic veins indicate that they mainly sourced from partial melting of the metasedimentary rocks and granitic gneisses of the Nyingchi Complex, and some derived from partial melting of the old mafic crustal materials. In addition, there are three stages of metamorphic event corresponding to the crustal anatexis. All the metamorphism and crustal anatexis are consistent with the Paleocene-Miocene magmatism in the central part of the southern Lhasa terrane. The65~63Ma,50~48Ma and30-25Ma crustal anatexis and metamorphism in the western margin of the EHS were related to the thermal perturbations caused by the roll-back, break-off of Neo-Tethyan oceanic slab and the break-off of the Indian plate, respectively.
     5. Detrital zircons from the metasedimentary rocks in lower, middle and upper Nyingchi Complex have been studied in this study. The age distributions of two detrital zircon samples from the lower Nyingchi Complex are dominated by1000-1250Ma and1400~1800Ma. The youngest detrital zircon age is1006±51Ma, which provides a maximum sedimentary age for these metasedimentary rocks. A sample from the volcaniclastic rock overling the metesedimentary rocks yielded an age of507±4Ma, which provides a minimum sedimentary age for these metasedimentary rocks. The age distribution of these detrital zircons is distinctly different from those in the Paleozoic metasedimentary rocks from Tethyan and Great Himalayan sequences, but similar to these in the metasedimentary rocks from Western Australia. This supports the viewpoint that the Lhasa terrane should be placed at the northwestern margin of Australia during the late Precambrian-early Paleozoic. Detrital zircons from the metasedimentary rocks of middle and upper Nyingchi Complex have four major age populations of330~370Ma,450~650Ma,1000~1250Ma and1400-1800Ma. The depositional ages of the protoliths of these metasedimentary rocks are between234and165Ma. The detrital materials mainly derived from the Lhasa terrane. The presence of aboundant330~370Ma detrital zircons indicates a significant magmatism during Devonian and Carboniferous in the Lhasa terrane.
     6. The whole rock Sr-Nd and zircon Hf isotopic compositions of the granitoids from the western margin of the EHS show that they mainly sourced from partial melting of the old crustal (0.9~1.5Ga) materials, which is different from those in the central part of the southern Lhasa terrane, indicating existence of an Middle-Proterozoic cruatal basement under the southern Lhasa terrane in the western margin of the EHS. The differences between the central and eastern parts of the southern Lhasa terrane probably result from different processes responsible for forming the continental crust during the convergence between India and Asia. Crustal growth mainly occurred in the central part of the southern Lhasa terrane. By contrast, crustal reworking mainly occurred in the eastern part of the southern Lhasa terrane.
     7. Our results show that the eastern and central parts of the southern Lhasa terrane have a similar tectono-magma evolution history. The northward subduction of the Neo-Tethyan oceanic slab beneath the southern Lhasa terrane resulted in the arc magmatism during Middle Jurassic-Late Cretaceous (165-80Ma). The Neo-Tethyan ocean ridge subduction occurred at-80Ma and resulted in a formation of slab window. The slab window placed the sub-slab asthenospheric mantle against the base of the overlying plate, which resulted in HT metamorphism in the roots of the arc and fore-arc. High heat flow through the slab window further induced partial melting of overlying lower crust to form adakitic magma. Because the ridge is young, hot and thus buoyant, so there is resistance to subduction, leading to flat subduction of the Neo-Tethyan oceanic slab. After a period of shallow-dip subduction, Gangdese magmatism was rejuvenated at-68Ma possibly due to steepening of the subduction angle. At the same time, the asthenospheric mantle filled into the space of previously occupied by oceanic slab, and heated the lower crust, resulting in crustal anatexis and formation of adakitic magma. The break-off of the subducted Neo-Tethyan oceanic slab from the adherent but more buoyant Indian plate occurred at-50Ma. The asthenospheric upwelling heated the base of lower crust and resulted in partial melting of the lower crust to generated adakitic magma (lower crust) and non-adakitic magma (relatively upper crust). The break-off of the subducted Indian continental crust starting at-25Ma, which induced partial melting of the thickened Asian lower crust by thermal advection resulting from asthenospheric mantle upwelling.
引文
1 云南省地质调查院.2003.中华人民共和国1:25万区域地质调查报告林芝县幅
    [1]Allegre C J, Courtillot V, Tapponnier P, et al. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature,1984,307(5946):17-22.
    [2]Chang C, Chen N, Coward M P, et al. Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature,1986,323(6088):501-507.
    [3]Dewey J F, Shackleton R M, Chengfa C, et al. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327(1594):379-413.
    [4]Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    [5]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空机构及演化.岩石学报,2006,22(3):521-533.
    [6]许志琴,李海兵,杨经绥.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘,2006,13(4):1-17.
    [7]Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters,2011,301(1-2):241-255.
    [8]Chu M F, Chung S L, Song B A, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,2006,34(9):745-748.
    [9]Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,2005,68(3-4): 173-196.
    [10]Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology,2009,262(3-4): 229-245.
    [11]Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics,2009,477(1-2):20-35.
    [12]Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology,2008,252(3-4): 191-201.
    [13]Chiu H Y, Chung S L, Wu F Y, et al. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics,2009,477(1-2):3-19.
    [14]Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,2009, 268(3-4):298-312.
    [15]Zhu D C, Pan G T, Chung S L, et al. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet. International Geology Review,2008,50(5):442-471.
    [16]李皓扬,锺孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报,2007,23(2):493-500.
    [17]张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报,2007,23(6):1347-1353.
    [18]张宏飞,徐旺春,郭建秋,等.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学,2007,32(2):155-166.
    [19]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11(3):281-290.
    [20]莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘,2006,13(6):43-51.
    [21]莫宣学,赵志丹,DePaolo D J,等.青藏高原拉萨地块碰撞后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,2006,22(4):795-803.
    [22]杨志明,侯增谦,江迎飞,等.藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究.岩石学报,2011,27(7):2003-2010.
