用户名: 密码: 验证码:
黄曲霉毒素B_1在不同介质中紫外降解机理及安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了黄曲霉毒素B1(以下简称AFB1)在不同介质中降解行为、降解产物、路径及机理,并通过鼠伤寒沙门氏菌致突变实验和细胞毒理实验对降解产物的致突变性和毒性进行了研究,同时对紫外光降解AFB1后的花生油品质做安全性评估。
     首先在乙腈体系中研究不同初始浓度、照射光类型、照射强度和时间等因素对AFB1紫外光降解行为的影响。结果表明AFB1紫外光降解速度与初始浓度无关,符合一级动力学模型(R2≥0.9),受照射光类型、强度以及光照时间等因素影响。在不同波长照射光、强度以及照射时间下降解速率按照以下顺序递减v(UVA+UVC)>vUVC>vUVA,v800μw/cm2 > v400μw/cm2 >v200μw/cm2。运用UPLC-Q-TOF/MS技术鉴定出乙腈中AFB1三种紫外光降解产物为A(C14H10O6)、B(C17H14O6)和D(C16H12O5),利用光化学反应机理解释三种产物的生成机理:AFB1通过分子间氢提取反应生成B,接着在C(9c)-O(10)位发生光加成反应,在C(6a)-C(9a)处发生光消去反应,生成较稳定的A物质。D产物则由AFB1母核在C(11)-O(15)发生光消去反应生成。其次,研究不同降解体系中AFB1紫外光降解行为,发现在不同降解介质中AFB1的降解速率不同,花生油中最快,水中次之,乙腈中最慢,产物也不尽相同。同时解释此现象是由三种溶剂中自由基丰富程度所致。
     水和花生油两种体系中AFB1的降解规律得到验证与乙腈模型中一致,与AFB1初始浓度无关,符合一级动力学模型,受光照强度及时间影响。AFB1在水中生成三种紫外光降解产物为P1(C17H14O7)、P2(C16H14O6)和P3(C16H12O7),降解过程首先由AFB1C(8)-C(9)位发生水致光加成反应生成中间产物P1,P1在C(1)-O(14)位发生的光还原和C(4)-O(12)发生的光消去反应形成P2,同时P1在C(12)-O(13)位发生的光消去反应产生P3。三种降解产物结构与AFB1相似,只在部分基团发生变化。花生油中AFB1紫外光降解反应剧烈,推测AFB1分子吸收紫外光后,迅速发生光氧化反应,断裂为R-COOH、R-CO-R’等微量小分子物质。利用光化学反应原理对两种介质中可能的降解路径给予合理解释。
     应用Ames实验检测AFB1在水、花生油两种体系中不同紫外光降解产物的致突变性,实验结果表明经紫外照射去除两种体系中AFB1后,水中紫外光降解产物致突变性已大幅度降低,但没有彻底去除;而花生油中紫外光降解产物毒性完全消失。
     采用MTT及流式细胞术研究AFB1及其紫外光降解产物对HepG2细胞的影响。结果表明:作为阳性对照的AFB1对HepG2细胞有很强的细胞毒性,导致细胞活性降低78.6%。水中紫外光降解产物处理细胞的细胞活性降低8.5%左右,花生油中紫外光降解产物对HepG2细胞活性无任何影响。通过酶联免疫技术,研究了三类测试物对人类肿瘤相关性最高的抑癌基因p53表达量的影响,从而对AFB1及其紫外光降解产物的致癌性做初步评估。实验结果表明,AFB1使p53的表达显著降低,水中紫外光降解产物处理细胞的p53基因表达有微量减少,花生油中产物对p53基因的表达量无影响。
     致突变和细胞毒性实验结果与本论文前两章推测的降解产物结构鉴定结果相符,AFB1水中紫外光降解产物结构与AFB1结构相似,AFB1中毒性活性位点之一呋喃环仍然残存,因此,仍然保留部分毒性。相反,在花生油体系中的紫外光降解产物已失去与AFB1相似的结构,其化学性质发生巨大变化,因此相应的毒性和致癌性也随之消失。
     最后研究紫外照射技术应用于花生油时对花生油品质的影响。在可完全降解2μg/mL(远大于实际污染量)AFB1照射剂量范围内,研究紫外照射对花生油酸价、碘价、羰基值、过氧化值及维生素E及反式脂肪酸等重要因素的影响。结果表明紫外照射除使花生油过氧化值显著增加(p<0.01)外,对花生油其他品质并无影响。说明利用紫外照射技术去除花生油中黄曲霉毒素的方法不仅有效、安全,对花生油的品质及营养成分也无影响。
The photodegradation behavior, products, pathway and mechanisms of AFB1 in different media were studied by the technique of UPLC-Q-TOF/MS in this article. The Ames test and cytotoxicity experiment were used here to evaluate the mutagenesis and toxicity of the photodegradation products of AFB1 in food, and an overall assessment of the safety of this detoxification method of Aflatoxins applied in peanut oil were carried out at last.
     Firstly, the photodegradation behavior at various initial concentration, wavelength, irradiation time and intensities were studied. The results indicate that the degradation ratio reduced at below order, v(UVA+UVC) > vUVC> vUVA , v800μw/cm2 > v400μw/cm2 >v200μw/cm2,vpeanut oil> vwater >vacetonitrile, and is not affected by the initial concentration, meanwhile AFB1 was proved to follow first-order reaction kinetics (R2≥0.9). At the same time, three photodegradation products A (C14H10O6), B (C17H14O6), D (C16H12O5) and the pathway of AFB1 in acetonitrile were identified using UPLC-Q-TOF/MS and elucidated by photochemistry mechanism. Hydrogen abstraction reaction of AFB1 lead to the generation of A, and then photoaddition at cite C(9c)-O(10) along with photoelimination reactions at cite C(6a)-C(9a) generated A product, at last the product D was generated by photoelimination at cite C(11)-O(15). Secondly, the photodegradation ratio and degradation products in various media were studied and discovered different in each media. The ratio in peanut oil is the fastest; in acetonitrile is the slowest, which was elucidated by the quantity of free electron in various medias.
     The degradation regular in water and peanut oil were verified the same to that in acetonitrile model, which follows the first-order reaction kinetics (R2≥0.9). Three photodegradation products P1 (C17H14O7), P2 (C16H14O6) and P3 (C16H12O7), which generated by photoaddition at cite C(8)-C(9) from AFB1 to P1, photoelimination at C(4)-O(12) and photoreduction reactions at O(1)-C(14) from P1 to P2 and photoelimination at C(12)-O(13) from P1 to P3, were identified and find that the main structures of them were similar to that of the AFB1. The possible photodegradation reaction in peanut oil was severe and the structure of AFB1 was destroyed thoroughly to minor molecular substances, such as R-COOH and R-CO-R’. The photodegradation pathway mechanism of AFB1 in two medias were elucidated seasonable by photochemistry principle.
