用户名: 密码: 验证码:
南黄海浮游动物群落及环境因子对其分布影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游动物是海洋生态系统中最重要的次级生产者,在海洋生物链(网)中起着承上启下的关键作用,其在海区的分布受到水温、盐度、海流等环境条件的影响,并在食物链中受到上行控制和下行控制的影响,对浮游动物进行研究是了解特定海区生态系统功能与动力学的基础。
     本论文基于2006年以来的多次现场调查资料,分析了南黄海浮游动物种类组成、丰度、生物量与多样性指数的时空变化及影响因素;不同取样网型对浮游动物丰度、生物量及多样性指数的影响;南黄海海樽类浮游动物主要种类的时空分布及环境因子对其的影响;鱼类浮游生物的种类组成、优势种的季节更替以及夏季不同的水文现象对鱼类浮游生物分布的影响;黄海冷水团内部结构对栖息于其中的浮游动物分布格的影响;冬季黄海暖流对浮游动物生物量及暖水种分布的影响及黄海暖流发生前后浮游动物昼夜垂直移动的变化。主要结论如下:
     2006-2007年4个季度月调查共记录浮游动物191种,浮游幼体34种,刺胞动物和甲壳动物是浮游动物种类数最多的类群。夏季多样性指数最低,秋季最高。浮游动物多样性与水文现象密切相关。夏季多样性最低,与冷水团水域多样性指数较低有关;秋季,随着冷水团的缩小,多样性明显升高,且多样性高值区与沿岸流及长江冲淡水影响区相吻合,在东北部黄海暖流影响区多样性指数也较高;冬季多样性最高区恰好是黄海暖流侵入区;春季在黄海暖流残留水影响区浮游动物多样性也较高。
     春季,随着水温和叶绿素a浓度的升高,浮游动物丰度和生物量最高;冬季丰度最低;秋季胶质性浮游动物生物量很低,致使总生物量最低。
     不同网型获取的浮游动物丰度、生物量及多样性都存在差异。大网严重低估粒径较小浮游动物的丰度;两种网型生物量的差别要小于丰度;中网的Shannon多样性指数、Pielou均匀度指数高于大网,但Margalef丰富度指数低于大网。
     系统研究了南黄海海樽类的季节变化特征。梭形纽鳃樽冬、春、夏季在南黄海出现,秋季完全消失。夏季,较高的水温和较低的叶绿素a浓度可能是其最终消失的主要原因;冬季的重新出现与处于强盛期的黄海暖流及东海外陆架的种群有关;小齿海樽夏、秋季出现,秋季成为浮游动物优势种,这可能与长期以来的全球气候变化有关,但是还需要更多的调查数据与研究数据的支持。
     2006-2007年4个季度月鱼类浮游生物的调查共记录鱼类浮游生物10目58种,其中鳀科种类最多。随着季节的变化,优势鱼类浮游动物的生态类型随之变化。如冬季,冷水性的玉筋鱼数量最多,而夏季则是暖水性的多鳞鱚数量最多。夏季,不同的水文现象如浅海陆架锋、长江冲淡水、台湾暖流等对主要种类,如鳀鱼和多鳞鱚鱼卵和仔稚幼鱼的分布有显著影响。
     黄海冷水团对浮游动物的分布产生明显影响。夏季,黄海冷水团为主要的浮游动物种类如中华哲水蚤、太平洋磷虾等提供躲避高温的场所,同时其内部结构可能对浮游动物的分布格局产生影响,如内部暖中心可能会阻止中华哲水蚤种群向深水扩展,而自北向南的冷水冷中心可能对太平洋磷虾种群向岸的移动产生一定的影响。
     冬季,黄海暖流对浮游动物生物量、暖水种分布及昼夜垂直移动都有一定的影响。在黄海暖流侵入区及影响海区,浮游动物生物量较低;暖水种主要分布在黄海暖流影响区;在黄海暖流处于强盛期前,浮游动物昼夜垂直移动现象明显,但处于强盛期后,昼夜垂直移动现象消失。
     水文特征的变化可能引起浮游动物分布格局的变化。1959年春季和2007年春季,中华哲水蚤分布格局相似,但夏季却存在明显的差别,这可能与两年春季不同的水文特征,如青岛冷水团的范围和强度、海洋锋的分布以及长江冲淡水强度的变化等变化有关。
Zooplankton is the principal secondary producer in the marine ecosystem andplays a pivotal role in the marine food chain (web) as a connecting link between thepreceding and the following. Its distribution is impacted by the oceanic conditions,such as temperature, salinity and ocean current. Meanwhile, it is controlled by thebottom-up and top-down effects in the marine food chain. Therefore, the research onzooplankton is the foundation to understand the ecosystem function and dynamics inspecific sea area.
     Based on several field investigation data since2006, the temporal and spatialvariations and influencing factors of the zooplankton species compostion, abundance,biomass and diversity index were analysed; he effects of different sampling gears onzooplankton abundance, biomass and diversity index were analysed; the temporal andspatial variations of Salps and the effects of environmental factors on Salps werefirstly studied in the western southern YS; the species composition, seasonal alterationof dominant species of ichthyoplankton and the effects of different hydrographicalconditions in summer on the distribution of ichthyoplankton were analysed; theinternal structure of the Yellow Sea Cold Water Mass (YSCWM) on the distributionpattern of dominant zooplankton species were analysed; the influence of the YellowSea Warm Current (YSWC) on zooplankton biomass, the distribution warm waterspecies and the diel vertical migration of zooplankton before and after the occurrenceof YSWC were analysed. The main results are as follows:
     191zooplankton taxa and34pelagic larvae were identified in different seasonsin2006-2007. The species number of Cnidaria and Crustacea were the highest amonggroups. The zooplankton diversity was highest in autumn and lowest in summer. Thezooplankton diversity was closely correlated with the hydrographical phenomena. The diversity in summer was the lowest, which was correlated with the low diversity inthe YSCWM; in autumn, as the shrink of the YSCWM, the diversity increasedevidently and the area with high diversity was identical with the the sea area affectedby the Changjiang River Diluted Water (CRDW) and coastal current; the sea area withthe highest diversity was just where the YSWC intruded in winter; in spring, thediversity was also high in the sea area with residual water of YSWC.
     In spring, as the increase of water temperature and Chl a concentration, thezooplankton abundance and biomass were the highest; the abundance was the lowestin winter and the biomass was the lowest in autumn due to the low biomass ofgelatinous zooplankton.
     Differences were observed in the zooplankton abundance, biomass and diversitybetween different net types. The samples of large net severely underestimated theabundance of zooplankton with smaller size; the difference of biomass was less thanthat of abundance; the Shannon diversity, Pielou evenness index of the medium netwere higher than that of large net, but the Margalef richness index of the medium netwas lower than that of large net.
     The seasonal variations of Salps were studied systematically. Salpa fusiformisoccurred in winter, spring and summer in the southern YS, but totally disappeared inautumn. In summer, the high temperature and low Chl a concentration might be theprimary cause for the disappearance in autumn; the recurrence of S. fusiformis inwinter was correlated with strong period of YSWC and the population in the outercontinental shelf of the East China Sea. Doliolum denticulatum occurred in summerand autumn in the southern YS and became one of the dominant zooplankton speciesin autumn, which might be related with the long-term climate change.
     A total of58taxa of ichthyoplankton were identified in the yearly investigationsin the southern YS in2006-2007. The ichthyoplankton of different ecological typedominated as the season changed. For example, cold-water species Ammodytespersonatus dominated in winter and warm-water species Sillago sihama dominated insummer. In summer, the distribution patterns of the dominant ichthyoplankton,Engraulis japonicus and S. sihama were affected by the hydrographical conditions, such as tidal front, CRDW, Taiwan Warm Current.