    [23]Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints on the magmatic underplating of the Gangdise belt in the India-Eurasia collision:Evidence of SHRIMP II zircon U-Pb dating. Acta Geologica Sinica-English Edition,2005,79(6):787-794.
    [24]Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters,2004,220(1-2): 139-155.
    [25]Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision:Zircon SHRIMP U-Pb dating. Acta Geologica Sinica-English Edition,2005,79(1):66-76.
    [26]Scharer U, Xu R H, Allegre C J. U-Pb Geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet. Earth and Planetary Science Letters,1984,69(2):311-320.
    [27]曲晓明,辛洪波,徐文艺.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定.矿床地质,2007,26(5):512-518.
    [28]徐旺春.西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义[博士论文],中国地质大学(武汉),武汉,2010.
    [29]陈晓锋,朱立新,马生明,等.念青唐古拉中基性侵入岩年代学、地球化学及岩石成因.吉林大学学报(地球科学版),2012,42(1):112-125.
    [30]孟繁一,赵志丹,朱弟成,等.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报,2010,26(07):2180-2192.
    [31]于玉帅,高原,杨竹森,等.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报,2011,27(7):1949-1960.
    [32]赵志丹,朱弟成,董国臣,等.西藏当雄南部约54 Ma辉长岩-花岗岩杂岩的岩石成因及意义.岩石学报,2011,27(12):3513-3524.
    [33]高顺宝,郑有业,王进寿,等.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报,2011,27(7):1973-1982.
    [34]高顺宝,郑有业,谢名臣,等.西藏班戈地区雪如岩体的形成环境及成矿意义.地球科学,2011,36(4):729-739.
    [35]Geng Q R, Pan G T, Zheng L L, et al. The Eastern Himalayan syntaxis:major tectonic domains, ophiolitic melanges and geologic evolution. Journal of Asian Earth Sciences,2006,27(3):265-285.
    [36]Zhang H F, Xu W C, Zong K Q, et al. Tectonic evolution of metasediments from the Gangdise terrane, Asian plate, Eastern Himalayan Syntaxis, Tibet. International Geology Review,2008, 50(10):914-930.
    [37]Zhang Z, Zhao G, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research,2010,17(4):615-631.
    [38]Zhang Z M, Zhao G C, Santosh M, et al. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 2010,28(7):719-733.
    [39]Booth A L, Chamberlain C P, Kidd W S F, et al. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin,2009,121(3-4):385-407.
    [40]Booth A L, Zeitler P K, Kidd W S F, et al. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science,2004,304(10):889-929.
    [41]耿全如,郑来林,董翰,等.冈底斯带东段鲁朗-墨脱地区中新世花岗岩的地球化学、年代学及成因.地质通报,2008,27(1):69-82.
    [42]董昕,张泽明,王金丽,等.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学.岩石学报,2009,25(7):1678-1694.
    [43]管琪,朱弟成,赵志丹,等.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?岩石学报,2010,26(07):2165-2179.
    [44]王金丽,张泽明,董昕,等.西藏拉萨地体南部晚白垩纪石榴石二辉麻粒岩的发现及其构造意义.岩石学报,2009,25(7):1695-1706.
    [45]王金丽,张泽明,石超.拉萨地体东南缘的多期深熔作用及动力学,岩石学报,2008,pp.1539-1551.
    [46]莫宣学.青藏高原岩浆岩成因研究:成果与展望.地质通报,2009,28(12):1693-1703.
    [47]莫宣学.岩浆作用与青藏高原演化.高校地质学报,2011,17(3):351-367.
    [48]常承法,郑锡澜.中国西藏南部珠穆朗玛峰地区构造特征.地质科学,1973,8(1):1-12.
    [49]常承法,郑锡澜.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨中国科学(A辑),1973,16(2):190-201.
    [50]金成伟,周云生.喜马拉雅和冈底斯弧形山系中的岩浆岩带及其成因模式.地质科学,1978,13(4):297-312.
    [51]中国科学院地质研究所同位素钾-氩年龄组.西藏南部同位素地质年龄的测定与喜马拉雅运动的分期.地质科学,1979,14(1):13-21.
    [52]陈毓蔚,许荣华.西藏南部中酸性岩中锆石铀-铅计时讨论.地球化学,1981,10(2):128-135.
    [53]李统锦,赵斌,张玉泉,等.西藏南部花岗岩类熔化实验的初步研究.地球化学,1981,10(3):261-267.
    [54]刘荣谟,赵定华.西藏东部中酸性侵入岩同位素年龄讨论.地质论评,1981,27(4):326-332.
    [55]涂光炽,张玉泉,赵振华,等.西藏南部花岗岩类的特征和演化.地球化学,1981,10(1):1-7.
    [56]王俊文,成忠礼,桂训唐,等.西藏南部某些中酸性岩的铷-锶同位素研究.地球化学,1981,10(3):242-246.
    [57]王一先,赵振华,王中刚.西藏南部花岗岩类中微量元素的某些地球化学特征.地球化学,1981,10(1):49-56.
    [58]王中刚,张玉泉,赵惠兰.西藏南部花岗岩类的岩石化学研究.地球化学,1981,10(1):19-25.
    [59]张玉泉,戴橦谟,洪阿实.西藏高原南部花岗岩类同位素地质年代学.地球化学,1981,10(1):8-18.
    [60]桂训唐,成忠礼,王俊文.西藏拉萨冈底斯岩带中酸性岩类的Rb-Sr同位素研究.地球化学,1982,12:217-225.
    [61]许荣华,金成伟.西藏曲水岩基的时代研究.地质科学,1984,19(4):414-422.
    [62]余希静.西藏花岗岩类的成因类型及其演化.青藏高原地质文集,1985,17:1-17.
    [63]许荣华,金成伟.西藏北喜马拉雅花岗岩带中段地质年代的研究.地质科学,1986,21:339-348.
