用户名: 密码: 验证码:
生物法对水中两种硝基化合物的去除效能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会、经济的发展,公众对饮用水水质的要求越来越高,但大量污水的直接排放或不达标排放造成饮用水水源中的有机污染尤其是氮污染问题越来越严重。由于水中硝基化合物的化学毒性较高,其常被视为水体重要的氮污染标志,城镇生活污水是氮污染的主要来源,因而水循环系统中城镇污水的有效处理是保证水源水水质的关键步骤。对氯硝基苯(pCNB)是水中常见的硝基化合物,其毒性大、难自然降解,被美国EPA列为优先控制的污染物。掌握此类含氮化合物在污水生化处理过程中的转化规律并有效控制其在水中的含量,是保证污水处理效能、提高饮用水水源水质、降低饮用水安全风险的根本保障。
     本文在对我国北方某市的水源水及市政污水进行水质调查分析的基础上,针对水中存在的硝基含氮化合物——pCNB进行了生物转化降解研究。考察了好氧与厌氧条件下各相关因素对生物转化降解pCNB效能的影响,鉴定了pCNB的降解产物,并由此推测出生物转化降解水中pCNB的反应途径,同时探讨了pCNB对水处理系统内微生物生态学的影响。研究发现含氮化合物是可以相互转化的,pCNB对微生物硝化作用的抑制使得亚硝酸盐氮(NO2--N)含量升高,NO2--N在水中可与二级胺或具有二级胺结构的有机含氮化合物反应,形成强致癌的N-亚硝基二甲胺(NDMA),因此,探讨了污水中生物降解副产物——NDMA在其生成前质物存在时各因素对其存在形态的影响,分析了NDMA的生物合成途径及其降解规律。
     首先,针对北方某市的水源水及市政污水水质进行了调查研究。研究表明:给水及市政污水出水中的常规指标(如TOC、COD、UV254、TN、TP等)基本达到饮用水与污水排放标准;水中含有大量的有机氮类化合物,污水中pCNB的含量是水源水中的2.4倍,给水与污水中的有机含氮化合物分别占总氮的23.4%和31%;给水与污水的消毒实验表明,氯或氯胺消毒后有大量含氮消毒副产物生成,如卤乙腈,以及新型含氮消毒副产物亚硝基二乙胺(NDEA)和NDMA生成。
     以pCNB作为目标污染物,污泥经过驯化后,可以克服pCNB对污泥活性的抑制作用,pCNB在处理过程中可以得到较好的转化、降解与矿化。在适宜的厌氧反应条件下,污泥可以在1h内把低浓度的pCNB完全转化降解为对氯苯胺(pCA);好氧条件下,污泥对pCNB的总去除率为85%左右,其中,约48%的pCNB因曝气挥发到空气中;SBR法在厌氧4h,好氧处理8h后可以有效地去除pCNB,去除率在95%以上。厌氧污泥通过还原反应将pCNB降解为对氯苯胺(pCA)和苯胺(AN);好氧污泥通过部分还原途径和氧化途径降解pCNB,并使其开环最终达到矿化。
     为了辅助系统的工艺设计和更加合理的调控系统运行,进行了pCNB对系统处理效能的影响研究,并从生态学的角度对系统中微生物的种类组成及数量变化进行了分析。实验表明:微量pCNB对好氧污泥代谢活性的抑制作用强于厌氧污泥,尤其是pCNB严重抑制了细菌的硝化作用,使得系统内NO2--N积累含量升高,但经过驯化后,pCNB对好氧与厌氧污泥的毒性均可以减小;当水中存在微量pCNB时,其严重影响了污水处理系统中的微生物组成及数量,使得系统中微生物的数量及种类明显减少,但经过驯化后菌群数量有所上升。
     由于水中pCNB的存在,使得NO2--N含量升高,即增加了生物代谢副产物——NDMA的前质物浓度,在适宜条件下,微生物在反硝化及硝化阶段均可以合成一定量的NDMA,最高生成量均出现在系统运行30min-60min时,且反硝化阶段生成的NDMA量明显高于硝化阶段;活性污泥微生物对直接投加到污水中的NDMA没有吸附和降解效能,但可高效降解微生物自身合成的NDMA;硝化阶段与反硝化阶段生物合成NDMA的途径略有不同,除了传统的亚硝化途径外,本文提出了一种新的NDMA生物合成途径,即羟胺(HA)与二甲胺(DMA)反应生成不对称二甲肼(UDMH) , UDMH可被氧化生成NDMA。同时研究了NDMA对微生物的抑制作用,由于NDMA的水溶性较大,其不易被生物富集,因而NDMA对微生物的毒性弱于pCNB。
The organic pollution especially the nitrogen pollution in water, resulting from the direct or inacceptable discharge of wastewater, has received considerable public interest in recent years. Due to their chemical toxicity, nitrate compounds are often considered as important signs of nitrogen pollution in water. Urban wastewater has been proved to be a major source of nitrogenous pollutants, so the effective treatment of urban sewage becomes the key step to improve water quality in the water cycle system. p-Chloronitrobenzene (pCNB) is typical and ordinary nitro- compounds. Being high-toxic but hardly degraded, they have been treated as priority control pollutants by the U.S. EPA. It is necessary and crucial to master the biotransformation law of these nitro- compounds in wastewater treatment process.