     The YSCWM has significant effects on zooplankton distribution. In summer, theYSCWM provides refuge for the warm-temperate zooplankton species, such asCalanus sinicua and Euphausia pacifica to avoid the high temperature. Meawhile, thedistribution pattern of these dominant species might be affected by the internalstructure of the YSCWM, for example, the warm core might hold back the furthermigration of C. sinicus into the deep water area, in contrary, the cold water core mighthold back the shoreward migration of E. pacifica.
     In winter,the YSWC might affect the biomass, the distribution of warm-waterspecies and the diel vertical migration of zooplankton. The zooplankton biomass waslow in the sea area impacted by the YSWC; the warm-water species mainlydistributed in the sea area impacted by the YSWC; the diel vertical migration ofzooplankton was evident before the strong period of the YSWC, but the diel verticalmigration disappeared after the strong period of the YSWC.
     The variation of the hydrographical features might lead to the variation of thedistribution pattern of zooplankton. The distribution pattern of C. sinicus in the springof1959and2007was similar. But, the distribution pattern in summer had significantdifference in summer, which might be related with the variations of thehydrographical conditions, such as the coverage and strength of the Qingdao ColdWater Mass, the distribution of the tidal front and the variation of the strength of theCRDW.
引文
[1]鲍献文,李娜,姚志刚等。2009.北黄海温盐分布季节变化特征分析。中国海洋大学学报,39(4),553-562.
    [2]毕洪生,孙松,高尚武等。2000.渤海浮游动物群落生态特点1.种类组成与群落结构。生态学报,20(5),715-721.
    [3]毕洪生,孙松,高尚武等。2002.渤海浮游动物群落生态特点2.桡足类数量分布及变动。生态学报,21(2),177-185.
    [4]陈清潮。1964.中华哲水蚤的繁殖、性比率和个体大小的研究。海洋与湖沼,6(3),272-288.
    [5]陈清潮,陈亚瞿和胡雅竹。1980.南黄海和东海浮游生物群落的初步探讨。海洋学报,2(2),149-157.
    [6]程家骅,丁峰元,李圣法等。2005.东海区大型水母数量分布及其与温盐度的关系。生态学报,25,440-446.
    [7]程家骅,李圣法,丁峰元等。2004.东、黄海大型水母爆发现象及其可能成因浅析。渔业现代化,19,10-12.
    [8]曹文清,林元烧,张跃军。1994.火腿许水蚤染色体组型的初步研究。厦门大学学报(自然科学版),33,853-856.
    [9]曹文清,张跃军,林加涵。1994.厦门港百陶箭虫染色体核型的研究。厦门大学学报(自然科学版),33(增刊),121-124.
    [10]陈大刚。1991.黄渤海渔业生态学[M].海洋出版社。
    [11]陈洪举。2010.东、黄海浮游动物群落结构和多样性研究。中国海洋大学博士学位论文。
    [12]戴燕玉。2005.泉州湾浮性鱼卵和仔、稚鱼的种类和数量分布。福建水产,2:15~19。
    [13]戴燕玉。2000.楚科奇海和白令海毛颚类的分布。极地研究,14,186-194.
    [14]杜涛和黄洋。2009.多鳞鱚生物学特性及室内养殖试验,水产养殖,3,1-3.
    [15]何德华,杨关铭等。南极半岛西北海域的浮游桡足类。南极科学考察论文集,6,197-129.
    [16]洪旭光,张锡烈,俞建銮等。2001.东海北部黑潮区浮游动物的多样性研究。海洋学报,2001,23(1):139-142。
    [17]侯舒民。1984.西太平洋热带水域的半肌目(Hemimyaria)海樽类.国家海洋局第三海洋研究所.西太平洋热带水域浮游生物论文集.北京:海洋出版社,217-244.
    [18]胡好国,万振文,袁业立。2004。南黄海浮游植物季节性变化的数值模拟与影响因子分析。海洋学报,26(6),74-88。
    [19]黄凤鹏,黄景洲,杨玉玲等。2007.胶州湾鱼卵、仔鱼和稚鱼的分布。海洋科学进展,25(4),468-473.
    [20]黄凤鹏,吴宝铃。1992.南极长城湾及其附近水域浮游动物的种类组成和数量变化。极地研究,4,40-46.
    [21]霍元子。2008.黄海浮游动物功能群的研究。中国科学院研究生院博士学位论文。青岛:中国科学院海洋研究所。
    [22]蒋玫和沈新强。2006.长江口及邻近水域夏季鱼卵、仔鱼数量分布特征。海洋科学,30(6),92-97.
    [23]蒋玫,沈新强,王云龙等。2006.长江口及其邻近水域鱼卵、仔鱼的种项组成与分布特征。海洋学报,28(2),171-174.
    [24]蒋玫和王云龙。2007.东海夏季日本鲭(Scomber japanicus)和鳀鱼(Engraulisjapanicus)鱼卵仔鱼分布特征。海洋与湖沼,38(4),351-355.
    [25]蒋玫,王云龙,袁骐等。2007.东海中尺度夏季鱼卵仔鱼种类组成特征。生态学报,27(1),152-158.
    [26]姜强。2010.春、秋季北黄海大中型浮游动物群落生态学研究。中国海洋大学硕士学位论文,青岛。
    [27]蒋日进,钟俊生,张冬良等。2008.长江口沿岸碎波带仔稚鱼的种类组成及其多样性特征。动物学研究,29(3):297-304.
    [28]李超伦,孙松,张光涛等。2000a.南极普里兹湾邻近海域夏季纽鳃樽对浮游植物的摄食。极地研究,12,97-104.
    [29]李超伦,孙松,张光涛等。2000b.南极普里兹湾夏季边缘浮冰区两种主要桡足类的代谢研究。极地研究,12,183-190.
    [30]李超伦,王荣。2000.莱州湾夏季浮游桡足类的摄食研究。海洋与湖沼,31(1),15-22.
    [31]李超伦,王荣和孙松。2003.南黄海鳀产卵场中华哲水蚤的数量分布及其摄食研究。水产学报,27,Suppl.,55-63.
    [32]林景宏,陈瑞祥。1994。东海黑潮区浮游介形类的生态特征。生态学报,14,174-179.
    [33]林景宏,戴燕玉,林茂等。2002.夏季白令海浮游动物的分布。极地研究,14,126-135.
    [34]林景宏,戴燕玉,张金标等。2001.夏季楚科奇海浮游动物的生态特征。极地研究,13,107-116.
    [35]林茂。1988.台湾海峡西部海域海樽类(Thaliacea)的初步分析。海洋通报,7,66-71.
    [36]林茂。1990.大亚湾海樽类的生态研究。国家海洋局第三海洋研究所。大亚湾海洋生态文集。北京:海洋出版社,390-396。
    [37]林楠,沈长春,钟俊生。2009.九龙江口沿岸破碎带仔稚鱼种类组成,上海海洋大学学报,18(6):686~694。
    [38]林元烧,曹文清,姚津津。2000.厦门港中华哲水蚤染色体组型。厦门大学学报(自然科学版),39,826-830.
    [39]林元烧,方旅平,曹文清等。2005.中华哲水蚤线粒体DNA COI基因序列分析。厦门大学学报(自然科学版),44,90-93.
    [40]刘桂梅,孙松,王辉等。2002.春秋季黄海海洋锋对中华哲水蚤分布的影响。自然科学进展,12(11),1150-1154.
    [41]刘录三和李新正。2003.南黄海春秋季大型底栖分布现状。海洋与湖沼,34(1),26-32.
    [42]刘青,刘芳,朱海燕等。2009.光照、体长对强壮箭虫摄食强度和日粮的影响。海洋湖沼通报,1,155-161.
    [43]刘青,曲晗,张硕。2007.强壮箭虫对温度、盐度的耐受性研究。海洋湖沼通报,1,111-116.