    [64]丁孝石.西藏中南部花岗岩类岩石中锆石标型特征的研究.岩石矿物学杂志,1987,6(2):146-158.
    [65]Maluski H, Proust F, Xiao X C.39Ar/40Ar Dating of the Trans-Himalayan Calc-Alkaline Magmatism of Southern Tibet. Nature,1982,298(5870):152-154.
    [66]Xu R H, Scharer U, Allegre C J. Magmatism and Metamorphism in the Lhasa Block (Tibet):a Geochronological Study. Journal of Geology,1985,93(1):41-57.
    [67]Harris N B W, Xu R H, Lewis C L, et al. Plutonic Rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1988,327(1594):145-168.
    [68]王碧香.西藏南部地区火成岩中矿物包裹体和氢氧同位素的研究.中国地质科学院地质研究所文集,1986,15:200-209.
    [69]李献华,桂训唐,刘菊英.西藏曲水岩基的Pb、Sr同位素组成及其三元混合成因模式.地球化学,1987,16(1):60-66.
    [70]赵崇贺,李国良.西藏阿里西部地区中酸性侵入岩的岩石化学研究.地球科学,1987,12(3):257-264.
    [71]胡瑞忠,于津生,桂训唐.西藏曲水岩基成因的Sr、O同位素制约.科学通报,1991,36(15):1169-1171.
    [72]Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications,1986,19(1):67-81.
    [73]Harris N B W, Ronghua X, Lewis C L, et al. Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988,327(1594):263-285.
    [74]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology,2003,31(11):1021-1024.
    [75]Guo Z F, Hertogen J, Liu J Q, et al. Potassic magmatism in western Sichuan and Yunnan Provinces, SE Tibet, China:Petrological and geochemical constraints on petrogenesis. Journal of Petrology,2005,46(1):33-78.
    [76]Kapp J L D, Harrison T M, Kapp P, et al. Nyainqentanglha Shan:A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research-Solid Earth,2005,110(B8):B08413.
    [77]Gao Y F, Hou Z Q, Kamber B S, et al. Lamproitic rocks from a continental collision zone: Evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. Journal of Petrology,2007,48(4):729-752.
    [78]He S D, Kapp P, DeCelles P G, et al. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics,2007,433(1-4):15-37.
    [79]Wu F Y, Ji W Q, Liu C Z, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 2010,271(1-2):13-25.
    [80]周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报,2004,49(20):2095-2103.
    [81]董昕,张泽明,耿官升,等.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报,2010,26(07):2226-2232.
    [82]管琪,朱弟成,赵志丹,等.西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义.岩石学报,2011,27(7):2083-2094.
    [83]姜子琦,王强,Wyman D A,等.西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?.地球化学,2011,40(2):126-146.
    [84]杨志明,侯增谦,夏代详,等.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质,2008,27(1):28-36.
    [85]耿全如,潘桂棠,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质,2006,26(1):1-7.
    [86]陈炜,马昌前,边秋绢,等.西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据.地质科技情报,2009,28(3):31-40.
    [87]董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?.岩石学报,2006,22(3):661-668.
    [88]陈炜,马昌前,宋志强,等.西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩:锆石U-Pb年代学及其地球化学证据.地质科技情报,2011,30(6):1-12.
    [89]Zhu D C, Zhao Z D, Pan G T, et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences,2009,34(3):298-309.
    [90]Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos,2008,105(1-2):1-11.
    [91]Zhang Z, Shen K, Santosh M, et al. High density carbonic fluids in a slab window:Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet. Journal of Asian Earth Sciences,2011, 42(3):515-524.
    [92]Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,2007,96(1-2):225-242.
    [93]Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology,2008,250(1-4):49-67.
    [94]董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报,2006,22(4):835-844.
    [95]董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报,2008,24(2):203-210.
    [96]莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(3):135-148.
    [97]Gao Y F, Hou Z Q, Wei R H, et al. Post-collisional adakitic porphyries in Tibet:Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica-English Edition,2003,77(2):194-203.
    [98]Qu X M, Hou Z Q, Li Y G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos,2004,74(3-4): 131-148.
    [99]Xu W-C, Zhang H-F, Guo L, et al. Miocene high Sr/Y magmatism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos,2010,114(3-4): 293-306.
    [100]Maheo G,Blichert-Toft J, Pin C, et al. Partial Melting of Mantle and Crustal Sources beneath South Karakorum, Pakistan:Implications for the Miocene Geodynamic Evolution of the India-Asia Convergence Zone. Journal of Petrology,2009,50(3):427-449.
    [101]Gao Y F, Hou Z Q, Kamber B S, et al. Adakite-like porphyries from the southern Tibetan continental collision zones:evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology,2007,153(1):105-120.
    [102]Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust. Lithos,2007,96(1-2):205-224.
    [103]Guo Z F, Wilson M, Liu J Q, et al. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau:Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology,2006,47(6):1177-1220.
    [104]Gao Y, Yang Z, Santosh M, et al. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos,2010,119(3-4):651-663.
    [105]Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 2007,119(7-8):917-932.
    [106]Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed. GSA Today, 2007,17(5):4-9.
    [107]Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau? Geology,1997,25(8):719-722.
    [108]Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys? Journal of Asian Earth Sciences,2009,34(1):76-89.
    [109]朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境,地质通报,2008,pp.458-468.
    [110]纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑),2009,39(7):849-871.
    [111]康志强,许继峰,陈建林,等.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因.地球化学,2009,38(4):334-344.
    [112]梁银平,朱杰,次邛,等.青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征.地球科学,2010,35(2):211-223.
    [113]莫宣学,赵志丹,周肃,等.印度-亚洲大陆碰撞的时限.地质通报,2007,26(10):1240-1244.
    [114]Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology,1996,37(1):45-71.
    [115]Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology,1999,40(9):1399-1424.