     Building on the quality analysis of water and municipal wastewater in a city of northern China, biotransformations of pCNB (nitro-compound) was investigated in the research. Effects of several parameters on the efficiency of pCNB biodegradation were studied; final products of pCNB biodegradation were identified and pathways of pCNB biodegradation in water were proposed, meanwhile, the effect of pCNB in systemic microecology was studied. The research found that nitrogen compound can be translated into each other and the microbial nitrification inhibition of pCNB makes nitrite content increased, when there are precursors such as secondary amine (DMA etc.) or tertiary amine with secondary-amine structures in water, biodegradation byproduct——NDMA can be biosynthesized. With precursor of NDMA formation in water, effects of factors on the existent pattern of NDMA were studied; biosynthesis pathways and biodegradation of NDMA were analyzed.
     First, quality of source water and municipal wastewater in a city of northern China were surveyed and analyzed. Results show that: conventional parameters (TOC, COD, UV254, TN, TP, etc.) of both source water and municipal wastewater could achieve water standards and effluent sewage standards; a great deal of organic nitrogenous pollutants have been detected in water, they account for 23.4% and 31% of TN in source and wastewater, respectively, and the concentration of pCNB in municipal sewage is about 2.4 times as that in source water; disinfection researches of source and waste water indicate that the generation amount of nitrogen byproduct, such as halogen acetonitriles(HANs), N-nitrosodiethylamine (NDEA) and N-Nitrosodimethylamine (NDMA) have been found largely generated both in source and waste water for over 1 and 10 days’disinfection.
     With pCNB as the target pollutant, the inhibition of sludge activity produced by pCNB was removed after a period of domestication, and then pCNB was well transformed, degraded and mineralized by microbes in the treatment process. Under appropriate anaerobic conditions, low concentrations of pCNB can be completely biotransformed into chloroaniline (pCA) within an hour; in aerobic conditions, the total pCNB removal was about 85%, including 48% volatile of pCNB into air because of aeration; In the SBR process, 95% pCNB was effectively degraded after anaerobic treatment for 4h and aerobic treatment for 8h. pCNB can be reduced to chloroaniline (pCA) and aniline (AN) by anaerobic sludge; In the biodegradation of pCNB by aerobic sludge, Benzene ring can be opened through some reduction and oxidation reactions, the mineralization was achieved ultimately.
     In order to provide more theoretical basis for the design and operation of system, the impact of pCNB on the efficiency of the system was investigated. Furthermore, microbial species composition and the biomass changes were ecologically analyzed. Experimental results show that: the inhibition of metabolic activity produced by trace pCNB on anaerobic sludge is stronger than that on anaerobic sludge, especially, the inhitbition of microbial nitrification by pCNB makes nitrite accumulated and the concentration of NO2--N is increased, but these two inhibitions can be reduced after domestication; the coexistence of NDMA and pCNB in water resulted in obvious reduction of microbe species and biomass in sewage treatment system, after a period of domestication, the systematic biomass increased.
     Because of pCNB in water, the concentration of NO2--N as an intermediate product in wastewater treatment is increased. When there are precursors in water, NDMA as biodegradation byproduct can be biosynthesized in the course of nitrification and denitrification, the maximum of NDMA in the system was obtained at the reaction time of 30min-60min, NDMA produced in the denitrification stage was obviously higher than that in the nitrification stage; The added NDMA can neither be adsorbed nor degraded by activated sludge, but the bio-synthesized NDMA can be efficiently degraded by microbes themselves; The biosynthesis way of NDMA in denitrification are slightly different from that in nitrification. A new pathway of NDMA biosynthesis was proposed: asymmetric dimethylhydrazine (UDMH), products of hydroxylamine (HA) reacting with dimethylamine (DMA), can be oxidized to NDMA. Due to its high water-soluble, NDMA is hardly bio-enriched, so the toxicity of NDMA on microorganisms is much weaker than pCNB.