    [44]刘青,曲晗,张硕等。2006.强壮箭虫摄食生态的实验研究。水产学报,30,767-772.
    [45]刘青,朱海燕,刘芳等。2011.温度、盐度对强壮箭虫耗氧率和窒息点的影响。应用生态学报,22,3081-3086.
    [46]刘光兴,陈晓峰,崔建丽。2009.黄、东海平滑真刺水蚤遗传结构的ISSR序列。中国海洋大学学报(自然科学版),39,995-998.
    [47]刘淑德和线薇微。2009.长江口及其邻近水域鱼类浮游生物群落的时空格局。生物多样性,17(2),151-159.
    [48]刘镇盛,王春生,张志南等。2006.三门湾浮游动物的季节变动及微型浮游动物的摄食影响。生态学报,26(12),3931-3941.
    [49]马兆党,宋庆云。1992.东海黑潮区莹虾类的初步研究。黄渤海海洋,10,53-62.
    [50]孟凡,陈士群,吴宝铃。1996.东海黑潮区浮游动物的生物量分布。海洋学报,18,82-88.
    [51]孟凡,毛兴华,黄凤鹏等。1995.东海黑潮锋面涡旋区浮游动物的分布。生态学报,15,296-304.
    [52]孟凡,毛兴华,俞建銮等。1987。江苏海岸带水域浮游动物的种类组成和分布。生态学报,7,256-266.
    [53]孟凡,丘建文,吴宝铃。1993.黄海大海洋生态学的浮游动物。黄渤海海洋,11(3),30-37.
    [54]孟田湘。2003.黄海中南部鳀鱼各发育阶段对浮游动物的摄食。海洋水产研究,3:1~9。
    [55]秦蕴珊。1963.中国陆棚海的地形及沉积类型的初步研究。海洋与湖沼,5(1):71~85。
    [56]孙军,刘冬艳,王宗灵等。2003.春季赤潮频发期东海微型浮游动物摄食研究。应用生态学报,14(7),1073-1080.
    [57]孙儒泳。1992.动物生态学原理[M]。北京,北京师范大学出版社,356-357.
    [58]孙晓红。2008.小型桡足类种群动力学研究。中国科学研研究生院博士学位论文。青岛,中国科学院海洋研究所。
    [59]汤毓祥,邹娥梅,Lie, H. J.2001.冬至初春黄海暖流的路径和起源。海洋学报,23(1),1-12.
    [60]万瑞景,黄大吉,张经。2002.东海北部和黄海南部鳀鱼卵和仔稚幼鱼数量、分布及其与环境条件的关系。水产学报,26(4),321-330.
    [61]万瑞景和姜言伟。1998a.渤海硬骨鱼类鱼卵、仔稚鱼及其生态调查研究。中国水产科学,5(1),43-50.
    [62]万瑞景和姜言伟。1998b.黄海硬骨鱼类鱼卵、仔稚鱼及其生态调查研究。海洋水产研究,19(1),60-73.
    [63]万瑞景和姜言伟。2000.渤、黄海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特性。上海海洋大学学报,9(4),290-297.
    [64]万瑞景和孙珊。2006.黄、东海生态系统中鱼卵、仔稚幼鱼种类组成与数量分布。动物学报,52(1),28-44.
    [65]万瑞景,魏皓,孙珊等。2008.山东半岛南部产卵场鳀鱼的产卵生态1、鳀鱼鱼卵和仔稚幼鱼的数量与分布特征。动物学报,54(5),785-797.
    [66]王保栋,王桂云,郑昌洙等。1999.南黄海冬季生源要素的分布特征。黄渤海海洋,17(1),40-45.
    [67]王春生,陈士群。1993.东海黑潮及其邻近海域仔稚鱼的生态研究。黑潮调查研究论文选,第五集,北京:科学出版社,460-479.
    [68]王春生,何德华,刘红斌等,1996.东海东南部浮游动物生物量的分布特征。海洋学报,18,66-77.
    [69]王辉武。2008.黄海暖流季节和年际变化研究。国家海洋局第一海洋研究所硕士学位论文,青岛。
    [70]王荣,高尚武,王克等。2003.冬季黄海暖流的浮游动物指示。水产学报,27(增刊),39-48.
    [71]王荣,王克。2003.两种浮游生物网捕获性能的现场测试。水产学报,27,增刊,98-102.
    [72]王荣,张鸿雁,王克等。2002.小型桡足类在海洋生态系统中的功能作用。海洋与湖沼,33,454-460.
    [73]王荣,仲学锋。1993.普里兹湾邻近海区大磷虾幼体的分布与丰度研究。极地研究,13-31.
    [74]王学锋,李纯厚,贾晓平等。2010.北部湾海樽类的种类组成及分布。渔业现代化,37,59-63.
    [75]王小羽,朱碧英。1988.南极大磷虾主要生物化学成分的分析。南极研究,1,22-27.
    [76]王真良,徐汉光,朱建东等。1985.黄海的浮游动物。海洋通报,4(5),33-39.
    [77]韦钦胜,于志刚,冉祥斌等,2011.黄海西部沿岸流系特征分析及其对物质输运的影响。地球科学进展,26(2),145-156.
    [78]韦钦胜,臧家业,魏修华等。2010.秋季南黄海西部营养盐的分布及其与环流场的关系。海洋学报,33(1),74-82.
    [79]韦钦胜,周明,魏修华等。2010.冬季南黄海海水化学要素的分布特征及变化趋势。海洋科学进展,28(3),353-363.
    [80]吴光宗。1989.长江口海区鳀鱼和康氏小公鱼鱼卵和仔、稚鱼分布的生态特征。海洋与湖沼,20(3),217-229.
    [81]肖贻昌。1993.海洋浮游动物研究。中国海洋科学研究及开发。曾呈奎、李海鸥、李本川主编,青岛,青岛出版社,69-80.
    [82]徐勤增,李瑞香,王宗灵等。2009.南黄海夏季大型底栖生物分布现状。海洋科学进展,27(3):393~399。
    [83]徐兆礼。2006a。中国海洋浮游动物研究的新进展。厦门大学学报(自然科学版),45,16-23.
    [84]徐兆礼。2006b.东海精致真刺水蚤(Euchaeta concinna)种群生态特征。海洋与湖沼,37,97-104.
    [85]徐兆礼。2006c.东海普通波水蚤种群特征与环境关系研究。应用生态学报,17,107-112.
    [86]徐兆礼。2006d.东海亚强真哲水蚤种群生态特征。生态学报,26,1151-1158.
    [87]徐兆礼,陈亚瞿。2005.东海磷虾类优势种的生态适应。生态学报,25,2227-2233.
    [88]徐兆礼,戴一凡,陈亚瞿。2004.东海毛颚类数量分布于环境的关系。上海水产大学学报,13,203-208.
    [89]徐兆礼,高倩。2009.长江口海域真刺唇角水蚤的分布及其对全球变暖的响应。应用生态学报,20,1196-1201.
    [90]徐兆礼,林茂。2007a.东海海樽类种类组成和多样性。海洋水产研究,28,26-32.
    [91]徐兆礼,林茂,张金标。2006e.东海海樽类优势种的数量变化。动物学报,52,53-62.
    [92]徐兆礼,林茂,张金标。2007b.东海海樽类数量分布及其与环境的关系。海洋与湖沼,38,549-554.
    [93]徐兆礼,蒋玫,晁敏等。2003a.东海浮游桡足类的数量分布。水产学报,258-264.
    [94]徐兆礼,孙军,林茂。2008.东海海樽类生态类群统计分析。生态学报,28,5699-5705.
    [95]徐兆礼,王荣,陈亚瞿。2003.黄海南部及东海中小型浮游桡足类生态学研究1.数量分布。水产学报,27(增刊),1-8.