    [116]Nomade S, Renne P R, Mo X X, et al. Miocene volcanism in the Lhasa block, Tibet:spatial trends and geodynamic implications. Earth and Planetary Science Letters,2004,221(1-4):227-243.
    [117]Zhao Z, Mo X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos,2009,113(1-2):190-212.
    [118]莫宣学,赵志丹,邓晋福,等.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示.现代地质,2007,21(2):255-264.
    [119]尹光侯,包钢,杨淑胜,等.西藏林芝地区林芝岩群麻粒岩及时代讨论.沉积与特提斯地质,2006,26(3):8-15.
    [120]李璞.西藏东部地质的初步认识.科学通报,1955,7(62-71).
    [121]胡道功,吴珍汉,江万,等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究.中国科学(D辑),2005,35(1):29-37.
    [122]张泽明,董听,耿官升,等.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报,2010,84(4):449-456.
    [123]计文化,陈守建,赵振明,等.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报,2009,28(09):1350-1354.
    [124]李才,吴彦旺,王明,等.青藏高原泛非—早古生代造山事件研究重大进展-冈底斯地区寒武系和泛非造山不整合的发现.地质通报,2010,29(12):1733-1736.
    [125]朱弟成,莫宣学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报,2008,24(3):401-412.
    [126]朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约 束.岩石学报,2006,22(3):534-546.
    [127]Zhu D C, Mo X X, Zhao Z D, et al. Presence of Permian extension-and arc-type magmatism in southern Tibet:Paleogeographic implications. Geological Society of America Bulletin,2010,122(7-8):979-993.
    [128]康志强,许继峰,董彦辉,等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋向南俯冲的产物?.岩石学报,2008,24(2):303-314.
    [129]Zhu D C, Mo X X, Niu Y L, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet:Implications for Permian collisional orogeny and paleogeography. Tectonophysics,2009,469(1-4):48-60.
    [130]Kapp P, Pullen A, Gehrels G E, et al. U-Pb basement and detrital zircon geochronology of the Lhasa and Qiangtang terranes in Tibet., AGU Fall Meet. Eos Trans,2007, pp. Abstract T14C-03.
    [131]Kapp P, Taylor M, Stockli D, et al. Development of active low-angle normal fault systems during orogenic collapse:Insight from Tibet. Geology,2008,36(1):7-10.
    [132]Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin,2005,117(7-8):865-878.
    [133]Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin,2004,116(9-10):1202-1222.
    [134]朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘,2009,16(2):1-20.
    [135]Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology,2006,34(6):505-508.
    [136]Zhu D C, Zhao Z D, Niu Y L, et al. Origin and evolution of the Tibetan Plateau. Gondwana Research,2012, in press.
    [137]康志强,许继峰,王保弟,等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报,2010,26(10):3106-3116.
    [138]康志强,许继峰,王保弟,等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学,2009,34(1):89-104.
    [139]Burg J P, Davy P, Nievergelt P, et al. Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova,1997,9(2):53-56.
    [140]Burg J P, Nievergelt P, Oberli F, et al. The Namche Barwa syntaxis:evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences,1998,16(2-3):239-252.
    [141]Finnegan N J, Hallet B, Montgomery D R, et al. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geological Society of America Bulletin,2008,120(1-2): 142-155.
    [142]Seward D, Burg J P. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data. Tectonophysics,2008, 451(1-4):282-289.
    [143]Stewart R J, Hallet B, Zeitler P K, et al. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology,2008,36(9):711-714.
    [144]龚俊峰,季建清,陈建军,等.东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究.岩石学报,2008,24(10):2255-2272.
    [145]龚俊峰,季建清,周晶,等.东喜马拉雅构造结气候构造作用下热史演化的40Ar/39Ar年代学记录.岩石学报,2009,25(3):621-635.
    [146]于祥江,季建清,龚俊峰,等.雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据.科学通报,2011,56(10):765-773.
    [147]钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289-295.
    [148]章振根,刘玉海,王天武,等.南迦巴瓦峰地区地质.北京,科学出版社,1992.
    [149]孙志明,耿全如,楼雄英,等.东喜马拉雅构造结南迦巴瓦岩群的解体.沉积与特提斯地质,2004,24(2):8-15.
    [150]郑来林,金振民,潘桂棠,等.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报,2004,78(6):744-752.
    [151]许志琴,蔡志慧,张泽明,等.喜马拉雅东构造结——南迦巴瓦构造及组构运动学.岩石学报,2008,24(7):1463-1476.
    [152]孙志明,郑来林,耿全如,等.东喜马拉雅构造结高压麻粒岩特征、形成机制及折返过程.沉积与特提斯地质,2004,24(3):22-29.
    [153]刘焰,钟大赉.东喜马拉雅地区高压麻粒岩岩石学研究及构造意义.地质科学,1998,33(3):267-281.
    [154]丁林,钟大赉.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑),1999,29(5):386-398.
    [155]Liu Y, Zhong D. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology,1997,15(4):451-466.
    [156]张泽明,郑来林,王金丽,等.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩—印度大陆向欧亚板块之下俯冲至80-100 km深度的证据.地质通报,2007,26(1):1-12.
    [157]Ding L, Zhong D L, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters,2001,192(3):423-438.
    [158]Liu Y, Yanc Z Q, Wang M. History of zircon growth in a high-pressure granulite within the eastern himalayan syntaxis, and tectonic implications. International Geology Review,2007,49(9): 861-872.
    [159]Su W, Zhang M, Liu X, et al. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis:new constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences,2012,101(1):239-252.
    [160]Xu W-C, Zhang H-F, Parrish R, et al. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics,2010,485(1-4):231-244.
    [161]郭亮,张宏飞,徐旺春.东喜马拉雅构造结多雄拉混合岩和花岗片麻岩锆石U-Pb年龄及其地质意义,岩石学报,2008,pp.421-429.