引文
1 WCED. Sustainable Development and Water. Statement on the WCED Report“Our Common Future”. Water International. 1989,14(3):151-152
    2 A. K. Biswas. Water for Sustainable Development in the 21st century. Water International. 1991,16(4):219-224
    3钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.中国水利水电出版社. 2001:2
    4何丽荣.耐冷菌的固定化及对低温污水处理的实验研究.哈尔滨工业大学硕士论文. 2002:12
    5张自杰,林荣忱,金儒霖.排水工程(第四版).中国建筑工业出版社. 2006:4-5
    6姚俊芹,易红星,魏震华等.乌鲁木齐河东污水厂的脱氮除磷运行效果分析.中国给水排水. 2007,23(2):92-95
    7李彬,吕锡武,钱文敏等.分流型地渗系统的污水强化脱氮研究.水处理技术. 2007,33(8):33-37
    8张道勇.氮肥的利用率及其损失问题(三).土壤通报. 1981,67(5):45-48
    9 F. J. Stevenson.闵九康译.农业土壤中的氮.科学出版社. 1989:18-40
    10 P. M. Glibert, D. E. Terlizzi. Cooccurrence of Elevated Urea Levels and Dinoflagellate Blooms in Temperate Estuarine Aquaculture Ponds. Applied and Environmental Microbiology. 1999,65(12):5594-5596
    11郑爱榕,沈海维,刘景欣等.大亚湾海域低营养盐维持高生产力的机制探讨.海洋学报. 2001,25(11):48-52
    12赵夕旦,祝陈坚,举鹏等.胶州湾东部海水中氮的含量和分布.海洋科学. 1998,1:40-44
    13王先伟,温伟英,刘翠梅.珠江口及附近海域夏季氮的化学形式分布研究.海洋科学. 2003,27(4):49-53
    14王资生.海水营养盐及其对浮游植物的影响.盐城工学院学报. 2001,14(2): 40-49
    15赵卫红,焦念志,赵曾霞.烟台四十里湾养殖水域氮的存在形式研究.海洋与湖沼. 2000,31(1):53-59
    16 Q. Li, M. Minami, H. Inagaki. Acute and Subchronic Immunotoxicity of p-Nitrochlorobenzene in Mice: I. Effect on Natural Killer, Cytotoxic T-lymphocyte activities and Mitogen-stimulated Lymphocyte Proliferation. Toxicology. 1998,127(1):223-232
    17梁诚.硝基氯苯生产现状与市场分析. 2007,23(2):23-26
    18徐根良,徐秀珠.环境中痕量特殊有机污染物的高效液相色谱测定.浙江大学学报(自然科学版). 1999,33(3):323-327
    19孙润泰,陈敏,于波等.气相色谱法测定水源水中硝基氯苯类化合物结果分析.中国卫生工程学. 2002,1(3):149
    20杨卫芳,李劲,阎波.洹河水中痕量有机污染物的研究.中国环境监测. 2001,17(2):26-30
    21刘晓茄,高继军,刘玲花. GC/MS法测定水源水中的半挥发性有机物.分析测试学报. 2004,23(增刊):183-186
    22王若苹.固相微萃取-毛细管气相色谱法快速同步分析水中硝基苯类及氯苯类化合物.中国环境监测. 2005,21(6):15-19
    23刘云,沈幸,鲜放鸣.地表水中微量氯代芳烃和硝基取代芳烃化合物的分析方法.环境化学. 2005,24(4):463-466
    24郎佩珍,袁星,丁蕴铮等.水环境化学——第二松花江吉林段水中有机污染物研究.中国环境科学出版社. 2008:5-12
    25王连生,韩朔睽.有机污染化学进展.化学工业出版社. 1998:7
    26彭飞.共沸蒸馏技术在氯苯废水中的应用.环境工程. 1999, 7(1):38-39
    27姜华,张全兴,陈金龙.树脂吸附法处理邻硝基苯酚废水的研究.离子交换与吸附. 2000,16(6):540-546
    28范广裕,骆文仪.用磺化煤作吸附剂处理含TNT废水的研究.北京理工大学学报. 1997,17(4):52-53
    29林忠祥,鞠昭年,高光风.萃取——气提法处理硝基苯废水的研究.环境导报. 1998,(1):14-16
    30 R. Boopathy, C. F. Kulpa. Trinitrotoluene(TNT) as a Sole Nitrogen Source for a Sulfate-reducing Bacterium Desulfovibrio sp. (B stain) Isolated from an Anaerobic Digester. Current Microbiology. 1992,25(4):235-241
    31唐受印,刘先德,谭天恩等.高浓度酚水的湿式氧化研究.环境科学研究. 1995,8(6):37-41
    32 N. Doucet, O. Zahraa, M. Bouchy. Kinetics of the Photocatalytic Degradation of Benzene. Catalysis Today. 2007,122(2):168-177
    33陈忠林,叶苗苗,沈吉敏.纳米TiO2催化臭氧氧化去除水中痕量对硝基氯苯.材料科学与工程全国博士生学术论坛. 2006:160-163
    34刘勇弟.几种Fenton试剂的氧化特性及在工业废水处理中的应用.上海环境科学. 1994,13(6):26-28
    35 A. G. Livingston, P. R. Brockes. Biological Detoxification of a 3-Chloronitrobenzene Manufacture Wastewater in an Extractive Membrane Bioreactor. Water Research. 1994,28(6):1347-1354
    36徐寿昌.有机化学.高等教育出版社. 1982: 3
    37 S. A. Boyd, D. R. Shelton, D. Berry, et al. Anaerobic Biodegradation of Phenodic Compounds in Digested Sludge. Applied and Environmental Microbiology. 1983,46(1):50-54
    38尹萍,杨彦希.微生物降解硝基芳香烃及其在环境保护中的应用.环境科学. 1998,19(6):79-83
    39 S. G. Pavlostathis, G. H. Jackson. Biotransformation of 2,4,6-Trinitrotoluene in Anabaena sp. Environmental Toxicology and Chemistry. 1999,18(3):412-419
    40李堪江,韦朝海,任源等.硝基苯降解菌生长特性及其降解活性.环境科学. 1999,20(5):20-24
    41 V. Kadiyala, J. C. Spain. A Two-Component Monooxygenase Catalyzes Both the Hydroxylation of p-Nitrophenol and the Oxidative Release of Nitrite from 4-Nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology. 1998,64(7):2479-2484
    42 T. Spiess, F. Desiere, P. Fischer, et al. A New 4-Nitrotoluene Degradation Pathway in a Mycobacterium Strain. Applied and Environmental Microbiology. 1998,64(2):446-452
    43 A. Schenzle, H. Lenke, P. Fischer, et al. Catabolism of 3-Nitrophenol by Ralstonia Eutropha JMP134. Applied and Environmental Microbiology. 1997,63(4):1421-1427
    44 J. Ye, A. Singh, O. P. Ward. Biodegradation of Nitroaromatics and Other Nitrogen-containing Xenobiotics. World Journal of Microbiology and Biotechnology. 2004,20:117-135