    [96]徐兆礼,张金标,蒋玫。2003b.东海管水母类生态研究。水产学报,27(增刊),82-90.
    [97]杨光,李超伦,孙松。2010.南极夏季普里兹湾磷虾幼体及纽鳃樽的丰度和分布特征。极地研究,22,125-134.
    [98]于雯雯,刘培廷,汤建华等。2011.吕四渔场近岸产卵场鱼卵的种类组成与数量分布。南方水产科学,7(5),9-17.
    [99]张芳和孙松。2001.中华哲水蚤生态学研究进展。海洋科学,25(11),16-19.
    [100]张光涛,孙松。2000.普里兹湾的浮游动物群落生态研究Ⅰ:分布和结构。极地研究,12,89-96.
    [101]张金标,黄修将,连光山。2003.台湾南湾区秋末冬初海樽类的种类组成和数量分布。海洋通报,22,9-16.
    [102]张金标,连光山,王云龙等。2003.台湾海峡东部海域海樽类海樽动物的分布。台湾海峡,22,279-285.
    [103]张金标,林茂。2000.楚科奇海的水螅水母类及其分布。极地研究,12,169-182.
    [104]张瑞安和郑东。1989.黄海西部春季海洋锋及其与渔业的关系。青岛海洋大学学报,19(1),199-204.
    [105]张武昌,王荣。2000.渤海微型浮游动物及其对浮游植物的摄食压力。海洋与湖沼,31(3),252-258.
    [106]张锡烈。1983。江苏近岸水螅水母类、管水母类初步研究。黄渤海海洋,1,87-92.
    [107]张蕴斐,张占海,吴辉啶等。2003.黑潮环流的数值模拟。海洋学报,25(3),120-128.
    [108]赵保仁。1987.南黄海西部的陆架锋及冷水团锋区环流的初步研究。海洋与湖沼,18(3),217-226.
    [109]赵宪勇。2006.黄海鳀鱼种群动力学研究特征及其资源可持续利用。中国海洋大学博士学位论文。
    [110]郑执中。1965.黄海和东海西部浮游动物群落的结构及其季节变化。海洋与湖沼,7(3),199-204.
    [111]郑重,李少菁和许振祖。1984.海洋浮游生物学。北京:海洋出版社。
    [112]郑重,郑执中,王荣等。1965.烟威鮐鱼渔场及邻近水域浮游动物生态的初步研究。海洋与湖沼,7(4):329~354。
    [113]中华人民共和国科学技术委员会海洋组海洋综合调查办公室。1964.全国海洋综合调查报告第八册中国近海浮游生物的研究。
    [114]周锋,黄大吉,倪晓波等。2010.影响长江口毗邻海域低氧区多种时间尺度变化的水文要素。生态学报,30(17),4728-4740.
    [115]周锋,黄大吉,万瑞景等。2008.南黄海西北部夏季潮锋的观测和分析。海洋学报,30(3),9-15.
    [116]周进,徐兆礼,马增岭。2009.长江口细足法虫戎数量变化和对全球变暖的响应。生态学报,29,5758-5765.
    [117]朱德山,Iverson, S. A.1990.黄东海鳀鱼及其他经济鱼类资源声学评估的调查研究。海洋水产研究,11,1-141.
    [118]朱建荣。长江口外海区叶绿素a浓度分布及其动力成因分析。中国科学D辑地球科学,34(8),757-762.
    [119]朱建荣,肖成?,沈焕庭。1998.夏季长江冲淡水扩展的数值模拟。海洋学报,20(5),13-22.
    [120]朱延忠。2010.夏、冬季北黄海大中型浮游动物群落生态学研究。中国海洋大学硕士学位论文,青岛。
    [121]邹娥梅,郭炳火,汤毓祥等。2000.1996年春季南黄海水文特征和水团分析。海洋学报,22(1),17-26.
    [122]邹娥梅,郭炳火,汤毓祥等。2001.南黄海及东海北部夏季若干水文特征和环流的分析。海洋与湖沼,32(3),340-348.
    [123]左涛。2003.黄、东海浮游动物群落结构研究。中国科学院研究生院博士学位论文,青岛,中国科学研海洋研究所。
    [124]左涛,王荣,陈亚瞿等。2005.春季和秋季东、黄海陆架区大型网采浮游动物群落划分。生态学报,25(7),1531-1540.
    [125]左涛,王荣,高尚武等。2006.南黄海鳀鱼产卵场小型桡足类的数量分布。海洋与湖沼,37(4),330-336.
    [126]左涛,王荣,王克等。2004.夏季南黄海浮游动物的垂直分布与昼夜垂直移动。生态学报,24(3),524-530.
    [127] Alcaraz, M., Almeda, R., Calbet, A. et al.2010. The role of arctic zooplankton inbiogeochemical cycles: respiration and excretion of ammonia and phosphate during summer.Polar Biology,33,1719-1731.
    [128] Anderson, V.1986. Effects of temperature on the filtration rate and percentage ofassimilation of Salpa fusiformis Cuvier (Tunicata: Thaliacea). Hydrobiologia,135-140.
    [129] Anderson, V. and Nival, P.1986. A model of the population dynamics of salps in coastalwaters of the Ligurian Sea. Journal of Plankton Research,8,1091-1110.
    [130] Ashjian, C. J., Smith, S. L., Flagg, C. N., et al.1994. The influence of a Gulf Streammeander on the distribution of zooplankton biomass in the Slope Water, the Gulf Stream,and the Sargasso Sea, described using a shipboard acoustic Doppler current profiler.Deep-Sea Res I41:23-50.
    [131] Ashjian, C. J., Smith, S. L., Flagg, C. N., et al.1998. Patterns and occurrence of diel verticalmigration of zooplankton biomass in the Mid-Atlantic Bight described by the acousticDoppler current profiler. Continental Shelf Research,18,831-858.
    [132] Atkinson, A., Siegel, V., Pakhomov, E., et al.2004. Long-term decline in krill stock andincrease in salps within the Southern Ocean. Nature,432,100-103.
    [133] Aksnes, Ohman, M. D.1996. A vertical life table approach to zooplankton mortalityestimation. Limnology and Oceanography,41,1461-1469.
    [134] Ambler, J. W., Ferrari, F. D. and Fornshell, J. A.1991. Population structure and swarmformation of the cyclopoid copepod Dioithona oculata near mangrove cays. Journal ofPlankton Research,13,1257–1272.
    [135] Bai, H., Hu, D. X., Chen, Y. L. et al.2004. Statistic characteristics of thermal structure in thesouthern Yellow Sea in summer. Chinese Journal of Limnology and Oceanography,22(3),237-243.
    [136] Bag ien, E., Kaartvedt, S, Aksnes, D. L., et al. Vertical distribution and mortality ofoverwintering Calanus. Limnology and Oceanography,46,1494-1510.
    [137] Banse K.1995. Zooplankton: Pivotal role in the control of ocean production. ICES Journalof Marine Science,52,265~277.
    [138] Bathmann, U. V.1988. Mass occurrence of Salpa fusiformis in the spring of1984off Ireland:Implications for sedimentation processes. Marine Biology,97,127-135.
    [139] Benfield, M. C., Davis, C. S., Wiebe, P. H., et al.1996. Video Plankton Recorder estimatesof copepod, pteropod and larvacean distributions from a stratified region of George Bankwith comparative measurements from a MOCNESS sampler. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,43,1925-1945.
    [140] Bensam, P.1990. Eggs and early larvae of the sand whiting Sillago sihama (Forskal). IndianJournal of Fisheries,37(3):237-241.
    [141] Berner, L. D. and Reid, J. L.1961. On the response to changing temperature of thetemperature-limited plankter Doliolum denticulatum Quoy and Gaimard1835. Limnologyand Oceanography,205-215.