    [162]孙志明,董翰,廖光宇,等.东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩的初步研究.沉积与特提斯地质,2005,25(4):1-10.
    [163]朱伟元.喜马拉雅东端基底岩系及其建造特征.甘肃地质学报,1996,5(2):21-31.
    [164]Zhang Z, Dong X, Santosh M, et al. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research,2012,21(1):123-137.
    [165]耿全如,彭智敏,张璋.藏东雅鲁藏布江大拐弯蛇绿岩变基性岩类岩石地球化学再研究.地质通报,2010,29(12):1781-1794.
    [166]耿全如,彭智敏,张璋.喜马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究,地质学报,2011,pp.1116-1127.
    [167]耿全如,潘桂棠,郑来林,等.藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境.地质科学,2004,39(3):388-406.
    [168]刘峰,张泽明,董昕,等.青藏高原冈底斯带东南部新生代多期岩浆作用及其构造意义.岩石学报,2011,27(11):3295-3307.
    [169]Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide? Journal of Geophysical Research-Solid Earth,2007,112(B5):B05423.
    [170]Beck R A, Burbank D W, Sercombe W J, et al. Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature,1995,373(6509):55-58.
    [171]Cai F, Ding L, Yue Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet:Implications for timing of India-Asia collision. Earth and Planetary Science Letters, 2011,305(1-2):195-206.
    [172]Chen J, Huang B, Sun L. New constraints to the onset of the India-Asia collision:Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics,2010,489(1-4): 189-209.
    [173]Chu M-F, Chung S-L, O'Reilly S Y, et al. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters,2011, 307(3-4):479-486.
    [174]Clementz M, Bajpai S, Ravikant V, et al. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology,2011,39(1):15-18.
    [175]de Sigoyer J, Chavagnac V, Blichert-Toft J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya:Multichronology of the Tso Morari eclogites. Geology,2000,28(6):487-490.
    [176]Green O R, Searle M P, Corfield R I, et al. Cretaceous-tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (northwest India). Journal of Geology,2008,116(4):331-353.
    [177]Henderson A L, Foster G L, Najman Y. Testing the application of in situ Sm-Nd isotopic analysis on detrital apatites:A provenance tool for constraining the timing of India-Eurasia collision. Earth and Planetary Science Letters,2010,297(1-2):42-49.
    [178]Henderson A L, Najman Y, Parrish R, et al. Constraints to the timing of India-Eurasia collision; a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews,2011,106(3-4):265-292.
    [179]Kaneko Y, Katayama I, Yamamoto H, et al. Timing of Himalayan ultrahigh-pressure metamorphism:sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology,2003,21(6):589-599.
    [180]Leech M L, Singh S, Jain A K, et al. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters,2005,234(1-2):83-97.
    [181]Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research,2010,115(B12): B12416.
    [182]Powell C M, Conaghan P J, Klootwijk C T. India-Eurasia Collision Chronology. Nature,1985, 316(6023):86-86.
    [183]Rowley D B. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters,1996,145(1-4):1-13.
    [184]Wang J, Hu X, Jansa L, et al. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet:Constraints on the Timing of Initial India-Asia Collision. The Journal of Geology,2011,119(3):293-309.
    [185]Wu F Y, Clift P D, Yang J H. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics,2007,26(2):TC2014.
    [186]Yi Z, Huang B, Chen J, et al. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China:Implications to onset of the India-Asia collision and size of Greater India. Earth and Planetary Science Letters,2011,309(1-2):153-165.
    [187]Zhu B, Kidd W S F, Rowley D B, et al. Age of initiation of the India-Asia collision in the east-central Himalaya. Journal of Geology,2005,113(3):265-285.
    [188]Klootwijk C T, Conaghan P J, Nazirullah R, et al. Further palaeomagnetic data from Chitral (Eastern Hindukush):evidence for an early India-Asia contact. Tectonophysics,1994,237(1-2): 1-25.
    [189]Klootwijk C T, Gee J S, Peirce J W, et al. An Early India-Asia Contact-Paleomagnetic Constraints from Ninetyeast Ridge, Odp Leg 121. Geology,1992,20(5):395-398.
    [190]Patriat P, Achache J. India Eurasia Collision Chronology Has Implications for Crustal Shortening and Driving Mechanism of Plates. Nature,1984,311(5987):615-621.
    [191]Patzelt A, Li H M, Wang J D, et al. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet:Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics,1996,259(4):259-284.
    [192]吴福元,黄宝春,叶凯,等.青藏高原造山带的垮塌与高原隆升.岩石学报,2008,24(1):1-30.
    [193]Klootwijk C, Sharma M L, Gergan J, et al. The extent of Greater India, II. Palaeomagnetic data from the Ladakh Intrusives at Kargil, northwestern Himalayas. Earth and Planetary Science Letters, 1979,44(1):47-64.
    [194]黄宝春,陈军山,易治宇.再论印度与欧亚大陆何时何地发生初始碰撞.地球物理学报,2010,53(9):2045-2058.
    [195]Gaetani M, Garzanti E. Multicyclic History of the Northern India Continental-Margin (Northwestern Himalaya). Aapg Bulletin-American Association of Petroleum Geologists,1991, 75(9):1427-1446.
    [196]Rowley D B. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. Journal of Geology,1998,106(2): 229-235.
    [197]Wan X Q, Jansa L F, Sarti M. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia collision. Lethaia,2002,35(2):131-146.
    [198]Willems H, Zhou Z, Zhang B, et al. Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geologische Rundschau,1996,85(4): 723-754.
    [199]de Sigoyer J, Chavagnac V, Blichert-Toft J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya:Multichronology of the Tso Morari eclogites: Reply. Geology,2001,29(2):192-192.
    [200]Bajpai S, Kay R F, Williams B A, et al. The oldest Asian record of Anthropoidea. Proceedings of the National Academy of Sciences,2008,105(32):11093-11098.