    45 S. F. Nishino, J. C. Spain. Oxidative Pathway for the Biodegradation of Nitrobenzene by Comamonas sp. Strain JS765. Applied and EnvironmentalMicrobiology. 1995,61(6):2308-2313
    46 J. Wang, J. T. Zhou, J. S. Zhang, et al. Aerobic Degradation of Nitrobenzene by Pseudomonas sp. JX165 and Its Intact Cells. China Environment Science. 2001,21(2):144-147
    47 A. Chauhan, R. K. Jain. Degradation of o-Nitrobenzoate via Anthranilic Acid (o-Aminobenzoate) by Arthrobacter Protophormiae: a Plasmid-encoded New Pathway. Biochemical and Biophysical Research Communications. 2000,267(1):236-244
    48 H. S. Park, H. S. Kim. Identification and Characterization of the Nitrobenzene Catabolic Plasmids pNB1 and pNB2 in Pseudomonas Putida HS12. Journal of Bacteriology. 2000,182(3):573-580
    49 S. F. Nishino, J. C. Spain. Degradation of Nitrobenzene by Pseudomonas Pseudoalcaligenes. Applied and Environmental Microbiology. 1993,59(8):2520-2525
    50 K. Valli, B. J. Brock , D. K. Joshi, et al. Degradation of 2, 4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Applied and Environmental M icrobiology. 1992,58(1):221-228
    51 J. F. Wu, C. W. Sun, C. Y. Jiang, et al. A Novel 2-Aminophenol-1,6-Dioxygenase Involved in the Degradation of p-Chloronitrobenzene by Comamonasstrain CNB-1: Purification, Properties,Genetic Cloning and Expression in Escherichia coli. Archives of Microbiology. 2005,183(1):1-8
    52 J. F. Wu, C. Y. Jiang, B. J .Wang, et al. Novel Partial Reductive Pathway for 4-Chloronitrobenzene and Nitrobenzene Degradation in Comamonas sp. Strain CNB-1. Applied and Environmental Microbiology. 2006,72(3):1759-1765
    53 P. E. J. Groenewegen, J. A. M. Debont.Degradation of 4-Nitrobenzoate via 4- Hydroxyla-minobenzoate and 3,4-Dihydroxybenzoate in Comamonas Acidovorans NBA-10. Archives of Microbiology. 1992,158(5):381-386
    54 T. Muraki, M. Taki, Y. Hasegawa, et al. Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-amino-3-carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas Fluorescens Strain KU-7. Applied and Environmental Microbiology. 2003,69(3):1564-1572
    55 C. M. Peres, H. Naveau, S. N. Agathos. Biodegradation of Nitrobenzene by Its Simultaneous Reduction into Aniline and Mineralization of the Aniline Formed. Applied Microbiology and Biotechnology. 1998,49(3):343-349
    56 P. G. Rieger, V. Sinnwell, A. Preub, et al. Hydride-meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus Erythropolis. Journal of Bacteriology. 1999,181(4):1189-1195
    57 G. Heiss, K. W. Hofmann, N. Trachtmann, et al. Npd Gene Functions of Rhodococcus (Opacus) Erythropolis HL PM-1 in the Initial Steps of 2,4,6-Trinitrophenol Degradation. Microbiology. 2002,148:799-806
    58 D. T. Gibson, V. Subramanian. Microbial Degradation of Aromatic Hydrocarbons. Microbial Degradation of Organic Compounds. NY, USA: Dekker Press. 1984:361-369
    59 L. Lack. The Enzymic Oxidation of Gentisic Acid. Biochimica et Biophysica Acta. 1959,34(7):117-123
    60 N. Y. Zhou, S. L. Fuenmayor, P. A. Williams. Nag Genes of Ralstonia (formerly Pseudomonas) sp. Strain U2 Encoding Enzymes for Gentisate Catabolism. Journal of Bacteriology. 2001,183(2):700-708
    61项硕.氯代硝基苯污染物厌氧-好氧序列生物降解的研究.浙江大学硕士学位论文. 2003:3-38
    62 D. B. Janssen, J. E. Oppentocht, G. J. Poelarends. Microbial dehalogenation. Current Opinion in Biotechnology. 2001,12(5):254-258
    63 S. Beil, K. N. Timmis, D. H. Pieper. Genetic and Biochemical Analyses of the Tec Operon Suggest a Route for Evolution of Chlorobenzene Degradation Genes. Journal of Bacteriology. 1999,181(1):341-346
    64 S. Beil, B. Happe, K. N. Timmis, et al. Genetic and Biochemical Characterization of the Broad Spectrum Chlorobenzene Dioxygenase from Burkholderia Sp. Strain PS12-Dechlorination of 1,2,4,5-Tetrachlorobenzene. European Journal of Biochemistry. 1997,247(10):190-199
    65 C. S. Orser, J. Dutton, C. Lange, et al. Characterization of a Flavobacterium Glutathione S-transferase Gene Involved Reductive Dechlorination. Journal of Bacteriology. 1993,175(9):2640-2644