    [142] Bhavanarayana, P. V., Ganapati, P. N..1971. Species groups among pelagic tunicates in thewestern part of the Bay of Bengal, Marine Biology,11,173~177.
    [143] Biggs, D. C.1977. Respiration and excretion by open ocean gelatinous zooplankton.Limnology and Oceanography,22,108-117.
    [144] Braconnot, J. C.1971. Contribution a I'Ctude biologique et ecologique des tunicierspelagiques salpides et doliolides,1. Hydrologie et ecologie des salpides. Vie Milieu22:257-286.
    [145] Buskey, E. J. and Stoecker, D. K.1989. Behavioral responses of the marine tintinnid Favellasp. to phytoplankton: influence of chemical, mechanical and photic stimuli. Journal ofexperimental marine biology and ecology,132,1–16.
    [146] Calber, A. and Laury, M. R.2004. Phytoplantkon growth, microzooplankton grazing, andcarbon cycling in marine systems. Limnology and Oceanography,49,51-57.
    [147] Carr, S. D., Capet, X. J., McWilliams, J. C. et al.2008. The influence of diel verticalmigration on zooplankton transport and recruitment in an upwelling region: estimates froma coupled behavioral-physical model. Fisheries Oceanography,17,1-15.
    [148] Chae, J. H., Choi, H. W., Lee, W. J., Kim, D. S., Lee, J. H.2008. Distribution of a pelagictunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and itsimpingement on cooling water intakes of Uljin nuclear power plant. Jour. Environ. Bio.,29(4)585-590.
    [149] Chen, H. J., Qi, Y. P. and Liu, G. X.2011. Spatial and temperal distribution of macro-andmesozooplankton community in the Huanghai Sea (Yellow Sea) and East China Sea insummer and winter. Acta Oceanologica Sinica,30,84-95.
    [150] Choe, S. M.,1985. Contribution a l'etude biologique et ecologique des Tuniciers pelagiquesSalpides (Thaliaces) en Mtditerranee. These3eme Cycle d'Oceanographie biologique, Univ.Paris VI, Paris,57pp.
    [151] Clancy, M., Epifanio, C. E. Distribution of crab larvae in relation to tidal fronts in DelawareBay, USA. Marine Ecology Progress Series,57,77-82.
    [152] Cisewski, B., Strass, V. H., Rhein, M., et al.,2010. Seasonal variation of diel verticalmigration of zooplankton from ADCP backscatter time series data in the Lazarev Sea,Antarctica. Deep Sea Research I,57,78-94.
    [153] CMarZ.2004. Science Plan for the Census of Marine Zooplankton. Unpublished report froma Census of Marine Life workshop held17-22March2004in Portsmouth NH, with supportfrom the Alfred P. Sloan Foundation.
    [154] Davis, C. S., Gallager, S. M., Berman, M. S., et al.1992. The Video Plankton Recorder(VPR): Design and initial results.36,67-81.
    [155] Davis, C. S., Thwaites, F. T., Gallager, S. M., et al.2005. A three-axis fast-tow digital VideoPlankton Recorder for rapid surveys of plankton taxa and hydrography. Limnology andOceanography: Methods3,59-74.
    [156] Deibel. D.1982. Laboratory determined mortality, fecundity and growth rates of Thaliademocratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). Journal ofPlankton Research,4,143-153.
    [157] Deibel, D. and Paffenhofer, G.A.2009. Predictability of patches of neritic salps and doliolids(Tunicata, Thaliacea). Journal of Plankton Research,31(12),1571~1579.
    [158] Deines, K. L.1999. Backscatter estimation using broadband acoustic Doppler currentprofilers. IEEE:249-253.
    [159] Dippner, J. W., Kornilovs, G. and Sidrevics, L. Long-term variability of mesozooplanktonin the central Baltic Sea. Journal of Marine Systems,25,23-31.
    [160] Epifanio, C. E.1987. The role of tidal fronts in maintaining patches of Brachyuran zoeae inestuarine waters. Journal of Crustacean Biology7:513-517.
    [161] Fasham, M. R., Angel, M. V. and Roe, H. J.1974. An investigation of the spatial pattern ofzooplankton using the Longhurst-Hardy plankton recorder. Journal of experimental MarineBiology and Ecology,16,93-112.
    [162] Frank, K. T.1988. Independent Distributions of Fish Larvae and Their Prey: NaturalParadox or Samp ing Artifact?. Can. J. Fish. Aquat. Sci,45:48~59.
    [163] Frank, K. T. and Leggett, W. C.1986. Effects of prey abundance and size on the growth andsurvival of larval fish: an experimental study employing large volume enclosures. MarineEcology Progress Series,34,11~22.
    [164] Franqueville, C.1971. Macroplancton profound (Invertebrates) de la Mediterraneenord-occidentale. Tethys3:11-55.
    [165] Fu, M. Z., Wang, Z. L., Li, Y., Li, R. X., Sun, P., Wei, X. H., Lin, X. Z., Guo, J. S.2009.Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China):Seasonal variability. Continental Shelf Research,29,2178–2194.
    [166] Gaard, E.1999. The zooplankton community structure in relation to its biological andphysical environmental on the Fareo shelf,1989-1997. Journal of Plankton Research,21,1133-1152.
    [167] Gao, Q. and Xu, Z. L.2011. Effect of regional warming on the abundance ofPseudeuphausia sinica Wang et Chen (Euphausiacea) off the Changjiang River (YangtzeRiver) Estuary. Acta Oceanologica Sinica,30,122-128.
    [168] GB17378.4-1998.1998.海洋监测规范第4部分:海水分析[S].北京:中国标准出版社。
    [169] Hajisamaea, S., Choua, L.M. and Ibrahim, S.2003. Feeding habits and trophic organizationof the fish community in shallow waters of an impacted tropical habitat. Estuarine, Coastaland Shelf Science,58:89~98.
    [170] Hajisamae, S., Yeesin, P. and Ibrahim, S.2006. Feeding ecology of two sillaginid fishes andtrophic interrelations with other co-existing species in the southern part of South China Sea.Environmental Biology of Fishes,76:167–176.
    [171] Halliday, N. C., Coombs, S. H., and Smith, C.2001. A comparison of LHPR and OPC datafrom vertical distribution sampling of zooplankton in a Norwegian fjord. Sarsia,86,87-99.
    [172] Harbison, G. R. and Gilmer, R. W.1976. The feeding rates of the pelagic tunicatePegea confederata and two other salps. Limnology and Oceanography,21,517-528.
    [173] Harbison, G. R. and McAlister, V. L.1979. The filter-feeding rates and particle retentionefficiencies of three species of Cyclosalpa (Tunicata, Thaliacea). Limnology andOceanography,24,875-892.
    [174] Harris R., Wiebe, P. H., Lenz, G., et al. ICES Zooplankton Methodological Manual.Academic Press,2000.
    [175] Haury, L. R., Wiebe, P. H. and Boyd, S. H.1976. Longhurst-Hardy plankton recorders: theirdesign and use to minimize bias. Deep Sea Research and Oceanography abstracts,23,1217-1229.
    [176] Herman, A. W.1988. Simultaneous measurement of zooplankton and light attenuance with anew optical counter. Continental Shelf Research,8,205-221.
    [177] Herman, A. W.1992. Design and calibration of a new optical plankton counter capable ofsizing small zooplankton. Deep Sea Research Part A. Oceanography research papers,39,395-415.
    [178] Herman, A. W.2004. The next generation of Optical Plankton Counter: the Laser-OPC.Journal of Plankton Research,26,1135-1145.
    [179] Heron, A. C.1972. Population ecology of a colonizing species: the pelagic tunicate Thaliademocratica. I. Individual growth rate and generation time. Oecologia (Berl.),10,269—293.