     The Ames test was used to detect the mutagenesis of the photodegradation products in water and peanut oil. The results indicated that the reversion rate of the photodegradation in water (Pw) is higher than that of negative control (0ng AFB1), while there is no differences of the reversion rate between the photodegradation in oil (Po) and the negative control. The mutagenesis of the Pw decreased significantly but not be removed thoroughly, while that of Po is disappeared absolutely.
     MTT and FCM were employed to study the cytotoxicity of Pw, Po and AFB1 in HepG2 cell line. The results indicate that: the cell viability of AFB1-treated cell, used as positive control, decreas 78.6%. The cell viability of the Pw-treated cell reduce about 8.5%, while that of Po has no differences compared to the untreated cells, p>0.05. The expression of the antioncogene p53 protein in HepG2 cells treated by three tested compounds was detected by ELISA to evaluate the carcinogenicity of Po and Pw. The results showe that the expression of p53 protein significantly decrease in AFB1-treated cells; the concentration of p53 in Pw-treated cells slightly reduce and that in Po-treated cells has no difference compared with the untreated cells.
     The conclusion of the Ames test and the cytotoxicity are in agreement with the results of the identification of the photodegradation products in two kinds of media. The main structures of Pw are similar with the AFB1, and the furan ring, one of the toxic activity cites of AFB1 was not destroyed, remaining the corresponding toxicity. In contrast, the possible structures of Po are different from AFB1, following great change of the chemical nature, for that the corresponding toxicity and the carcinogenicity disappeared.
     At last, acidity value, iodine value, peroxide value, concentration of VE and total trans fatty acids as well as oil stability index were selected to study the effect of UV detoxification irradiation treatment on the quantity of peanut oil. The results show that there is no significant change of these parameters (p>0.05) except the significant increase of the peroxide value (p<0.01) after the selected dose (2ppm AFB1 can be destroyed absolutely) of UV irradiation treatment, which indicating that detoxification method used in peanut oil is not only effective, but also has no bad effect on the quantity of peanut oil.
引文
[1] Sargeant K, Sheridan A, O’Kelly J, Carnaghan R B A. Toxicity associated with certain samples of groundnuts [J]. Nature, 1961, 192: 1095-1097
    [2] Bash G, Rae I D. The structure and chemistry of aflatoxins. In A&toxin, ed. L. A. Goldblatt [M]. Academic Press, New York, 1969. 55-75
    [3] Davis N D, Diener U L. Mycotoxins. In Food and Beverage Mycology, ed. L. R. Beuchat [M]. AVI Publishing Company, West Port, CT, 1979. 397-444.
    [4] Ellis W O, Smith J P, Simpson B K, Oldham J H. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control [J]. Crit. Rev.Food Sci. Nutr., 1991, 30: 403-439
    [5] Van der zijden A S M, Blanche koelensmid W A A, Philp J. Aspergillus Flavus and Turkey X Disease: Isolation in Crystalline Form of a Toxin responsible for Turkey X Disease [J]. Nature. 1962, 195: 1060-1062
    [6] International Agency for Research on Cancer. Aflatoxins. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monographs on the evaluation of carcinogenic risks to humans, vol 56. [C].IARC, Lyon, France, 1993.245-395
    [7] Smith J E, Lewis C W, Anderson J G. European Commission directorate general XII, Brussels report No. EUR16048 EN, [C].1994
    [8] Schuller P L. A review of sampling plans and collaboratively studied methods of analysis for aflatoxins [J]. J.AOAC, 1976, 59: 1315-1319
    [9] Rustom I Y S. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods [J]. Food Chem. 1997, 59: 57-67
    [10]居乃虎.黄曲霉毒素[M].中国轻工出版社,1978. 43-90
    [11]李建科.食品毒理学[M].中国计量出版社,2007. 299-302
    [12] Eaton D L, Groopman J D. The toxicology of aflatoxins: Human Health, Veterinary, and Agriculture Significance, Academic, San Diego [C]. 1994, 309-325
    [13] Newberne P M, Butler W H. Acute and chronic effect of aflatoxin B1 on the liver of domestic and laboratory animals: a review [J]. Cancer Res.1969, 29: 236-250
    [14]杨炼.抗黄曲霉毒素B1的单链抗体的筛选、表达和改造. [D]:[博士学位论文].无锡,江南大学,2009.
    [15] Peers F G, Linsell C A. Diatary aflatoxins and human liver cancer-a population study based in Kenya [J]. Br. J. Cancer,1976, 27: 473-484
    [16] Qian G S, Ross R K, Yu M C. A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People's Republic of China. Cancer Epidemiol Biomarkers Prev, [J].1994, 3(1):3-10.
    [17] Alekseyev Y O, Hamm M L, Essigmann J M. Aflatoxin B1 formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway in vivo [J].Carcinogenesis 2004, 25(6):1045-1051
    [18] Smela M E, Currier S S,Bailey E A.The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis [J]. Carcinogenesis, 2001, 22(4):535-545
    [19] Sharma R A, Farmer P B.Biological relevance of adduct detection to the chemoprevention of cancer [J]. Clin Cancer Res, 2004, 10(15):4901-4912
    [20] Bedard L L, Massey T E. Aflatoxin B1-induced DNA damage and its repair [J]. Cancer Lett, 2006, 241(2):174-183
    [21] Waters R, Jones C J, Martin E A. The repair of large DNA adducts in mammalian cells [J]. Mutat Res, 1992, 273(2):145-155
    [22] Duan X X, Ou J S, Li Y. Dynamic expression of apoptosis-related genes during development of laboratory hepatocellular carcinoma and its relation to apoptosis[J]. World J Gastroenterol, 2005, 11(30):4740-4744
    [23] Feng Z B, Chen G, Su J. Dynamic expression of survivin during hepatocarcinogenesis in rats [J]. Zhonghua Zhong Liu Za Zhi, 2007, 29(9):662-665
    [24] Fabregat I.Dysregulation of apoptosis in hepatocellular carcinoma cells [J].World J Gastroenterol, 2009, 15(5):513-520
    [25] Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutation of p53 gene in hepatocellular carcinoma from southern Africa [J]. Nature, 1991, 350: 429-431
    [26] Hsu I C, Metcalf R A, Sun T, et al.. Mutational hotspot in the p53 gene in human hepatocellular carcinomas [J]. Nature, 1991: 377-378
    [27] Eaton D L, Gallagher E P. Mechanisms of aflatoxin carcinogenesis [J]. Ann. Rev. Pharmacol. Toxicol. 1994, 34: 135-172
    [28] Lalini R, Bharti O, Kanti B. Aflatoxin B1-induced toxicity in HepG2 cells inhibited by carotenoids: morphology, apoptosis and DNA damage [J]. Biol. Chem. 2006, 387: 87-93
    [29] Groopman J D, Kensler T W. Role of metabolism and viruses in aflatoxin-induced liver cancer [J]. Toxicol. Appl. Pharmacol. 2005, 206: 131-137
    [30] Terry R V V, Todd L W, Patrick J K, et al. Aflatoxin B1 alters the expression of p53 in cytochrome P450-expressing human lung cells [J]. Toxicol. Sci. 2006, 89: 399–407
    [31] Heathcote J G, Hibbert J R. Aflatoxins: chemical and biological aspects, Elsevier Scientific Publishing Co., [D] Amsterdam. 112-130
    [32] O’Brien E E, Moss D, Judah, Neal G. Metablic basis of the species difference to aflatoxin B1 induced hepatotoxicity [J]. Biochem. Biophys. Res. Comm. 1983: 114: 813-821.