    66 S. Kim, F. Picardal. Microbial Growth on Dichorobiphenyls Chlorinated onBoth Ring as a Sole Carbon and Energy Source. Applied and Environmental Microbiology. 2001,67(4):1953-1955
    67 H. Xiang, L. Luo, K. L. Taylor, et al. Interchange of Catalytic Activity within the 2-Enoyl-coenzyme A Hydratase/Isomerase Superfamily Based on a Common Active Site Template. Biochemistry. 1999,38(7):7638-7652
    68 M. Schlomann. Evolution of Chlorocatechol Catabolic Pathways. Biodegradation. 1994,5(4):301-321
    69 B. Frantz, A. M. Chakrabarty. Organization and Nucleotide Sequence Determination of a Gene Cluster Involved in 3-Chlorocatechol Degradation. Proceedings of the National Academy of Sciences. 1987,84(13):4460-4464
    70 E. J. Perkins, M. P. Gordon, O. Caceres, et al. Organization and Sequence Analysis of the 2,4-Dichlorophenol Hydroxylase and Dichlorocatechol Oxidative Operons of Plasmid pJP4. Journal of Bacteriology. 1990,172(5):2351-2359
    71 J. R. V. Meer, R. I. L. Eggen, A. J. B. Zehnder, et al. Sequence Analysis of the Pseudomonas sp. Strain P51 Tcb Gene Cluster, which Encodes Metabolism of Chlorinated Catechols: Evidence for Specialization of Catechol 1,2-Dioxygenases for Chlorinated Substrates. Journal of Bacteriology. 1991,173(8):2425-2434
    72 A. E. Mars, J. Kingma, S. R. Kaschabek, et al. Conversion of 3-Chlorocatechol by Various Catechol 2,3-Dioxygenases and Sequence Analysis of the Chlorocatechol Dioxygenase Region of Pseudomonas Putida GJ31. Journal of Bacteriology. 1999,181(4):1309-1318
    73 G. M. Klecka, D. T. Gibson. Inhibition of Catechol 2,3-Dioxygenase from Pseudomonas Putida by 3-Chlorocatechol. Applied and Environmental Microbiology. 1981,41(5):1159-1165
    74 I. Bartels, H. J. Knackmuss, W. Reineke. Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas Putida mt-2 by 3-halocatechols. Applied and Environmental Microbiology. 1984,47(3):500-505
    75 U. Riegert, G.Heiss, P. Fischer, et al. Distal Cleavage of 3-Chlorocatechol by an Extradiol Dioxygenase to 3-Chloro-2-Hydroxymuconic Semialdehyde. Journal of Bacteriology. 1998,180(11):2849-2853
    76镇达,陈茂彬.假单胞菌ZWL73降解4-氯硝基苯的代谢途径研究.微生物学通报. 2008,35(3):358-362
    77 J. G. Steiert, R. L. Crawford. Catabolism of Pentachlorophenol by a Flavobactenum sp. Biochemical and Biophysical Research Communications. 1986,141(2):825-830
    78 J. H. Apajalahti, M. S. Salkinoja-Salonen. Complete Dechlorination of Tetrachloro-hydroquinone by Cell Extracts of Pentachlorophenol-induced Rhodococcus Chlorophenolicus. Journal of Bacteriology. 1987,169(11):5125-5130
    79 M. M. Haggblom, L. J. Nohynek, M. S. Salkinoja-salonen. Degradation and o-Methylation of Chlorinated Phenolic Compounds by Rhodococcus and Mycobacterium Strains. Applied and Environmental Microbiology. 1988,54(12):3043-3052
    80 M. M. Haggblom, D. Janke, M. S. Salkinoja-salonen. Hydroxylation and Dechlorination of Tetrachlorohydroquinone by Rhodococcus sp. strain CP-2 cell extracts. Applied and Environmental Microbiology. 1989,55(2):516-519
    81 W. J. vandenTweel, J. B. Kok, J. A. deBont. Reductive Dechlorination of 2,4-Dichlorobenzoate to 4-Chlorobenzoate and Hydrolytic Dehalogenation of 4-Chloro,4-Bromo, and 4-Iodobenzoate by Alcaligenes Denitrificans NTB-1. Applied and Environmental Microbiology. 1987,53(4):810-815
    82 A. Schenzle, H. Lenke, J. C. Spain, et al. Chemoselective Nitro Group Reduction and Reductived chlorination Initiate Degradation of 2-Chloro-5-nitrophenol by Ralstonia Eutropha JMP134. Applied and Environmental Microbiology. 1999,65(6):2317-2323
    83徐向阳,谢雨生,吕一锋等.氯代芳香族化合物厌氧还原脱氯降解菌的研究进展.中国沼气. 1999,17(3):8-12
    84 B. A. V. Pas, H. Smidt, W. R. Hagen, et al. Purification and Molecular Characterization of ortho-Chlorophenol Reductive Dehalogenase, a Key Enzyme of Halorespiration in Desulfito-bacterium Dehalogenans. Journal of Biological Chemistry. 1999,274:20287-20292
    85 H. Smidt, M. Leest, J. Der Oost, et al. Transcriptional Regulation of the Cpr Gene Cluster in ortho-Chlorophenol-respiring Desulfitobacterium Dehalogenans. Journal of Bacteriology. 2000,182(20):5683-5691