    [201]Clyde W C, Khan I H, Gingerich P D. Stratigraphic response and mammalian dispersal during initial India-Asia collision:Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 2003,31(12):1097-1100.
    [202]Rose K D, Rana R S, Sahni A, et al. First tillodont from India:Additional evidence for an early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica,2009,54(2): 351-355.
    [203]Garzanti E. Comment on "When and where did India and Asia collide?" by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. Journal of Geophysical Research-Solid Earth,2008,113(B4):-
    [204]Sun Z, Jiang W, Li H, et al. New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block:Tectonic implications for the collision of India and Asia. Tectonophysics,2010, 490(3-4):257-266.
    [205]Tan X, Gilder S, Kodama K P, et al. New paleomagnetic results from the Lhasa block:Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision. Earth and Planetary Science Letters,2010,293(3-4):396-404.
    [206]丁林,钟大赉.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑),1999,29(5):385-397.
    [207]张进江,季建清,钟大赉,等.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D辑),2003,33(4):373-383.
    [208]Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,2008,23(8): 1093-1101.
    [209]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257(1-2):34-43.
    [210]Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology,2010,51(1-2):537-571.
    [211]Wiedenbeck M, AllE P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandards Newsletter,1995,19(1):1-23.
    [212]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,2002,192(1-2):59-79.
    [213]Ludwig K R. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication No.4,2003.
    [214]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247(1-2):100-118.
    [215]Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500. Chemical Geology,2008,253(3-4):252-257.
    [216]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148(1-2):243-258.
    [217]Scherer E, Munker C, Mezger K. Calibration of the Lutetium-Hafnium Clock. Science,2001, 293(5530):683-687.
    [218]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Et Cosmochimica Acta,2000,64(1):133-147.
    [219]Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica Et Cosmochimica Acta,1999,63(3-4):533-556.
    [220]Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals. American Mineralogist,2010,95:185-187.
    [221]Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,2003,53:469-500.
    [222]Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49(15):1554-1569.
    [223]Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,2003,53:27-62.
    [224]Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology,2009,158(6): 703-722.
    [225]Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications,1989,42(1): 313-345.
    [226]Martin H. Adakitic magmas:modern analogues of Archaean granitoids. Lithos,1999,46(3): 411-429.
    [227]King J, Harris N, Argles T, et al. First field evidence of southward ductile flow of Asian crust beneath southern Tibet. Geology,2007,35(8):727-730.
    [228]朱杰,杜远生,刘早学,等.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义.中国科学D辑地球科学,2005,35(12):1131-1139.
    [229]张万平,莫宣学,朱弟成,等.西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球 化学.成都理工大学学报(自然科学版),2011,38(5):538-548.
    [230]Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction? Geology,2000,28(6):535-538.
    [231]McCrory P A, Wilson D S. Introduction to Special Issue on:Interpreting the tectonic evolution of Pacific Rim margins using plate kinematics and slab-window volcanism. Tectonophysics,2009, 464(1-4):3-9.
    [232]Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics,2009,464(1-4):118-136.
    [233]Abratis M, Worner G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology,2001,29(2):127-130.
    [234]Aguillon-Robles A, Calmus T, Benoit M, et al. Late miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico:Indicators of East Pacific Rise subduction below Southern Baja California? Geology,2001,29(6):531-534.
    [235]Cole R B, Nelson S W, Layer P W, et al. Eocene volcanism above a depleted mantle slab window in southern Alaska. Geological Society of America Bulletin,2006,118(1-2):140-158.
    [236]Farris D W, Haeussler P, Friedman R, et al. Emplacement of the Kodiak batholith and slab-window migration. Geological Society of America Bulletin,2006,118(11-12):1360-1376.
    [237]Sisson V B, Poole A R, Harris N R, et al. Geochemical and geochronologic constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains, Alaska:A record of ridge-transform subduction. Geological Society of America Special Papers,2003,371:293-326.
    [238]Thorkelson D J, Breitsprecher K. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas. Lithos,2005,79(1-2):25-41.
    [239]Thorkelson D J, Madsen J K, Sluggett C L. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology,2011,39(3):267-270.
    [240]Hole M J, Rogers G, Saunders A D, et al. Relation between alkalic volcanism and slab-window formation. Geology,1991,19(6):657-660.
    [241]Manya S, Maboko M A H, Nakamura E. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania:Possible evidence for Neoarchaean ridge subduction? Precambrian Research,2007,159(3-4):241-259.
    [242]Cole R B, Basu A R. Middle Tertiary Volcanism during Ridge-Trench Interactions in Western California. Science,1992,258(5083):793-796.
    [243]Cole R B, Basu A R. Nd-Sr Isotopic Geochemistry and Tectonics of Ridge Subduction and Middle Cenozoic Volcanism in Western California. Geological Society of America Bulletin,1995, 107(2):167-179.
    [244]Klein E M, Karsten J L. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature,1995,374(6517):52-57.
    [245]Sharma M, Basu A R, Cole R B, et al. Basalt-rhyolite volcanism by MORB-continental crust interaction:Nd, Sr-isotopic and geochemical evidence from southern San Joaquin Basin, California. Contributions to Mineralogy and Petrology,1991,109(2):159-172.
    [246]Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 2009,477(1-2):36-48.
    [247]Chemenda A I, Burg J P, Mattauer M. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth and Planetary Science Letters,2000,174(3-4):397-409.
    [248]Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics,1996,15(6):1264-1291.
    [249]Johnson M R W, Oliver G J H, Parrish R R, et al. Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmandu Complex, Nepal. Tectonics,2001,20(3):394-415.
    [250]Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet. Geology,1999,27(9):831-834.
    [251]Rolland Y, Maheo G, Guillot S, et al. Tectono-metamorphic evolution of the Karakorum Metamorphic complex (Dassu-Askole area, NE Pakistan):exhumation of mid-crustal HT-MP gneisses in a convergent context. Journal of Metamorphic Geology,2001,19(6):717-737.