    [33] Wyllie T D, Morehouse L G. Mycotoxinc fungi, Mycotoxins, Mycotoxins: aflatoxin and related compounds [M]. Marcel dekker. N.Y. 131-201.
    [34] Brackett R E. Strategies for dealing with aflatoxins in peanuts. In Trends in Food Product Development, eds T. C.Yam & C. Tan. Singapore Institute of Food Science and Technology [M], Singapore, 1989, 83-91.
    [35] Beaver R W. Decontamination of mycotoxin-containing foods and feedstuffs [J]. Trends Food Sci. Technol., 1991, 7: 170-173
    [36] Chiou R Y Y, Pei Y W, Yue H Y. Color sorting of lightly roasted and deskinned peanut kernels to diminish aflatoxin contamination in commercial lots [J]. J.Agric. Food Chem, 1994, 42(2): 156-160
    [37] Rucker K S, Kvien C K, Calhoun K, et al. Sorting peanuts by pod density to improve quality and kernel maturity distribution and to reduce aflatoxin [J]. Peanut Sci., 1994, 21, 147-152
    [38] Williams J H, Phillips T D, Jolly P E, et al. Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions [J]. Am. J. Clin. Nutr. 2004, 80:1106-1122
    [39] Palmgren M S, Hayes A W. Aflatoxins in foods. In Mycotoxins in Food, ed. P. Krogh [M]. Academic Press, London, 1987. 65-96.
    [40]黄曲霉素及其检测方法综合介绍,中国食品检测,中商食品安全网.http://www.cnfoodsafety.net/html/jianyanjiance/lilunjishu/20090304/7133.html
    [41] Samarajeewa U, Sen A C, Cohen M D, et al. Detoxification of aflatoxins in foods and feeds by physical and chemical methods [J]. J. Food Prot. 1990, 53(6): 489-501.
    [42] Stoloff L, Trager W. Recommended decontamination procedures for aflatoxin [J]. J. Ass. Offic. Agr. Chem. 1965, 48:681-682.
    [43] Rhee K C, Natarajan K R, Cater C M, et al. Processing Edible Peanut Protein Concentrates and to Inactivate Aflatoxins [J]. J. AM. Oil Chem. Soc. 1976, 42: 467-471.
    [44] Trager W T, Stoloff L. Possible reactions for aflatoxin detoxification [J]. Journal of Agricultural and Food Chemistry, 1967, 15: 679-681.
    [45] Mann G E, Codifer L P J, Gardner H K J, et al. Chemical inactivation of aflatoxins in peanut and cottonseed meals [J]. J Am Oil Chem Soc. 1970, 47(5):173-176
    [46] Cheng W, Cook I, Diana L, Kirk J R. Use of chlorine compounds in the food industry [J]. Food Technol. 1983, 39: 107-115
    [47] Feuell A. J. Aflatoxin in groundnuts [J]. Part IX. Trp. Sci. 1985, 8:61-70
    [48] Liuzzo J. A. and Ochomogo M. G. Detoxification of aflatoxin in corn or peanuts [J]. Appl. Environ. Microbiol. 1980, 40: 333-336
    [49] Sreenivasamurthy V, Parpia H A B, Srikanta S, et al. Detoxification of aflatoxin in peanut meal by hydrogen peroxide [J]. J. Assoc. off. Anal. Chem. 1967, 50: 350-364
    [51] Maeba H, Takamoto Y, Kamimura M, et al. Destruction and detoxification of aflatoxins with ozone [J]. J. Food Sci., 1988.53: 667–668
    [52] Dwarakanath C T, Rayner E T, Mann G E, et al. Reduction of aflatoxin levels in cottonseed and peanut meals by ozonization [J]. J. Am. Oil Chem. Soc. 1968, 45: 93-95
    [53] Hagler W, Hutching J, Hammilton P. Destruction of aflatoxin in corn with sodium bisulfite [J]. J Food Protection, 1982, 45: 1287-1291
    [54] Moerch K E, McElfresh P, Wohlman A, et al. Aflatoxin destruction in corn using sodium bisulfite, sodium hydroxide and aqueous ammonia [J]. J Food Prot, 1980, 43: 571-574
    [55] Fathy E E, Elmer H M. Role of hydrogen peroxide in the prevention of growth and aflatoxin production byAspergillus parasiticus [J]. J Food Prot, 1988, 51: 263–268
    [56] Dollear F G, Mann G E, Codifer L P, et al. Elimination of aflatoxins from peanut meal [J]. JAOCS, 1968, 45: 862–865
    [57] Brekke L, Peplinski A J, Lancaster E B. Aflatoxin inactivation in corn by aqua ammonia [J]. Trans. ASAE, 1977, 20:1161-1168
    [58] Brekke O L, Stringfellow A C, Peplinski A J. Aflatoxin inactivation in corn by ammonia gas: laboratory trials [J]. J. Agric. Food Chem. 1978, 26:1383-1389
    [59] Grove M D, Plattner R D, Peterson R E. Detection of aflatoxin D1 in ammoniated corn by mass spectrometry-mass spectrometry. Applied and Environmental Microbiology [J], 1984, 48: 887–889
    [60] Lee L S, Stanley J B, Cucullu A F, et al. Ammoniation of aflatoxin B1: isolation and identification of the major reaction product [J]. J Assoc Of Anal Chem. 1974, 57: 626–631
    [61] Boulton S L, Dick J W, Hughes B L. Effects of dietary aflatoxin and ammonia-inactivated aflatoxin on Newcastle disease antibody titers in layer-breeders [J]. Avian Dis., 1981, 26: 1-6
    [62] Diener U L, Davis N D, Danilson DA. Detoxification of aflatoxin-contaminated corn makes grain safe for feeding [J]. Highlights agric. Res. 1985, 32: 2
    [63] Mitchell G A. No chemicals are ok-ed to destroy or bind aflatoxins [J]. Food Chem. News. 1989, 31: 15
    [64] Parker W A, Melnick D. Absence of aflatoxin from refined vegetable oils [J]. J Am Oil Chem Soc. 1966, 43: 635-638
    [65] Draughon F A, Childs E A. Chemical and biological evaluation of aflatoxin after treatment with sodium hypochlorite, sodium hydroxide and ammonium hydroxide [J]. J. Food Prot. 1982, 45: 703-706
    [66] Gomma E G. Effect of alkaloids on aflatoxins in solutions and in biscuits and cakes [J]. Alexandria Science Exchange, 1987, 8: 23-27
    [67] Mann G E, Gardner H K, Booth A N, et al. Aflatoxin inactivation. Chemical and biological properties of ammonia and methylamine treated cottonseed meal [J]. J Agric Food Chem. 1971, 19: 1155–1158
    [68] Alberts J F, Engelbrecht Y, Steyn P S, et al.Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures [J]. Int J Food Microbiol. 2006, 109: 121-126
    [69] Alberts J F, Gelderblom W C A, Botha A, et al. Degradation of aflatoxin B1 by fungal laccase enzymes [J]. Int J Food Microbiol, 2009, 135: 47–52
    [70] Liang Z, Li J, He Y, Guan S, et al. AFB1 Bio-Degradation by a New Strain– Stenotrophomonas [J]. Agricultural Sciences in China, 2008, 7(12): 1433-1437.