    86 P. S. Perkins, S. Komisar, J. Jaaka, et al. Effects of Electron Donors and Inhibitors on Reductive Dechlorination of 2,4,6-Trichlorophenol. Water Research. 1994,28(10):2101-2107
    87 W. W. Mohn, J. M. Tiedje. Microbiol Reductive Dehalogenation. Microbiological Reviews. 1992,56(3):482-507
    88 K. A. Deweerd, F. Concannon, J. M. Suflita. Relationship Between Hydrogen Consumption, Dehalogenation, and the Reduction of Sulfur Oxyanions by Desulfomonile Tiedjel. Applied and Environmental Microbiology. 1991,57(7):1929-1934
    89 M. M. Haggblom, J. H. A. Apajalahti, M. S. Salkinoja-Salonen. O-Methylation of Chlorinated para-Hydroquinones by Rhodococcus Chlorophenolicus. Applied and Environmental Microbiology. 1988,54(7):1818-1824
    90 C. S. Criddle. The Kinetics of Cometabolism. Biotechnology and Bioengineering. 1993,41(11):1048-1056
    91 J. C. Spain, G. J. Zylstra, C. K. Blake, et al. Monohydroxylation of Phenol and 2,5-Dichlorophenol by Toluene Dioxygenase in Pseudomonas Putida F1. Applied and Environmental Microbiology. 1989,55(10):2648-2652
    92 A. S. Allard, P. A. Hyning, C. Lindgren, et al. Dechlorination of Chlorocatechols by Stable Enrichment Cultures of Anaerobic Bacteria. Applied and Environmental Microbiology. 1991,57(1):77-84
    93 M. D. Corbet, B. R. Corbett. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp. Applied and Environmental Microbiology. 1981,41(4):942-949
    94 A. Schackmann, R. Muller. Reduction of Nitroaromatic Compounds by Different Pseudomonas Species under Aerobic Conditions. Applied Microbiology and Biotechnology. 1991,34(6):809-813
    95 E. Katsivela, V. Wary, D. H. Pieper, et al. Initial Reactions in the Biodegradation of 1-Chloro-4-Nitrobenzene by a Newly Isolated Bacterium Strain LW1. Applied and Environmental Microbiology. 1999,65(4):1405-1412
    96吴建峰,沈锡辉,周宇光等.一株降解对氯硝基苯的Comamonas sp.CNB1的分离鉴定及其降解特性.微生物学报. 2004,44(1):8-12
    97钟杭,朱海平,马国瑞. 2-氯-5-氟-硝基苯对硝化抑制作用及玉米增产效应的研究.土壤通报. 2002,4:293-294
    98魏法山,徐幸莲,周光宏.腌肉制品中N-亚硝基化合物的研究进展.肉类研究. 2008,3:8-12
    99 EPA website:heep://www.epa.gov/ttn/atw/hlthef/nitrosod.html
    100 Dutch Expert Committee on Occupational Standards, N-Nitrosodimethylamine (NDMA), Health Based Calculated Occupational Ccancer Risk Values. Website: http://www.gr.nl/pdf.phpID=422
    101 J. M. Anderson. Integrating Recycled Water into Urban Water Supply Solutions. Desalination. 2006,187(3):1-9
    102 B. Sheikh, R. C. Cooper, K. E. Israel. Hygienic Evaluation of Reclaimed Water Used to Irrigate Food Crops-A Case Study. Water Science and Technology. 1999,40(4):261-267
    103 W. A. Mitch, D. L. SEdlak. Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination. Environmental Science Technology. 2002,36(4):588-595
    104 I. Najm, R. R. Trussell. NDMA Formation in Water and Wastewater. Journal of the American Water Works Association. 2001,93(2):92-99
    105许后效.环境中的亚硝胺.科学出版社. 1988:26-209
    106 J. B. Cohen, J. D. Bachman. Measurement of Environmental Nitrosamines. International Agency for Research on Cancer Scientific Publication. 1978:357-372
    107 T. Y. Fan, S. R. Tannenbaum. Factors Influencing the Rate of Formation of Nitrosomorpholine from Morpholine and Nitrite: Acceleration by Thiocyanate and Other Anions. Journal of Agricultural and Food Chemistry. 1973,21:237-240
    108 W. Fiddler, J. W. Pensabene, R. C. Doerr, et al. The Presence of dimethyl- and diethyl-Nitrosamines in Deionized Water. Food and Cosmetics Toxicology. 1977,15(5):441-443
    109 J. Choi, R. L. Valentine. Formation of N-Nitrosodimethylamine (NDMA) from Reaction of Monochloramine: a New Disinfection by-product. Water Research. 2002,36(4):817-824
    110 S. Marie, A. William, W. A. Mitch. Nitrosamine Formation Pathway Revisited: The Importance of Chloramine Speciation and Dissolved Oxygen. Environmental Science and Technology. 2006,40(19):6007-6014