    [180] Heywood, K. J., Scrope-Home, S., and Barton, E. D.1991. Estimation of zooplanktonabundance from shipborne ADCP backscatter. Deep Sea Research Part A. Oceanographyresearch papers,38,677-691.
    [181] Hopcroft, R. R., Roff, J. C. and Chavez, F. P.2001. Size paradigms in copepod communities:a re-examination. Hydrobiologia,453,133-141.
    [182] Hsieh, C. H. and Chiu, T. S.2002. Summer Spatial Distribution of Copepods and FishLarvae in Relation to Hydrography in the Northern Taiwan Strait, zoological studies,41(1):85-98.
    [183] Huo, Y. Z., Wang, S. W., Sun, S. et al.2008. Feeding and reproduction of the planktoniccopepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal ofPlankton Research,30,723-734.
    [184] Inda-diaz, E. A., Velasco, L. S. and Lavin, M. F.2010. Three-dimensional distribution ofsmall pelagic fish larvae (Sardinops sagax and Engraulis mordax) in a tidal-mixing frontand surrounding waters (Gulf of California).Journal of Plankton Research,32,1241-1254.
    [185] Jaafar, Z., Hajisamae, S., Chou, L. M. et al.2004. Community structure of coastal fishes inrelation to heavily impacted human modified habitats. Hydrobiologia511:113–123.
    [186] Jayasankar, P.1991. Sillaginid fishes of Palk Bay and Gulf of Mannar with an account onthe maturation and spawning of Indian sand whiting Sillago sihama (Forskal). IndianJournal of fisheries.,38:13~25.
    [187] Jimenez, A. D., Velasco, L. S., Lavin, M. F., et al.(2009) Three-dimensional distribution oflarval fish assemblages across a surface thermal/chlorophyll front in a semienclosed sea.Estuarine, Coastal and Shelf Science,85,487-496.
    [188] Jiang, S. N., Dickey, T. D., Steinberg, D. K., et al.2007. Temporal variability of zooplanktonfrom ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep SeaResearch Part Ⅰ,54(4),608-636.
    [189] Kang, J. H., Kim, W. S., Jeong, H. J., et al.2007. Why did the copepod Calanus sinicusincrease during the1990s in the Yellow Sea? Marine Environmental Research,63,82-90.
    [190] Kishi, M. J., Motono, H., Kashiwai, M., et al.2001. An ecological-physical coupled modelwith ontogenetic vertical migration of zooplankton in the northwestern Pacific. Journal ofOceanography,57,499-507.
    [191] Krishnamurthy, K. N. and Kaliyamurthy, M.1976. Study on the age and growth of Indiasand whiting Sillago sihama (Forskal) from Pulicat Lake with observations on its biologyand fishery. Indian Journal of Fisheries,25:84-97.
    [192] Laprise, R. and Dodson, J. J.1994. Environmental variability as a factor controlling spatialpatterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary.Marine Ecology Progress Series,107,67-81.
    [193] Laval, P., Braconnot, J. C., Silvar, N. L.1992. Deep planktonic filter-feeders found in theaphotic zone with the Cyana submersible in the Ligurian Sea (NW Mediterranean). MarineEcology Progress Series,79:235~241.
    [194] Lavaniegos, B. E. and Ohman, M. D.2003. Long-term changes in pelagic tunicates of theCalifornia Current. Deep-Sea Research II50,2473-2498.
    [195] Lee, C. S.1981. Factors affecting egg characteristics in the fish Sillago sihama. MarineEcology Progress Series,4:361~363.
    [196] Lenz, J., Schnack, D., Peterson, D., et al.1995. The Ichthyoplankton Recorder: A videorecording system for in situ studies of small-scale plankton distribution patterns. ICESJournal of Marine Science,52,409-417.
    [197] Leon, S. H., Almeida, C., Yebra, L., et al.2002. Lunar cycle of zooplankton biomass insubtropical waters: biogeochemical implications. Journal of Plankton Research,24,935-939.
    [198] Levitus, S., Antonov, J. I., Boyer, T. P. et al.2000. Warming of the world ocean. Nature,287,2225-2228.
    [199] Li, C. L., Sun, S., Wang, R. et al.2004. Feeding and respiration rates of a planktoniccopepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. MarineBiology,145,149-157.
    [200] Li, K. Z., Yin, J. Q., Huang, L. M. et al.2010. Monsoon-forced distribution and assemblagesof appendicularians in the northwestern coastal waters of South China Sea. Estuarine,Coastal and Shelf Science,89,145-153.
    [201] Li, K. Z., Yin, J. Q., Huang, L. M. et al.2011. Distribution and abundance of thaliaceans inthe northwest continental shelf of South China Sea, with response to environmental factorsdriven by monsoon. Continental Shelf Research,31,979-989.
    [202] Lie, H.J., Cho, C.H., Lee, J. H., Lee, S., Tang, Y. X., Zou, E. M.2001. Does the Yellow SeaWarm Current really exist as a persistent mean flow? Journal of geographical research,106,22,199–22,210.
    [203] Lin, C. L., Ning, X. R., Su, J. L. et al.2005. Environmental changes and the responses of theecosystemsof the Yellow Sea during1976–2000. Journal of Marine Systems,55,223-234.
    [204] Lin, C. L., Su, J. L., Xu, B. R. et al.2001. Long-term variations of temperature and salinityof the Bohai Sea and their influence on its ecosystem. Progress in Oceanography,49,7-12.
    [205] Lin, M. and Lin, R. C.2006. Seasonal abundance and distribution of pelagic tunicates(Chordata: Thaliacea) in the central South China Sea. Acta Oceanologica Sinica,25,148-156.
    [206] Lincarndro, P., Ibanez, F. and Etienne, M.2006. Long-term fluctuations (1974–1999) of thesalps Thalia democratica and Salpa fusiformis in the northwestern Mediterranean Sea:Relationships with hydroclimatic variability. Limnology and Oceanography,51,1832-1848.
    [207] Lough, R. G. and Manning, J. P.2001. Tidal-front entrainment and retention of fish larvaeon the south flank of Georges Bank. Deep-Sea Research Ⅱ,48:631~644.
    [208] Lv, L. G., Liu, J. J., Yu, F., et al.2007. Vertical migration of sound scatterers in the SouthernYellow Sea in summer. Ocean Science Journal,42,1-8.
    [209] Lv, L. G., Qiao, F. L., Yuan, Y. L.2004. Latitudinal variation of deep scattering layer in theWestern Pacific. Journal of Hydrodynamics B16(5):571-581.
    [210] Lv, L.G., Yu, F., Diao, X. Y., et al.2008. Direct observation of Radiative flux in the SouthernYellow Sea. Ocean Science Journal,43(2),115-126.
    [211] Lv, X. G., Qiao, F. L., Xia, C. S., et al.2010. Upwelling and surface cold patches in theYellow Sea in summer: Effects of tidal mixing on the vertical circulation. Continental ShelfResearch,30,620-632.
    [212] Madin, L. P. and Deibel, D.1997. Feeding and energetics of Thaliaceans. In: Bone Q (ed)Biology of pelagic tunicates. Oxford University Press, Oxford, p43-64.
    [213] Madin, L. P., Purcell, J. E. and Miller, C. B.1997. Abundance and grazing effects ofCyclosalpa bakeri in the subarctic Pacific. Marine Ecology Progress Series,157,175-183.
    [214] Maretic, Z., Matic, P. D and Ladavac, L.1991. The bloom of the jellyfish Pelagia noctilucain the Mediterranean and Adriatic and its impact on human health. UNEP, Athens (Greece).
    [215] Marine Zooplankton Colloquium1.1988. Future marine zooplankton research-a perspective.Marine Ecology Progress Series,55,197~206.