    [71] Fazeli, Mohammad R.,Hajimohammadali M. Aflatoxin B1 binding capacity of autochthonous strains of Lactic acid bacteria [J]. Journal of food protection, 2009, 189-192
    [72] Kankaanpaa P, Tuomola E, El-Nezami H. Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model [J]. Journal of food protection, 2000, 63(3):412-414
    [73] Teniola O D, Addo P A, Brost I M. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp.nov. DSM44556T[J]. Food microbiol, 2005, 105:111-117
    [74]刘大岭,姚冬升,陈敏峰.真菌提取液对黄曲霉毒素解毒作用的研究[J].广东药学院学报,1995,11(2):92-94
    [75]刘大岭,姚冬生,黄炳贺.黄曲霉毒素解毒酶的固定化及其性质的研究[J].生物工程学报, 2003,19(5):603-607
    [76] Hron R J, Abraham G, Kuk M S, et al.Ethanol extraction of oil, gossypol and aflatoxin from cottonseed [J]. J. Am. Oil Chem. Sot. 1992, 71: 417-421
    [77] Hron R J, Kuk M S, Abraham G, et al. Acidic ethanol extraction of cottonseed [J]. J. Am. Oil Chem. Sot., 1994, 69: 951-952
    [78] Doyle M P, Applebaum R S, Brackett R E, et al. Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities [J]. J. Food Protect, 1982, 45: 964-971
    [79] Phillips T D, Kubena L F, Harvey R B, et al. Hydrated sodium calcium alominosilicate: a high affinity sorbent for aflatoxin [J]. Poult. Sci., 1988, 67: 243-247
    [80]齐德生,刘凡,于炎湖,何万领.蒙脱石及改性蒙脱石对黄曲霉毒素B1的吸附研究[J].畜牧兽医学报, 2003 , 34 (6): 620-622
    [81]史莹华,许梓荣,冯建蕾,胡彩虹,夏枚生.新型吸附剂AAN对黄曲霉毒素B1、B2、G1、G2的体外吸附研究[J].中国农业科学, 2005, 38(5):1069-1072
    [82] Luter L, Wyslouzil W, Kashyap S C. The destruction of aflatoxins in peanuts by microwave roasting [J]. Can. Inst. Food Sci. Technol. J. 1982, 15: 236-238
    [83] Pluyer H R, Ahmed E M, Wei C I. Destruction of aflatoxin on peanuts by oven-and microwave-roasting [J]. J.Food Protect, 1987, 50: 504-508
    [84] Kyzlink V. Principles of food preservation [J]. Dev. Food Sci., 1990, 22: 337-355
    [85] Diehl J F. Safety of Irradiated Foods, ed. J. F. Diehl. Marcel Dekker Kyzlink, V. Principles of food preservation [M]. Dev. Food Sci., 1990, 22: 337-355, New York, pp. 1990, 145-179
    [86] Chiou R Y Y, Lin C M, Shyu S L. Property characterization of peanut kernels subjected to gamma irradiation and its effect on the outgrowth and aflatoxin production by Aspergiks parasiticus [J]. J. Food Sci., 1990, 55: 2l
    [87] Patel U D, Govindarajan P, Dave P J. Inactivation of aflatoxin Bl by using the synergistic effect of hydrogen peroxide and gamma radiation [J]. Appl. Environ. Microbial., 1989, 55:465-467
    [88] Shantha T, Murthy V S, Rat E R, et al. Detoxification of groundnut seeds by urea and sunlight [J]. J.Food Safet, 1986 7: 225-231
    [89] Van der zijden A S M, Blanche koelensmid W A A, Boldingh J, et al. Aspergillus Flavus and Turkey X Disease: Isolation in Crystalline Form of a Toxin responsible for Turkey X Disease [J]. Nature. 1962, 195: 1060-1062.