    [252]Replumaz A, Negredo A M, Guillot S, et al. Multiple episodes of continental subduction during India/Asia convergence:Insight from seismic tomography and tectonic reconstruction. Tectonophysics,2010,483(1-2):125-134.
    [253]Replumaz A, Negredo A M, Villasefior A, et al Indian continental subduction and slab break-off during Tertiary collision. Terra Nova,2010,22(4):290-296.
    [254]Singh A, Kumar M R. Seismic signatures of detached lithospheric fragments in the mantle beneath eastern Himalaya and southern Tibet. Earth and Planetary Science Letters,2009,288(1-2): 279-290.
    [255]Genshaft Y S, Mironova N A. Magnetopetrological study of formation conditions of the crustal interior of continents:A case study of kimberlite xenoliths from Yakutia, Siberia Geomagnetism and Aeronomy,1995,31(3):210-229.
    [256]Wark D A, Watson E B. TitaniQ:a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology,2006,152(6):743-754.
    [257]Thomas J, Bruce Watson E, Spear F, et al. TitaniQ under pressure:the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology,2010, 160(5):743-759.
    [258]Zhang H F, Xu W C, Guo J Q, et al. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet:Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab, Acta Petrologica Sinica,2007, pp.1347-1353.
    [259]Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology,1977,20(0):325-343.
    [260]Hastie A R, Kerr A C, Pearce J A, et al. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram. Journal of Petrology,2007,48(12):2341-2357.
    [261]Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters,1980,50(1):11-30.
    [262]Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology,1979,69(1):33-47.
    [263]Zhang R Y, Zhai S M, Fei Y W, et al. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure:the significance of exsolved rutile in garnet. Earth and Planetary Science Letters,2003,216(4):591-601.
    [264]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science,2005,308(5723):841-844.
    [265]Cherniak D J, Watson E B, Wark D A. Ti diffusion in quartz. Chemical Geology,2007,236(1-2): 65-74.
    [266]Kawasaki T, Motoyoshi Y. Solubility of TiO2 in garnet and orthopyroxene:Ti thermometer for ultrahigh-temperature granulites. In:A. Cooper et al. (Editors), Antarctica:A Keystone in a Changing World,2007, pp. Short Research Paper 038.
    [267]Kawasaki T, Osanai Y. Empirical thermometer of TiO2 in quartz for ultrahigh-temperature granulites of East Antarctica. Geological Society, London, Special Publications,2008,308(1): 419-430.
    [268]Liu S J, Li J H, Santosh M. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology,2010,159(2):225-235.
    [269]Sato K, Santosh M. Titanium in quartz as a record of ultrahigh-temperature metamorphism:the granulites of Karur, southern India. Mineralogical Magazine,2007,71(2):143-154.
    [270]Sobolev N V, Yefimova E S. Composition and petrogenesis of Ti-oxides associated with diamonds. International Geology Review,2000,42(8):758-767.
    [271]Harley S L, Kelly N M. The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains:An example from the Rauer Islands, East Antarctica. Chemical Geology,2007,241(1-2):62-87.
    [272]Turcotte D L, Schubert G. Geodynamic. Cambridge University,2002, pp.456.
    [273]Groome W G, Thorkelson D J. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics,2009,464(1-4):70-83.
    [274]Brown M. Ridge-trench interactions and high-T-low-P metamorphism, with particular reference to the Cretaceous evolution of the Japanese Islands. Geological Society, London, Special Publications,1998,138(1):137-169.
    [275]Santosh M, Kusky T. Origin of paired high pressure-ultrahigh-temperature orogens:a ridge subduction and slab window model. Terra Nova,2010,22(1):35-42.
    [276]Sisson V B, Hollister L S, Onstott T C. Petrologic and Age Constraints on the Origin of a Low-Pressure High-Temperature Metamorphic Complex, Southern Alaska. Journal of Geophysical Research-Solid Earth and Planets,1989,94(B4):4392-4410.
    [277]Sisson V B, Pavlis T L. Geologic Consequences of Plate Reorganization:an Example from the Eocene Southern Alaska fore arc. Geology,1993,21(10):913-916.
    [278]Jiang Y, Sun M, Zhao G, et al. The~390 Ma high-T metamorphic event in the Chinese Altai:A consequence of ridge-subduction? Am J Sci,2010,310(10):1421-1452.
    [279]Iwamori H. Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth and Planetary Science Letters,2000,181(1-2): 131-144.
    [280]Marshak R S, Karig D E. Triple junctions as a cause for anomalously near-trench igneous activity between the trench and volcanic arc. Geology,1977,5(4):233-236.
    [281]DeLong S E, Schwarz W M, Anderson R N. Thermal effects of ridge subduction. Earth and Planetary Science Letters,1979,44(2):239-246.
    [282]Dickinson W R, Snyder W S. Geometry of Subducted Slabs Related to San Andreas Transform. The Journal of Geology,1979,87(6):609-627.
    [283]Forsythe R, Nelson E. Geological manifestations of ridge collision:Evidence from the Golfo de Penas-Taitao Basin, southern Chile. Tectonics,1985,4(5):477-495.
    [284]Thorkelson D J, Taylor R P. Cordilleran slab windows. Geology,1989,17(9):833-836.
    [285]Thorkelson D J. Subduction of diverging plates and the principles of slab window formation. Tectonophysics,1996,255(1-2):47-63.
    [286]Johnston S T, Thorkelson D J. Cocos-Nazca slab window beneath Central America. Earth and Planetary Science Letters,1997,146(3-4):465-474.
    [287]Guillaume B, Funiciello F, Moroni M, et al. Dynamics of Mantle Circulation Associated with Slab Window Formation:Insights from 3D Laboratory Models, American Geophysical Union, Fall Meeting 2009, pp. abstract #DI33B-01.