    [216] Marine Zooplankton Colloquium2.2001. Future marine zooplankton research-a perspective.Marine Ecology Progress Series,222,297~308.
    [217] Mask, A.C., O’Brien, J.J., Preller, R.,1998. Wind-driven effects on the Yellow Sea WarmCurrent. Journal of Geophysical Research103,30713–30729.
    [218] Mcintoch, W. C.1925. Salps and Herring fishery. Nature,911-912.
    [219] Milinero, J. C., Ibanez, F., Nival, P. et al.2005. The North Atlantic climate and thenorthwestern Mediterranean plankton variability. Limnol. Oceanogr.50:1213–1220.
    [220] M llmann, C., Carulis, B. M., Kornilovs, G. et al.2008. Effects of climate and overfishingon zooplankton dynamics and ecosystem structure: regime shifts, trophic cascades, andfeedback loops in a simple ecosystem. ICES Journal of Marine Science,65,302-310.
    [221] Nakamura, Y.1998. Blooms of tunicates Oikopleura spp. and Dolioletta gegenbauri in theSeto Inland Sea, Japan, during summer. Hydrobiologia,385,183-192.
    [222] Paffenhofer, G. A., Atkinson, L. P., Lee, T. N., Verity, P. G., Bulluck, L. R.1995.Distribution and abundance of thaliacea and copepod off the southeastern U. S. A. duringwinter. Continental Shelf Research15(2/3)255-280.
    [223] Palekar. V. C. and Bal D. V.1961. Studies on maturation and spawning of the Indian sandwhiting Sillago sihama (Forskal) from Karwar waters. Proceedings Indian Academic ofScience,54,76-93.
    [224] Park, W., Sturdevant, M., Orsi, J. et al.2004. Interannual abundance patterns of copepodsduring an ENSO event in Icy strait, southeastern Alaska. ICES Journals of Marine Science,61,464-477.
    [225] Pitt, K. A., Welsh, D. T. and Condon, R. H.2009. Influence of jellyfish blooms on carbon,nitrogen and phosphorus cycling and plankton production. Hydrobiologia,616,133-149.
    [226] Pond, D., Harris, R., Head, R., et al.1996. Environmental and nutritional factorsdetermining seasonal variability in the fecundity and egg viability of Calanus helgolandicusin coastal waters off Plymouth, UK. Marine Ecology Progress Series,143,45-63.
    [227] Priddle, J., Whitehouse, M. J., Ward, P. et al.2003. Biogeochemistry of a Southern Oceanplankton ecosystem: Using natural variability in community composition to study the role ofmetazooplankton in carbon and nitrogen cycles. Journal of Geophysical Research,108(C4),8082, doi:10.1029/2000JC000425.
    [228] Pu, X. M., Sun, S., Yang, B. et al.2004. Life history strategies of Calanus sinicus in thesouthern Yellow Sea in summer. Journal of Plankton Research.,26,1059-1068.
    [229] Purcell, J. E. and Madin, L. P.1991. Diel patterns of migration, feeding, and spawning bysalps in the subarctic Pacific. Marine Ecology Progress Series,73,211-217.
    [230] Rechardson, A. J., Jone, E. H., Irigoien, X., et al.2004. How well does the ContinuousPlankton Recorder (CPR) sample zooplankton? A comparison with the Longhurst HardyPlankton Recorder (LHPR) in the northeast Atlantic. Deep Sea Research Ⅰ,51,1283-1294.
    [231] Reid, P. C., Colebrook, J. M., Matthews, J. B. L., et al.,2003. The Continuous PlanktonRecorder: concepts and history, from plankton indicator to undulating recorders. Progress inoceanography,58,117-173.
    [232] Remsen, A., Hopkins, T. L. and Samson, S.2004. What you see is not what you catch: acomparison of concurrently collected net, Optical Plankton Counter, and Shadowed ImageParticle Profiling Evaluation Recorder data from the northeast Gulf of Mexico. Deep SeaResearch Part Ⅰ,51,129-151.
    [233] Riccard, N.2010. Selectivity of plankton nets over mesozooplankton taxa: implications forabundance, biomass and diversity estimation. Journal of Limnology,69(2),287-296.
    [234] Robertis, A. D., Schell, C. and Jaffe, J. S.2003. Acoustic observations of the swimmingbehavior of the euphausiid Euphausia pacifica Hansen. Journal of Plankton Research,60,885-898.
    [235] Rocmmich, D. and McGowan, J.1995. Climate warming and the decline of zooplankton inthe California Current. Science,267,1324-1326.
    [236] Sarabun, C. C.1993. Observations of a Chesapeake Bay tidal front. Estuarines,16,68-73.
    [237] Sinclair, M. and Iles, T. D.1985. Atlantic herring (Clupea harengus) distribution in the Gulfof Maine—Scotia Shelf area in relation to oceanographic features. Canadian Journal ofFisheries and Aquatic Sciences,42(5):880-887.
    [238] Speirs, D. C., Gurney, W. C., Heath, M. R. et al.2006. Ocean-scale modelling of thedistribution,abundance, and seasonal dynamics of the copepod Calanus finmarchicus.Marine Ecology Progress Series,313,173-192.
    [239] Stehle, M., Santos, A. and Queiroga, H.2007. Comparison of zooplankton samplingperformance of Longhurst–Hardy Plankton Recorder and Bongo nets. Journal of PlanktonResearch,29,169-177.
    [240] Stone, R.2010. Chinese initiatives aims to comprehend and combat a slimy foe. Science,330,1464-1465.
    [241] Sugimoto, T and Tadokoro, K.1997. Interannual–interdecadal variations in zooplanktonbiomass, chlorophyll concentration and physical environment in the subarctic Pacific andBering Sea. Fisheries Oceanography,6,74-93.
    [242] Sun, S., Huo, Y. Z. and Yang, B.2010. Zooplankton functional groups on the continentalshelf of yellow sea. Deep-Sea ResearchⅡ,57,1006-1016.
    [243] Sun, S., Tao, Z. C., Li, C. L., et al.2011. Spatial distribution and population structure ofEuphausia pacifica in the Yellow Sea (2006-2007). Journal of Plankton Research,33,873-889.
    [244] Sun, S. and Zhang, G. T.2005. Over-summering Strategy of Calanus sinicus. GLOBECinternational newsletter,11,34.
    [245] Sun, X. X., Wang, S. W. and Sun, S.2011. Introduction to the China Jellyfish Project: Thekey processes, mechanism and ecological consequences of Jellyfish Bloom in China CoastalWaters. Chinese Journal of Limnology and Oceanography,29,491-492.
    [246] Tseng, L. C., Dahms, H. U., Hung, J. J., et al.2011. Can different mesh sizes affect theresults of copepod community studies? Journal of experimental biology and ecology.398,47-55.
    [247] Tsuda, A. and Nemoto, T.1992. Distribution and growth of salps in a Kuroshio warm-corering during summer1987. Deep-Sea Research,39(1),219-229.
    [248] Turner, J. T.2004. The importance of small planktonic copepods and their roles in pelagicmarine food webs. Zoological Studies,43,255-266.
    [249] Turner, J. T., Tester, P. A.1989. Zooplankton feeding ecology: Non selective grazing by thecopepods Acartia tonsa Dana, Centropages velificatus De Oliveira, and Eucalanus pileatusGiesbrecht in the plume of the Mississippi River. Journal of ExperimentalMarine Biologyand Ecology,126,21–43.
    [250] Turener, J. T. and Tester, P. A.1997. Toxic phytoplankton, zooplankton grazers, and marinefood web. Limnology and Oceanography,42,1203-1214.
    [251] Tzeng, W. N. and Wang, Y. T.1993. Hydrography and distribution dynamics of larval andjuvenile fishes in the coastal waters of Tanshui River estuary, Taiwan, with reference toestuarine larval transport. Marine Biology,116,205~217.