    [90] Feuell A J. Aflatoxin in groundnuts. PartⅨ[J]. Trop. Sci. 1966, 8:61-70
    [91]Shantha T V, Sreenivasamurthy. Photo-destruction of aflatoxin in groundnut oil [J]. Indian J.Technol. 1977,15:453-454
    [92] Nkama I, Mobbs HG. Muller. Destruction of aflatoxin B1 in rice exposed to light [J]. J.Cereal Sci. 1987, 5:167-170
    [93] Bilgrami K S, Singh A , Rajan K S. Detoxification of aflatoxins in dry fruits and spices through light and heat treatments.Natn [J]. Acad, Sci.Lett. 1984, 7:273-274
    [94] Shantha T, Murthy V S, Rati E R, et al. Detoxification of groundnut seeds by urea and sunlight [J]. J.Food Safety, 1986, 7:225-231
    [95] Samarajeewa U, Gamage T V. Combination of solvent and radiation effects on degradation of aflatoxin B1 [J], Mircen J Appl Microbiol Biotechnol. 1988, 4: 203-208
    [96] Aibara K, Yamagishi S. Effect of ultra-violet radiation on the destruction of aflatoxin B1. In: Proceedings of first US Japan conference on toxic microorganisms. UJNR Joint Panel on Toxic Microorganisms and US Department of Interior, WashingtonDC [M], 1968. 211-221
    [97] Andrellos P J, Beckwith A C, Eppley R M. Photochemical changes of aflatoxin B1 [J]. J Assoc Of Anal Chem. 1967, 50:346-350
    [98] Guo Z, Feng R. Ultrasonia irradiation-induced degradation of low-concentration bisphenol A in aqueous solution [J]. J. Haz. Mater. 2009, 163: 855-860
    [99]冯小刚,戎非,付德刚.纳米TiO2膜对水中微量微囊藻毒素的光催化降解[J].科学通报, 2006, 51(5): 532-538
    [100] Hu J Y, Liu C, Liu C L, et al. Photodegradation of Flumorph in Aqueous Solutions and Natural Water under Abiotic Conditions [J]. J. Agric. Food Chem. 2009, 57: 9629-9633
    [101] Dde Urzedo A P F M, Diniz M E R, Augusti R. Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry [J]. J Mass Spectrom. 2007, 42: 1319-1325
    [102] Jabusch T W, Tjeerdema R S. Photodegradation of Penoxsulam [J]. J. Agric. Food Chem. 2006, 54: 5958-5961
    [103] Vittoria P M, Michele Z, Carlo G, et al. Structural Elucidation of Phototransformation Products of Azimsulfuron in Water [J]. J. Agric. Food Chem. 2007, 55: 6659-6663
    [104] Liu G, Jiang X, Xu X. Photodegradation of 1-(2-Chlorobenzoyl)-3-(4-chlorophenyl) Urea in Different Media and Toxicity of Its Reaction Products [J]. J. Agric. Food Chem. 2001, 49: 2359-2362
    [105] Jing L, JingW C, Ying W, Xi Y C, et al. More Toxic and Photoresistant Products from Photodegradation of Fenoxaprop-p-ethyl [J]. J. Agric. Food Chem. 2008, 56: 8226–8230
    [106] Beatriz S M , Pilar S E , Jesús Vicente-Arana M., et al. Study of alloxydim photodegradation in the presence of natural substances:Elucidation of transformation products [J]. J. Photoch. PhotobioA, 2008, 198:162-168
    [107]徐冰冰,陈忠林,齐飞等.紫外光降解水中亚硝基二乙胺[J].科学通报, 2008, 53(11): 1350-1357
    [108] Martínez N L, Hodaifa G, Rodríguez V, et al. Photodegradation of phytosanitary molecules present in virgin olive oil [J]. J Photoch Photobio A. 2009, 203: 1-6
    [109] Mazur-Marzec H, Meriluoto J, Pliński M. The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere [J]. 2006, 65: 1388-1395
    [110] Marianna C, Andrzej C. Photodegradation of 2,3,4,5-tetrachlorophenol in water/methanol mixture [J]. J Photoch and Photobio A. 2006, 178: 90–97
    [111] Jia J, Chu W. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions [J]. J. Haza. Mater. 2009, 161: 196-201
    [112]吴海霞.食品辐照技术发展进程及展望[J].农产品加工,2009,(07)..
    [113] Pico Y, Font G, Ruiz M J, Fernandez M, Control of pesticide residues by liquid chromatography–mass spectrometry to ensure food safety [J]. Mass Spectrom. Rev. 2006, 25: 917-960
    [114] Soler C, Pico Y. Recent trends in liquid chromatography-tandem mass spectrometry to determine pesticides and their metabolites in food [J]. Trends Anal. Chem. 2007, 26: 103-115
    [115] Petrovic M, Barcelo D, Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis [J]. J. Mass Spectrom. 2006, 41: 1259-1267
    [116] Font G, Ruiz M J, Fernandez M, et al. Application of capillary electrophoresis-mass spectrometry for determining organic food contaminants and residues [J]. Electrophoresis, 2008, 29: 2059-2078
    [117] Mondello L, Tranchida P Q, Dugo P, et al. Comprehensive two-dimensional gas chromatography-mass spectrometry: A review [J]. Mass Spectrom.Rev. 2008, 27:101-124
    [118] Sneddon J, Masuram S, Richert J C. Gas chromatography-mass spectrometry-basic principles, instrumentation and selected applications for detection of organic compounds [J]. Anal. Lett. 2007, 40: 1003-1012
    [119] Pico Y, Farre M, Soler C, et al. Identification of unknown pesticides in fruits using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Imazalil as a case study of quantification [J]. J. Chromatogr., A, 2007, 1176: 123-134
    [120] Pico Y, Farre M, Soler C, et al. Confirmation of fenthion metabolites in oranges by IT-MS and QqTOF-MS [J]. Anal. Chem. 2007, 79: 9350-9363
    [121] Garcia-Reyes J F, Hernando M D, Molina-Dfaz A, et al. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS [J]. Trends Anal. Chem. 2007, 26: 828-841
    [122] Soler C, James K J, Pico Y. Capabilities of different liquid chromatography tandem mass spectrometry systems in determining pesticide residues in food. Application to estimate their daily intake [J]. J Chromatogr A, 2007, 1157: 73-84
    [123] Garcia-Reyes J F, Hernando M D, Ferrer C, et al. Large scale pesticide multiresidue methods in food combining liquid chromatography - Time-of-flight mass spectrometry and tandem mass spectrometry [J]. Anal. Chem., 2007, 79:7308-7323
    [124] Blasco C, Torres C M, Pico Y. Progress in analysis of residual antibacterials in food [J], Trends Anal. Chem. 2007, 26: 895-913
    [125] Thurman E M, Ferrer I, Zweigenbaum J A, Garcia-Reyes J F, Woodman M., Fernandez-Alba A.R. Discovering metabolites of post-harvest fungicides in citrus with liquid chromatography/time-of-flight mass spectrometry and ion trap tandem mass spectrometry [J]. J. Chromatogr A, 2005, 1082: 71-80
    [126] Garcia-Reyes J F, Molina-Diaz A, Fernandez-Alba A R. Identification of pesticide transformation products in food by liquid chromatography/time-of-flight mass spectrometry via fragmentation- degradation relationships [J]. Anal.Chem. 2007, 79, 307-321
    [127] Grimalt S, Pozo O J, Sancho J V, et al. Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits [J]. Anal. Chem. 2007, 79:2833-2843
    [128] PicóY, BarcelóD. The Expanding Role of LC-MS in Analyzing Metabolites [J]. Trends Anal Chem, 2008, 27:821–835.
    [1] Rustom I Y S. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods [J]. Food Chem. 1997, 59: 57-67
    [2] International Agency for Research on Cancer. Aflatoxins. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monographs on the evaluation of carcinogenic risks to humans, vol 56. IARC [D], Lyon, France, 1993. 245-395.
    [3] Smith J E, Lewis C W, Anderson J G. European Commission directorate general XII [D], Brussels report No. EUR16048 EN, 1994.