    111 D. L. Sedlak, R. A. Deeb, E. L. Hawley, et al. Sources and Fate of Nitrosodimethylamine and Its Precursors in Municipal Wastewater Treatment Plants. Water Environment Research. 2005,77(1):32-39
    112 California Department of Health Services web site: http://www.dhs.ca.gov/ps/ ddwem/chemicals/NDMA/history.htm
    113 California Department of Health Services web site: http://www.dhs.ca.gov/ps/ ddwem/chemicals/NDMA/studies.htm
    114 B. Spiegelhalder, R. Preussmann. Contamination of Toiletries and Cosmetic Products with Volatile and Nonvolatile N-Nitroso Carcinogens. Journal of Cancer Research and Clinical Oncology. 1984,108(1):160-163
    115 H. Bartsch, R. Montesano. Relevance of nitrosamines to human cancer. Carcinogenesis. 1984,5(11):1381-1393
    116 S. R. Ralt, D. Tannenbaum. The Role of Bacteria in Nitrosamine Formation, N-Nitroso Compounds. ACS Symposium Series. 1981:157-165
    117 R. L. Tate, M. Alexander. Resistance of Nitrosamines to Microbial Attack. Journal of Environmental Quality. 1976,5(2):131-133
    118 D. Baetens, P. A.Vanrolleghem, M. C. M. Loosdrecht, et al. Temperature Effects in bio-P Removal. Water Science and Technology. 1999,39(1):215-225
    119国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第4版).中国环境科学出版社, 2002:422-423
    120张思潮.麝香草酚分光光度法测定水中硝酸盐氮的方法改进.预防医学文献信息. 2002,8(2):206-207
    121丁雅韵,谢孟峡,邓志威.丹磺酰氯作为氨基酸柱前衍生试剂衍生条件的研究.北京师范大学学报(自然科学版). 2001,37(4):526-529
    122王志,徐宏达,傅承光.丹酰氯柱前衍生高效液相色谱测定痕量脂肪族仲胺.色谱. 1990,8(5):325-327
    123 X. J. Kang, J. Xiao, X. Huang, et al. Optimization of Dansyl Derivatization and Chromatographic Conditions in the Determination of Neuroactive Amino Acids of Biological Samples. Clinica Chimica Acta. 2006,366 (7):352-356
    124 M. R. Lopez, M. J. Alvarez, A. J. Miranda, et al. Determination of Demethylamine in Groundwater by Liquid Chromatography and Precolun Deriveatixation with 9-Flrorenylmethylchloroformate. Journal of Chromatography A. 1996,721(2):231-239
    125张琳,平贵臣,于晓明.氯甲酸-9-芴甲酯柱前衍生脂肪胺类化合物的反相高效液相色谱分析.现代仪器. 2004,18(2):14-18
    126陈忠林,徐冰冰,齐虹等.高效液相色谱测定水中痕量亚硝基二甲胺.中国给水排水. 2007,23(8):84-87
    127陶辉,李星,杨艳玲等.用UFC方法评价对消毒副产物的去除效果.中国给水排水. 2006,22(23):39-42
    128 R. S. Summers, S. M. Hooper, H. M. Shukairy, et al. Assessing DBP yield: Uniform Formation Conditions. Journal of the American Water Works Association. 1996,88(6):80-93
    129马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨工业大学出版社. 2002
    130 R. E. Buchanan, N. E. Gibbons. Bergey's Manual of Systematic Bacteriology, 2nd edition. Springer New York. 2004
    131葛元新,朱志良,赵建夫.水体中腐殖酸含量与ClO2投加量间的相互关系研究.河南师范大学学报(自然科学版). 2006,34(1):73-76
    132 A. Eaton. Measuring UV-Absorbing Organics: A Standard Method. Journal of the American Water Works Association. 1995,87(2):86-90
    133陶辉.有机氮类化合物在饮用水氯化消毒过程中的作用机制研究.哈尔滨工业大学博士论文. 2008:82-99
    134潘成荣,李凌,叶琳琳等.瓦埠湖沉积物中氮与磷赋存形态分析.水资源保护. 2007,23(4):10-14
    135刘忠翰,彭江燕.滇池流域农业区排水水质状况的初步调查.云南环境科学. 1997,16(2):6-9
    136姚毅.活性污泥的表面特性与其沉降脱水性能的关系.中国给水排水. 1996, 12(1):22-26
    137钱易,汤鸿霄,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理.中国环境科学出版社. 2000:64
    138 W. J. Weber, J. E. Jones, L. E. Katz. Fate of Toxic Organic Compounds in Activated Sludge and Integrated PAC Systems. Water Science andTechnology. 1987,19(3):471-482
    139 A. G. Livingston. A novel membrane bioreactor for detoxifying industrial wastewater: II. Biodegradation of 3-chloronitrobenzene in an industrially produced wastewater. Biotechnology and Bioengineering. 2004,41(10):927-936
    140 G. Heiss, H. J. Knackmuss. Bioelimination of Trinitroaromatic Compounds: immobilization versus mineralization. Current Opinion in Microbiology. 2002,5(3):282-287
    141 T. Gorontzy, J. Kuver, K. H. Blotevogel. Microbial Transformation of Nitroaromatic Compounds under Anaerobic Conditions. Journal of General Microbiology. 1993,139(1):1331-1336
    142 J. S. Zhao, O. P. Ward. Microbial Degradation of Nitrobenzene and Mono-nitrophenol by Bacteria Enriched from Municipal Activated Sludge. Canadian Journal of Microbiology. 1999,45(5):427-432
    143 L. Adrian, H. Gorisch. Microbial Transformation of Chlorinated Benzenes under Anaerobic Conditions. Research in Microbiology. 2002,153(3):131-137