    [252] Uye, S.1988. Temperature-dependent development and growth of Calanus sinicus(Copepoda: Calanoida) in the laboratory. Hydrobiologia,167/168,285-293.
    [253] Uye, S.2000. Why does Calanus sinicus prosper in the shelf ecosystem of the NorthwestPacific Ocean? ICES Journal of Marine Science,57,1850-1855.
    [254] Uye, S., Iwamoto, N., Ueda, T.et al,1999. Geographical variations in the trophic structure ofthe plankton community along a eutrophic–mesotrophic–oligotrophic transect. Fisher.Oceanogr.,8:227-237.
    [255] Vargas, C. A., Madin, L. P.2004. Zooplankton feeding ecology: Clearance and ingestionrates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturallyoccurring particles in the Mid-Atlantic Bight. Journal of Plankton Research.26:827–833.
    [256] Verity, P. G. and Smetacek, V.1996. Organism life cycle, predation, and the structure andmarine pelagic ecosystems. Marine Ecology Progress Series,130,277-293.
    [257] Villate, F., Moral, M., Valencia, V.1997. Mesozooplankton community indicates climatechanges in a shelf area of the inner Bay of Biscay throughout1988to1990. Journal ofPlankton Research,19,1617-1639.
    [258] Wade, I.P., Heywood, K. J.2001. Acoustic backscatter observations of zooplanktonabundance and behaviour and the influence of oceanic fronts in the northeast Atlantic.Deep-Sea Res II48:899-924.
    [259] Walve, J. and Larsson, U.1999. Carbon, nitrogen and phosphorus stoichiometry ofcrustacean zooplankton in the Baltic Sea: implications for nutrient recycling. Journal ofPlankton Research,21,2309-2321.
    [260] Wang, G. Z., Jiang, X. D., Wu, L. S., et al.,2005. Differences in the density, sinking rate andbiochemical composition of Centropages tenuiremis (Copepoda: Calanoida) subitaneousand diapause eggs. Marine Ecology Progress Series,288,165-171.
    [261] Wang, R. and Zuo, T.2004. The Yellow Sea Warm Current and the Yellow Sea Cold BottomWater, their impacts on the distribution of zooplankton in the Southern Yellow Sea. Journalof Korean Society of Oceanography,39,1-13.
    [262] Wang, R., Zuo, T. and Wang, K.2003. The Yellow Sea Cold Bottom Water-anoversummering site for Calanus sinicus (Copepoda, Crustacean). Journal of PlanktonResearch,25,169-183.
    [263] Wang, S. W., Li, C. L., Sun, S. et al.2009. Spring and autumn reproduction of Calanussinicus in the Yellow Sea. Marine Ecology Progress Series,379,123-133.
    [264] Wei, H., Su, J., Wan, R. J., et al.2003. Tidal front and the convergance of the anchovy(Engraulis japonicus) eggs in the Yellow Sea. Fisheries Oceanography,12:4/5,434-442.
    [265] Wiebe, P. H., Madin, L. P., Haury, L. R., et al.1979. Diel vertical migration by Salpa asperaand its potential for large-scale particulate organic matter transport to the deep-sea. MarineBiology,53,249-255.
    [266] Williams, R., Collins, N. R. and Convey, D. P.1983. The double LHPR system: a high speedmicro-and macroplantkon sampler. Deep Sea Research Part A. Oceanography researchpapers,30,331-342.
    [267] Wu, C. J., Shin, C. M. and Chiang, K. P.2011. Does the mesh size of the plankton netaffects the result of statistical analyses of the relationship between the copepod communityand water masses?
    [268] Wu, L. X., Cai, W. J., Zhang, L. P. et al.2011. Enhanced warming over the globalsubtrophical western boundary current. Nature Climate Change, DOI:10.1038/NCLIMATE1353.
    [269] Xu, Z. L. and Chen, B. J.2007. Seasonal distribution of Calanus sinicus (Copepoda,Crustacea) in the East China Sea. Acta Oceanologica Sinica,26,150-159.
    [270] Xu, Z. L., Ma, Z. L. and Wu, Y. M.2011. Peaked abundance of Calanus sinicus earliershiftedin the Changjiang River (Yangtze River) Estuary: a comparable study between1959,2002and2005. Acta Oceanologica Sinica,30,84-91.
    [271] Yin, J. Q., Huang, L. M., Li, K. Z.2011. Abundance distribution and seasonal variations ofCalanus sinicus (Copepoda: Calanoida) in the northwest continental shelf of South ChinaSea. Continental Shelf Research,31,1147-1156.
    [272] Yoshioka, H., Takayama, T., Serizawa, S.(2005. ADCP application for long-termmonitoring of coastal water. Acta Oceanologica Sinica24(1):95-100.
    [273] Yuan, Y. L. and Su, J. L.,1984. Numerical modeling of the circulation in the East China Sea.In: Ichiye, T.,(Ed.), Ocean Hydrodynamics of the Japan and East China Seas, vol.39.Elsevier Oceanography Series, pp.167–176.
    [274] Zakardjian, B. A., Sheng, J. Y., Runge, J. A. et al.2002. Effects of temperature andcirculation on the population dynamics of Calanus finmarchicus in the Gulf of St. Lawrenceand Scotian Shelf: Study with a coupled, three-dimensional hydrodynamic, stage-based lifehistory model. Journal of Geophisical Research,108(C11),8016,doi:10.1029/2002JC001410.
    [275] Effects of temperature and circulation on the population dynamics of Calanus finmarchicusin the Gulf of St. Lawrence and Scotian Shelf: Study with a coupled, three-dimensionalhydrodynamic, stage-based life history model
    [276] Zhang, D. J., Li, S. J., Wang, G. Z. et al.2011. Impacts of CO2-driven seawater acidificationon survival, egg production rate and hatching success of four marine copepods. ActaOceanologica Sinica,30,86-94.
    [277] Zhang, D. J., Li, S. J., Guo, D. H.2010a. Impacts of global warming on marine zooplankton.Marine Science Bulletin,12,15-25.
    [278] Zhang, G. T., Sun, S., Xu, Z. L. et al.2010b. Unexpected Dominance of the SubtropicalCopepod Temora turbinata in the Temperate Changjiang River Estuary and Its PossibleCauses. Zoological Studies,49,492-503.
    [279] Zhang, G. T., Sun, S., Yang, B.2005. Seasonal variation of reproduction rates and body sizeof Calanus sinicus in the Southern Yellow Sea, China. Journal of Plankton Research,27,135-143.
    [280] Zhang, G. T., Sun, S., Yang, B.2007. Summer reproduction of the planktonic copepodCalanus sinicus in the Yellow Sea: influences of high surface temperature and cold bottomwater. Journal of Plankton Research,29,179-186.
    [281] Zhang, Q. L., Liu, X. Q., Cheng, M. H. et al,2002. Characteristics and formation causes ofQingdao Cold Water Mass. Chinese Journal of Limnology and Oceanography,20,303-308.
    [282] Zhao, B. R., Xiong, Q. C. and Zhang, F. G.1986. The internal hydrographic structure of theHuanghai Cold Water Mass (HCWM) in summer. Chinese Journal of Limnology andOceanography.4(1),27-40.
    [283] Zhu, X. H., Takasugi, Y., Nagao, M., et al.,2000. Diurnal Cycle of Sound Scatterers andMeasurements of Turbidity Using ADCP in Beppu Bay. Journal of Oceanography,56,559-565.
    [284] Zuo, T., Wang, R., Chen, Y. Q. et al.2006. Autumn net copepod abundance and assemblagesin relation to water masses on the continental shelf of Yellow Sea and East China Sea.Journal of Marine Systems,59,159-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700