    [4] Schuller P L. A review of sampling plans and collaboratively studied methods of analysis for aflatoxins [J]. J.AOAC, 1976, 59: 1315-1343
    [5] Van der zijden A S M, Blanche koelensmid W A A, Boldingh J, Barrett C B, et al. Aspergillus Flavus and Turkey X Disease: Isolation in Crystalline Form of a Toxin responsible for Turkey X Disease [J]. Nature. 1962, 195: 1060-1062
    [6] Feuell A J. Aflatoxin in groundnuts. PartⅨ[J]. Trop. Sci. 1966, 8:61-70
    [7] Shantha T, Sreenivasamurthy V. Photo-destruction of aflatoxin in groundnut oil [J]. Indian J.Technol. 1977.15:453-454
    [8] Nkama I., Mobbs J H, Muller H G. Destruction of aflatoxin B1 in rice exposed to light [J]. J.Cereal Sci. 1987, 5:167-170.
    [9] Bilgrami K S, Singh A., Rajan K S. Detoxification of aflatoxins in dry fruits and spices through light and heat treatments [J]. Natn Acad, Sci.Lett. 1984, 7:273-274
    [10] Shantha T, Murthy V S, Rati E R, et al. Detoxification of groundnut seeds by urea and sunlight [J]. J.Food Safety, 1986, 7:225-231
    [11]. Samarajeewa U, Gamage T V. Combination of solvent and radiation effects on degradation of aflatoxin B1 [J], Mircen J Appl Microbiol Biotechnol. 1988, 4: 203-208
    [12] Aibara K, Yamagishi S. Effect of ultra-violet radiation on the destruction of aflatoxin B1. In: Proceedings of first US Japan conference on toxic microorganisms. UJNR Joint Panel on Toxic Microorganisms and US Department of Interior, Washington DC [D], 1968, pp 211-221.
    [13] Andrellos P J, Beckwith A C, Eppley R M. Photochemical changes of aflatoxin B1 [J]. J Assoc Of Anal Chem. 1967, 50:346-350
    [14] Lillard D A, Lantin R S. Some chemical characteristics and biological effects of photomodified aflatoxins. J Assoc Of Anal Chem. 1970, 53: 1060-1063
    [15] Chen T W, Fu F F, Chen Z X, et al. Study on the photodegradation andmicrobiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry [J]. J Chromatogr A, 2009, 1216:3217–3222
    [16] FarréM, Gros M, Hernández B, et al. Analysis of biological compounds in water by Ultra Performance Liquid Chromatography Quadrupole-Time of Flight Mass Spectrometry [J]. Rapid Commun Mass Spectrom, 2008, 22:41–51
    [17] Wang J, Leung D. Analyses of macrolide antibiotic residues in eggs, raw milk, and honey using both ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom. 2007, 21:3213–3222
    [18] PicóY, FarréM L, Soler C, et al. Identification of unknown pesticides in fruits using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry [J]. J Chromatogr A. 2007, 1176:123–134
    [19] Zhu M M, Chen H X, Han F M, et al.Analysis of Arecoline in Rat Urine, and Identification of its Metabolites, by Liquid Chromatography–Tandem Mass Spectrometry [J]. Chromatographia. 2006, 64:705–708
    [20] PicóY, BarcelóD. The Expanding Role of LC-MS in Analyzing Metabolites [J]. Trends Anal Chem, 2008, 27:821–835
    [21] Bateman K, Castro-Perez J. MSE with mass defect filtering for in vitro and in vivo metabolite identification [J]. Rapid Commun Mass Spectrom. 2007, 21(9):1485–1496
    [22] Mortishire-Smith R, O’Connor D. Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis [J]. Rapid Commun Mass Spectrom. 2005, 19(18):2659–2670
    [23] Brix R, Bahi N. Identification of disinfection by-products of selected triazines in drinking water by LC-Q-ToF-MS/MS and evaluation of their toxicity [J]. J Mass Spectrom, 2009, 44:330–337
    [24] PicóY, FarréM L, Tokman N, et al. Rapid and sensitive ultra-high pressure liquid chromatography-quadrupole time-of-flight mass spectrometry for the quantification of amitraz and identification of its degradation products in fruits [J]. J Chromatogr A, 2008, 1203:36–46
    [25] Liu B, Lu R. Chemical Kinetics, Physical chemistry, Huazhong University of Science and Technology Press [M], Wu Han, China, 2008. 244
    [26] Kang X H, Liu M Q. Photochemical Reaction. Elements and application of photochemistry, Tianjin university press [M]: Tian Jin, China, 1995.177-199
    [27]徐冰冰,陈忠林,齐飞.紫外光降解水中亚硝基二乙胺[J].科学通报, 2008,53(11): 1350-1357
    [28]冯小刚,戎非,付德刚.纳米TiO2膜对水中微量微囊藻毒素的光催化降解[J].科学通报, 2006,51(5): 532-538
    [29] Li S J, Ji C G. Principle and Application of Macromolecule Chemistry, Fudan University Press [M], Shanghai, 1993.464
    [30]王正烈,周亚平,李松林,刘俊吉.物理化学,高教出版社[M]:北京, 2008, 256-270 .
    [1] Rustom I Y S. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods [J]. Food Chem. 1997, 59: 57-67
    [2] International Agency for Research on Cancer. Aflatoxins. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monographs on the evaluation of carcinogenic risks to humans, vol 56. IARC, Lyon, France [M], 1993. 245-395.
    [3] Smith J E, Lewis C W, Anderson J G. European Commission directorate general XII [M], Brussels report No. EUR16048 EN, 1994.