    [288]Russo R M, VanDecar J C, Comte D, et al. Subduction of the Chile Ridge:Upper mantle structure and flow. GSA Today,2010,20(9):4-10.
    [289]Groome W G, Thorkelson D J, Friedman R M, et al. Magmatic and tectonic history of the Leech River Complex, Vancouver Island, British Columbia:Evidence for ridge-trench intersection and accretion of the Crescent Terrane. Geological Society of America Special Papers,2003,371: 327-353.
    [290]Wegner W, Worner G, Harmon R S, et al. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 2011,123(3-4):703-724.
    [291]Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature,2001,409(6819):500-504.
    [292]Kinoshita O. Possible manifestations of slab window magmatisms in Cretaceous southwest Japan. Tectonophysics,2002,344(1-2):1-13.
    [293]Rogers G, Saunders A D, Terrell D J, et al. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature,1985,315(6018):389-392.
    [294]D'Orazio M, Agostini S, Innocenti F, et al. Slab window-related magmatism from southernmost South America:the Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile). Lithos,2001,57(2-3):67-89.
    [295]Merritts D, Bull W B. Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, from uplifted marine terraces. Geology,1989,17(11):1020-1024.
    [296]Osozawa S. The cessation of igneous activity and uplift when an actively spreading ridge is subducted beneath an island arc. Island Arc,1997,6(4):361-371.
    [297]Rogers R D, Karason H, van der Hilst R D. Epeirogenic uplift above a detached slab in northern Central America. Geology,2002,30(11):1031-1034.
    [298]Ramos V A. Seismic ridge subduction and topography:Foreland deformation in the Patagonian Andes. Tectonophysics,2005,399(1-4):73-86.
    [299]Guillaume B, Martinod J, Husson L, et al. Neogene uplift of central eastern Patagonia:Dynamic response to active spreading ridge subduction? Tectonics,2009,28(2):TC2009.
    [300]Regard V, Saillard M, Martinod J, et al. Renewed uplift of the Central Andes Forearc revealed by coastal evolution during the Quaternary. Earth and Planetary Science Letters,2010,297(1-2): 199-210.
    [301]Pavlis T L, Sisson V B. Structural History of the Chugach Metamorphic Complex in the Tana River Region, Eastern Alaska:a Record of Eocene Ridge Subduction. Geological Society of America Bulletin,1995,107(11):1333-1355.
    [302]Wilson D S, McCrory P A, Stanley R G. Implications of volcanism in coastal California for the Neogene deformation history of western North America. Tectonics,2005,24(3):TC3008.
    [303]Sisson V B, Pavlis T L, Roeske S M, et al. Introduction:An overview of ridge-trench interactions in modern and ancient settings. Geological Society of America Special Papers,2003,371:1-18.
    [304]Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature,2001,414(6865): 738-742.
    [305]Grujic D, Hollister L S, Parrish R R. Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth and Planetary Science Letters,2002,198(1-2):177-191.
    [306]St-Onge M R, Searle M P, Wodicka N. Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia:Structural and thermal characteristics of the lower and upper plates. Tectonics,2006,25(4):TC006.
    [307]St-Onge M R, Wodicka N, Ijewliw O. Polymetamorphic evolution of the Trans-Hudson Orogen, Baffin Island, Canada:Integration of petrological, structural and geochronological data. Journal of Petrology,2007,48(2):271-302.
    [308]Brown H. Orogeny, migmatites and leucogranites:A review. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,2001,110(4):313-336.
    [309]Brown M. Crustal melting and melt extraction, ascent and emplacement in orogens:mechanisms and consequences. Journal of the Geological Society,2007,164:709-730.
    [310]Flowerdew M J, Millar I L, Vaughan A P M, et al. The source of granitic gneisses and migmatites in the Antarctic Peninsula:a combined U-PbSHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology,2006,151(6):751-768.
    [311]Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters,2004, 228(1-2):195-212.
    [312]Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China:constraints on partial melting. Journal of Metamorphic Geology,2007,25(9):991-1009.
    [313]吴元保,唐俊,张少兵,等.北大别两期混合岩化作用:SHRIMP锆石U-Pb年龄证据.科学通报,2007,52(8):939-944.
    [314]England P C, Thompson A B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat-Transfer during the Evolution of Regions of Thickened Continental-Crust. Journal of Petrology,1984,25(4):894-928.
    [315]Dong X, Zhang Z, Santosh M. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. The Journal of Geology,2010,118(6):677-690.
    [316]西藏自治区地质矿产局.西藏自治区区域地质志.北京,地质出版社,1993.
    [317]Zhu D C, Zhao Z D, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia. Geology, 2011,39(8):727-730.
    [318]Metcalfe I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 2011,19(1):3-21.
    [319]Sengor A M C. Tectonics of the Tethysides:Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences,1987,15(1):213-244.
    [320]Audley-Charles M G. Reconstruction of eastern Gondwanaland. Nature,1983,306(5938):48-50.
    [321]Audley-Charles M G. Cold Gondwana, warm Tethys and the Tibetan Lhasa block. Nature,1984, 310(5973):165-165.
    [322]Audley-Charles M G, Ballantyne P D, Hall R. Mesozoic-Cenozoic rift-drift sequence of Asian fragments from Gondwanaland. Tectonophysics,1988,155(1-4):317-330.
    [323]和钟铧,杨德明,王天武.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报,2006,22(2):653-660.
    [324]Dai J, Wang C, Hebert R, et al. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone. Remnants of the Paleo-Tethys? Gondwana Research,2011,19(1):232-243.
    [325]Liu Y, Liu H F, Theye T, et al. Evidence for oceanic subduction at the NE Gondwana margin during Permo-Triassic times. Terra Nova,2009,21(3):195-202.
    [326]徐向珍,杨经绥,李天福,等.青藏高原拉萨地块松多榴辉岩的锆石SHRIMP U-Pb年龄及锆石中的包裹体.地质通报,2007,26(10):1340-1355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700