    144 S. Suarla, S. Masunaga, Y. Yonezawa. Transformations of Chloronitrobenzenes in Anaerobic Sediment. Chemosphere. 1996,32(5):967-977
    145 T. Katsunori, H. Yuki, K. Toshiaki, et al. Isolation and Characterization of Pentachloronitrobenzene Degrading Bacterium, Pseudomonas Aeruginosa Strain I-41. Microbial Ecology and Community Structure. 1998:113-120
    146侯轶,任源,韦朝海.硝基苯好氧降解菌筛选及其降解特性.环境科学研究. 1999,12(6):25-28
    147 M. D. Corbett, B. R. Corbett. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp. Applied and Environmental Microbiology. 1981,41(4):942- 949
    148尹军,周春生. TTC-脱氢酶活性常温萃取测定法及应用.中国给水排水. 1995,11(4):16-19
    149王斌,赵劲松,王晓栋.应用受体学说模型研究硝基苯类化合物的致毒机理.环境化学. 2004,23(1):80-84
    150徐景达.药物结构与活性的关系.人民卫生出版社. 1987
    151 M. Xu, A. Q. Zhang, S. K. Han, et al. Studies of 3D-Quantitative Structure-Activity Relationships on a Set of Nitroaromatic Compounds: CoMFA, Advaced CoEFA and CoMSIA. Chemosphere. 2002,48(7):707-715
    152古练权,马林.生物有机化学.高等教育出版社和德国施普林格出版社联合出版. 1998
    153郑金来,李君文,晁福寰.苯胺、硝基苯和三硝基甲苯生物降解研究进展.微生物学通报. 2001,28(5):85-88
    154王阳峰,吕玉新.用水生态毒理学方法评价13种硝基苯类化合物的急性毒性.新乡医学院学报. 2004,21(6):456-460
    155孙儒泳,李博,诸葛阳等.普通生态学.高等教育出版社. 2000:11-12
    156曹国民,张彤,龚剑丽等.固定化细胞单级生物脱氮研究.中国环境科学. 2000,20(3):237-240
    157 A. Ayanaba, M. Alexander. Transformations of Methylamines and Formation of a Hazardous Product, Dimethylnitrosamine in Samples of Treated Sewage and Lake Water. Journal of Environmental Quality. 1974,3(1):83-89
    158 R. L. Tate, M. Alexander. Stability of Nitrosamines in Samples of Lake Water, Soil, and Sewage. Journal of the National Cancer Institute. 1975,54:327-330
    159 R. L. Valentine, J. Choi, Z. Chen, et al. Factors Affecting the Formation of NDMA in Water and Occurrence. Final Report, AwwaRF/WERF project 2678. 2005:198-199
    160 W. A. Mitch, D. L. Sedlak. Factors Controlling Nitrosamine Formation during Wastewater Chlorination. Water Science and Technology: Water Supply. 2002,2(3):191-198
    161 J. O. Sharp, T. K. Wood, L. Alvarez-Cohen. Aerobic Biodegradation of N-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains. Biotechnology and Bioengineering. 2005,89(5):608-618
    162 J. Chung, C. H. Ahn, Z. Chen, et al. Bio-reduction of N-Nitrosodimethylamine (NDMA) Using a Hydrogen-based Membrane Biofilm Reactor. Chemosphere. 2008,70(3):516-520
    163吴成强,杨金翠,杨敏等.运行温度对活性污泥特性的影响.中国给水排水. 2003,19(9):5-7
    164桑军强,王占生.低温条件下生物陶粒反应器运行特性研究.环境科学. 2003,24(2):112-115
    165 S. Knoop, S. Kunst. Influence of Temperature and Sludge Loading on Activated Sludge Setting, Especially on Microthrix Parivicella. Water Science and Technology. 1998,37(5):27-35
    166 B. Q. Liao, D. G. Allen, I. G. Droppo, et al. Surface Property of Sludge and Their Role in Bioflocculation and Settleability. Water Research. 2001,35(2):339-350
    167白晓慧,王宝贞.寒冷地区城市污水处理厂改进工艺的运行效果.中国环境科学. 2001,21(1):70-73
    168 S. S. Mirvish. Formation of N-Nitrosocompounds: Chemistry, kinetics, and in vivo occurrence. Toxicology and Applied Pharmacology. 1975,31(3):325-351
    169 J. Choi, R. L. Valentine. N-Nitrosodimethylamine Formation by Free Chlorine-enhanced Nitrosation of Dimethylamine. Environmental Science and Technology. 2003,37(21):4871-4876
    170 S. Kim, W. Choi. Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)nNH4-n+ (0≤n≤4) in TiO2 Suspension: The Role of OH Radicals. Environ- mental Science and Technology. 2002,36(9):2019-2025
    171 E. Bock, I. Schmidt, R. Stuven. Nitrogen Loss Caused by Denitrifying Nitrosomonas Eutropha Cells Using Ammonium or Hydrogen as Electron Donors and Nitrite as Electron Acceptor. Archives of Microbiology. 1995,163(1):16-20
    172 P. Gross, R. P. Smith. Biologic Activity of Hydroxylamine: A Review. Critical Reviews in Toxicology. 1985,14(1):87-99
    173 M. Shimamura, T. Nishiyama, H. Shigetomo. Isolation of a Multiheme Protein with Features of a Hydrazine-Oxidizing Enzyme from an Anaerobic Ammonium Oxidizing Enrichment Culture. Applied and Environmental Microbiology. 2007,73(4):1065-1072

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700