    [4] Schuller P L. A review of sampling plans and collaboratively studied methods of analysis for aflatoxins [J]. J.AOAC, 1976, 59: 1315-1321
    [5] Samarajeewa U, Sen A C, Couen M D. Detoxification of aflatoxins in foods and feeds by physical and chemical methods [J]. J of Food Protection. 1990, 53: 489-501
    [6] Alberts J F, Engelbrecht Y, van Zyl W H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures [J]. Int J Food Microbiol. 2006, 109: 121-126
    [7] Van der zijden A S M, Blanchekoelensmid W A A, Philp J. Aspergillus Flavus and Turkey X Disease: Isolation in Crystalline Form of a Toxin responsible for Turkey X Disease [J]. Nature. 1962, 195: 1060-1062
    [8] Jabusch T W, Tjeerdema R S. Photodegradation of Penoxsulam [J]. J. Agric. Food Chem. 2006, 54: 5958-5961
    [9] de Urzedo A P F M, Diniz M E R, Augusti R. Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry [J]. J Mass Spectrom. 2007, 42: 1319-1325
    [10] Hu J Y, Liu C, Liu C L. Photodegradation of Flumorph in Aqueous Solutions and Natural Water under Abiotic Conditions [J]. J. Agric. Food Chem. 2009, 57: 9629-9633
    [11] Liu B, Lu R. Chemical Kinetics, Physical chemistry, Huazhong University of Science and Technology Press [M], Wu Han, China, 2008. 244
    [12] Kang X H, Liu M Q. Photochemical Reaction. Elements and application of photochemistry, Tianjin university press [M], Tian Jin, China, 1995.177-199
    [13]徐冰冰,陈忠林,齐飞.紫外光降解水中亚硝基二乙胺[J].科学通报, 2008, 53(11): 1350-1357
    [14]冯小刚,戎非,付德刚.纳米TiO2膜对水中微量微囊藻毒素的光催化降解[J].科学通报, 2006,51(5): 532-538
    [15] Li S J, Ji C G. Principle and Application of Macromolecule Chemistry, Fudan University Press [M], Shanghai, 1993.464
    [16]. PicóY, BarcelóD. The Expanding Role of LC-MS in Analyzing Metabolites [J]. Trends Anal Chem, 2008, 27:821–835
    [17]. Bateman K, Castro-Perez J. MSE with mass defect filtering for in vitro and in vivo metabolite identification [J]. Rapid Commun Mass Spectrom. 2007, 21(9):1485–1496
    [18]. PicóY, FarréML, Tokman N, BarcelóD. Rapid and sensitive ultra-high pressure liquid chromatography-quadrupole time-of-flight mass spectrometry for the quantification of amitraz and identification of its degradation products in fruits [J]. J Chromatogr A, 2008, 1203:36–46
    [19]. Mckenzie K S., Sarr A B, Mayura K, Bailey R H, Miller D R, Rogers T D, Norred W P, Voss K A, Plattner R D, Kubena L F, Phillips T D. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone [J]. Food and Chemical Toxicology, 1997, 35: 807-820
    [1] Ames B N, McCann J. Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test [J]. Mutation Research 1975, 31: 347-364
    [2] Ames B N. The detection of chemical mutagens with enteric bacteria. In: Hollaender (Ed.), Chemical Mutagens, Principles and Methods for their Detection. Plenum Press [M], New York, 1971. 268-282
    [3] Ames B N, McCann J. Validation of the Salmonella test. A reply to Rinkus and Legator [J]. Cancer Research 1981, 41: 4192–4196
    [4] Wu J C, Hseu Y C, Chen C H, Wang S H, Chen S C. Comparative investigations of genotoxic activity of five nitriles in the comet assay and the Ames test [J]. J Hazard Mater. 2009, 169: 492-497
    [5] Chung H J, Chung M J, Houng S J, Jeun J, Kweon D K , ChoiCH, Park J T, Park K H, Lee S J. Toxicological evaluation of the isoflavone puerarin and its glycosides [J]. Eur Food Res Technol. 2009, 230:145–153
    [6] Recep L, Dilek A, Yasin E, Muhsin K. Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test [J]. Chemosphere, 2010, 80(9): 1056-1061
    [7] Arimoto-Kobayashi S, Kayoko S, Masaki M, Keiko K, Keiko Y. UVA activation of N-dialkylnitrosamines releasing nitric oxide, producing strand breaks as well as oxidative damages in DNA, and inducing mutations in the Ames test [J], Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 691(1/2): 47-54.
    [8] Hirokazu T, Misako K, Tsunenori N, Akira O, Michihiro A, Takako A. Surveying the mutagenicity of tap water to elicit the effects of purification processes on Japanese tap water [J], Chemosphere, 2009, 77 (3):434-439
    [9] International Agency for Research on Cancer ,1993. Aflatoxins. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans [D], vol 56. IARC: Lyon, France
    [10] Rustom I Y S. Aflatoxin in food and feed: occurrence, legislation and inactivationby physical methods [J]. Food Chemistry, 1997, 59: 57-67
    [11] Alberts J F, Engelbrecht Y, Steyn P S, Holzapfel W H, van Zyl W.H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures [J]. International Journal of Food Microbiology, 2006, 109(1/2) : 121-126
    [12] Méndez-Albores A., Del Río-García J.C., Moreno-Martínez E. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment [J]. Animal Feed Science and Technology, 2007, 135(3/4):249-262
    [13] Alberts J F., Gelderblom W C A, Botha A , van Zyl W H. Degradation of aflatoxin B1 by fungal laccase enzymes [J]. International Journal of Food Microbiology, 2009, 135(1):47-52
    [14] Méndez-Albores A, Arámbula-Villa G, Loarca-Pi?a M G F, Casta?o-Tostado E, Moreno-Martínez E. Safety and efficacy evaluation of aqueous citric acid to degrade B-aflatoxins in maize [J]. Food Chem Toxicol, 2005, 43: 233-238
    [15] Ames B N. The detection of chemical mutagens with enteric bacteria. In: Hollaender (Ed.), Chemical Mutagens, Principles and Methods for their Detection. Plenum Press [M], New York, 1971.
    [16] Cardador-Martínez A, Casta?-Tostado E, Loarca-Pi?a G. Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1[J]. Food Addit Contam. 2002, 19(1): 62-69
    [1]李龙,陈家堃.现代毒理学实验技术原理与方法[M],北京:化学工业出版社,2006, 20-26
    [2] Aden D P, Fogel A, Plotkin S. Controlled synthesis of HBsAg in a differentiated human liver carcinoma- derived cell line [J]. Nature, 1979, 282: 615-616
    [3] Stefano C, AnelìU, Ester S, et al. Carnosic acid from rosemary extracts: a potential chemoprotective agent against aflatoxin B1[J]. J. Appl. Toxicol. 2007, 27:152-159
    [4] Ricordy R, Gensabells G, Cacci E, et al. Impairment of cell cycle progression by aflatoxin B1 in human cell lines [J]. Mutagenesis. 2002, 17: 241-149
    [5] Chan H, Chan C, Ho J W. Inhibition of glycyrrhizic acid on aflatoxin B1-induced cytotoxicity in hepatoma cells [J]. Toxicology. 2003, 188: 211-217
    [6] Vviviers J, Schabort J C. Aflatoxin B1 alters protein phosphorylation in rat livers [J]. Biochem. Biophys. Res. Commun. 1985, 129: 342-349
    [7] Bonsi P, Agusti-Tocco G, Palmery M, et al. Aflatoxin B1 is an in hibitor of cyclic nucleotide phosphodiesterase activity [J]. Gen. Pharmacol. 1999, 32: 615-619
    [8] Bonsi P, Palmery M, Agusti-Tocco G. Aflatoxin B1 cytotoxicity in neurons in culture. ATLA [J], Alt. Lab. Anim. 1996, 24: 533-540
    [9] Renzulli C, Galvano F, Pierdomenico, et al. Effect of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (HepG2) [J]. J. Appl. Toxicol. 2004, 24: 289-296
    [10] O’Brien T, Babcock G, Cornelius J, et al. A comparision of apoptosis and necrosis induced by hepatotoxins in HepG2 cells [J]. Appl. Pharmacol. 2000, 164: 280-290
    [11] Lalini R, Bharti O, Kanti B. Aflatoxin B1-induced toxicity in HepG2 cells inhibited by carotenoids: morphology, apoptosis and DNA damage [J]. Biol. Chem. 2006, 387: 87-93
    [12] Groopman J D, Kensler T W. Role of metabolism and viruses in aflatoxin-induced liver cancer [J]. Toxicol. Appl. Pharmacol. 2005, 206: 131-137
    [13] Terry R V V, Todd L W, Patrick J K, et al.Aflatoxin B1 alters the expression of p53 in cytochrome P450-expressing human lung cells [J]. Toxicol. Sci. 2006, 89:399–407
    [14] Anita G, Ashok K, Prasad, et al. Apoptogenic effect of 7, 8-diacetoxy-4-methylcoumarin and 7, 8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: Role of NF-B, Akt, ROS and MAP kinase pathway[J]. Chemico-Biological Interactions, 2009, 179: 363-374
    [15] Eric D, Vasavi R, William K, et al. Three-color flow cytometric assay for the study of the mechanisms of cell-mediated cytotoxicity [J]. Immunology Letters, 2001, 78:35-39
    [16] Zhou Q, Xie H, Zhang L, et al. cis-Terpenones as an Effective Chemopreventive Agent against Aflatoxin B1-Induced Cytotoxicity and TCDD-Induced P450 A/B Activity in HepG2 Cells [J], Chem. Res. Toxicol. 2006, 19: 1415-1419
    [17] Branislava J, Todd M U, David S P, et al. An in vitro cell model system for the study of the effects of ozone and other gaseous agents on phagocytic cells [J]. Journal of Immunological Methods, 2003, 272: 125- 134
    [18] Tatyana M. Timiryasova, Chen B, et al. Replication-deficient vaccinia virus gene therapy vector: evaluation of exogenous gene expression mediated by PUV-inactivated virus in glioma cells [J], J Gene Med, 2001, 3: 468-477
    [19] Roya K. Programmed Cell Death: General Principles for Studying Cell Death [M]. Methods in enzymology, 2008, 442: 69-72
    [20] Lin X, Cai Y, Li Z X. Structure determination,apoptosis induction,and telomerase inhibition of CFP-2,a novel lichenin from cladonia furcata[J].Biochimica et Biophysica Acta,2003,1622:90-108
    [21] Sun H X, Zheng Q F, Tu J. Induction of apoptosis in Hela cells by 3β-hydroxy-12 oleanen-27-oic acid from the rhizomes of Astilbe chinensis[J].Bioorganic&Medicinal Chemistry, 2006, 14(4):1189-1198
    [1] Rustom I Y S. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods [J]. Food Chem. 1997, 59: 57-67
    [2]周瑞宝.中国花生生产、加工产业现状及发展建议[J].中国油脂, 2005, 30(2): 5-9
    [3] Smith J E, Lewis C W, Anderson J G. European Commission directorate general XII [D], Brussels report No. EUR16048 EN, 1994.
    [4] Samarajeewa U, Sen A C, Couen M D,et al. Detoxification of aflatoxins in foods and feeds by physical and chemical methods [J]. J of Food Protection. 1990, 53: 489-501
    [5] Van der zijden A S M, Blanche koelensmid W A A, Philp J. Aspergillus Flavus and Turkey X Disease: Isolation in Crystalline Form of a Toxin responsible for Turkey X Disease [J]. Nature. 1962, 195: 1060-1062
    [6] Jabusch T W, Tjeerdema R S. Photodegradation of Penoxsulam [J]. J. Agric. Food Chem. 2006, 54: 5958-5961
    [7] Urzedo de A P F M, Diniz M E R, Augusti R. Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry[J]. J Mass Spectrom. 2007, 42: 1319-1325
    [8] Hu J Y, Liu C, Liu C L. Photodegradation of Flumorph in Aqueous Solutions and Natural Water under Abiotic Conditions [J]. J. Agric. Food Chem. 2009, 57: 9629-9633
    [9] Liu R J, Jin Q Z, Wang XG, et al. LC–MS and UPLC–quadrupole time-of-flight MS for identification of photodegradation products of Aflatoxin B1 [J]. Chromatographia. 2010, 71(1/2): 107-112
    [10] Liu R J, Jin Q Z, Wang XG, et al. Photodegradation kinetics and byproducts identification of the Aflatoxin B1 in aqueous medium by UPLC-Q-TOF MS [J]. J of Mass Spectrom, 2010, 45: 553–559
    [11]石中玉.紫外线光源及其应用[M].北京:轻工业出版社,1984,1:16-19
    [12]张曼维.辐射化学辐射化学入门[M].合肥:中国科技大学出版社,1993, 1:108-110.
    [13] Swallow A J. Radiation Chemistry An Introduction [M]. USA: Longman Group Limited, 1973, 1:264-292.
    [14] Kiritsakis A, Kanavouras A, Kiritsakis K. Chemical analysis, quality control and packaging issues of olive oil [J]. European Journal of Lipid Science and Technology, 2002, 104:628-638.
    [15] Schwarz K, Bertelsen G, Nissen L R, et al. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds [J]. European Food Research and Technology, 2001, 212:319-328
    [16] Pokorny J, Yanishlieva N, Gordon M. Antioxidants in Food: Practical Applications [M]. Woodhead Publishing, Ltd., Cambridge, England, 2001. 71-84
    [17] Canizares-Macias M P, Garcia-Mesa J A, Luque de Castro M D. Determination of the oxidative stability of olive oil, using focused-microwave energy to accelerate the oxidation process [J]. Analytical and Bioanalytical Chemistry, 2004, 378:479-483
    [18] Tan C P, Che-Man Y B, Selamat J, et al. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods [J]. Food Chemistry, 2002, 76:385-389
    [19]宋志华,单良,王兴国.毛细管气相色谱法测定精炼和氢化大豆油中的反式脂肪酸[J].中国油脂, 2006, 31(12):37-39
    [20] Margherita R., Cristina A., Simona R. Tocopherols and tocotrienols as free radical-scavengers inrefined vegetable oils and their stability during deep-fat frying [J]. Food Chemistry. 2007, 102(7): 812–817
    [21] Codes Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Codex Alimentarius. Vol.8-faats, Oil and Related Products [D]. 2nd ed.Cod Stan 210-1999, Rome, Italy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700