用户名: 密码: 验证码:
高热量摄入对大鼠骨髓间充质干细胞定向分化能力影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     高热量摄入在现代社会极为常见,这种饮食习惯是造成肥胖、代谢综合征、心血管疾病等多种疾病的危险因素之一。间充质干细胞(Mesenchymal Stem Cells,MSCs)是一类中胚层来源的具有高度自我更新和多向分化潜能的干细胞,参与多种组织的再生与修复过程。大量研究证实高热量饮食对组织器官病变造成显著影响,但在这一过程中,高热量饮食对在组织器官损伤修复中起重要作用的MSCs的影响仍有待进一步研究。探讨高热量摄入状态下骨髓来源间充质干细胞(Bone Marrow MSCs, BMSCs)的生物学特性与功能的改变对了解和治疗与高热量摄入相关的疾病有重要的意义。
     研究目的
     1.建立高热量摄入的大鼠动物模型,明确高热量摄入对大鼠生理生化和组织病理的影响,并对BMSCs生物学特性的变化进行评估。
     2.探讨高热量摄入条件下大鼠外周血中细胞因子的变化,及其对BMSCs定向分化功能的影响。
     3.分析高热量摄入对大鼠BMSCs基因表达谱的影响,为高热量摄入通过改变BMSCs生物学特性,进而影响相关疾病组织器官损伤修复的机理提供理论基础。
     研究方法
     1.高热量摄入大鼠动物模型的建立与鉴定
     正常饮食(基础饲料)与高热量饮食(基础饲料60%,蔗糖20%,猪油10%,蛋黄粉10%)喂养6周龄雌性Sprague-Dawley(SD)大鼠,在喂养不同阶段检测体重、体长,以及空腹血糖、血脂、胰岛素水平、胰岛素耐量水平等生理生化指标,并处死后切取包括肝脏、骨和脂肪等不同组织器官进行组织学观察。
     2.大鼠BMSCs的分离培养与鉴定
     在喂养不同阶段取大鼠股骨与胫骨,低糖完全培养基冲洗并打散骨髓,置于37℃、5%C02、100%饱和湿度的条件下,采用全骨髓贴壁培养法分离培养大鼠BMSCs。细胞融合达到80%-90%时,消化并传代培养。采用流式细胞仪检测所获得细胞的干细胞表面标志物、细胞的凋亡状态以及细胞周期分布状况。采用MTT法检测所获BMSCs的增殖能力,并取P3代大鼠BMSCs用诱导培养基分别进行体外成脂和成骨诱导分化,在诱导不同时间点收集细胞并提取总RNA,Real-time PCR检测相应分化标志基因的表达,并在体外诱导成脂分化14天和成骨分化21天分别进行油红0染色和茜素红染色,分析高热量摄入后大鼠BMSCs分化能力的改变。
     3.大鼠外周血相关细胞因子含量的检测
     在喂养不同阶段,取空腹12小时后大鼠尾静脉血并分离血清,采用大鼠细胞因子抗体芯片RayBio(?) Rat Cytokine Antibody Array G-Series2检测大鼠血清中相关细胞因子含量,分析高热量摄入对大鼠血清细胞因子水平的影响。
     4.特定细胞因子对大鼠BMSCs体外定向分化能力的影响
     在正常饮食喂养4月的大鼠BMSCs诱导分化培养基中添加炎症因子CINC-1和CINC-3,对高热量饮食喂养4月的大鼠BMSCs诱导分化培养基中添加促炎症因子IL-β,在成脂和成骨诱导分化不同时间点检测定向分化标志基因的表达,分析在不同细胞因子存在条件下,BMSCs定向分化能力的改变。
     5.大鼠BMSCs基因表达谱检测和分析
     TRI Reagent提取P1代大鼠BMSCs的总RNA,采用Rat Genome2302.0Array芯片,按照表达谱芯片操作规程分别进行靶标制备、芯片杂交、清洗、染色和扫描以及数据采集,用Cluster&Tree view及Scatter对数据进行初步分析;采用博奥公司在线分析系统Bio MAS (Molecule annotation system)3.0对所得数据进行Pathways和GO (Gene Ontology)分析,对高热量摄入造成的BMSCs基因表达改变和相关主要信号通路进行分析。
     研究结果
     1.高热量摄入大鼠动物模型的建立
     高热量饮食实验组大鼠的体重和Lee's肥胖指数在喂养后第3个月开始明显高于正常饮食对照组。高热量饮食组大鼠自喂养早期(1月)其空腹血清中总胆固醇和胰岛素水平,以及胰岛素耐量即有明显增高,且与对照组的差异随时间延长有增加的趋势;而空腹血糖在喂养4月后高于对照组,差异有统计学意义。
     2.高热量摄入导致大鼠的组织病理学改变
     实验组大鼠多种组织有明显的病理学改变,肝脏组织学发现高热量饮食喂养1月后,实验组大鼠肝细胞中有脂滴出现,到喂养2月时有明显的肝脂肪变现象。脂肪在皮下及腹腔有异常聚集,镜下可见腹腔大网膜处脂肪组织细胞的直径从喂养1月起就明显大于对照组,并且两者差异随时间延长逐渐增加。股骨切片中发现实验组大鼠骨髓中破骨细胞数量在喂养4月时明显增加。
     3.大鼠BMSCs的获取与生物学特性检测
     全骨髓贴壁培养12-14天后,可获得原代贴壁细胞;经过两次传代培养,实验组与对照组大鼠BMSCs在形态学上并无明显差异。经流式细胞仪检测所得到的贴壁细胞,实验组与对照组中CD90+/CD31-的细胞比例均随喂养时间延长而降低,且实验组中CD90+/CD31的细胞比例从喂养1月时即低于对照组,且二者差异有统计学意义。喂养4月后的大鼠BMSCs,实验组和对照组的细胞周期和细胞凋亡未见明显差异,但实验组BMSCs的增殖能力明显下降。
     4.大鼠BMSCs的体外诱导分化能力比较
     体外成脂诱导分化过程中,对照组BMSCs成脂相关基因CEBP-a和PPAR-y的表达随月龄增加有升高的趋势;但实验组BMSCs成脂相关基因表达在喂养1月时一过性升高后,随喂养时间的继续延长,相关标志基因表达则明显低于对照组。在成骨诱导分化过程中,对照组BMSCs成骨相关标志基因表达也有随月龄增加而升高的趋势;在喂养1月时,实验组BMSCs成骨相关基因表达与对照组相比无明显差异;喂养2月时Runx2的表达明显低于对照组;喂养4月后Runx2与OCN的表达均明显低于对照组,且两组有统计学差异。BMSCs体外诱导分化后的特异性染色结果也显示,在高热量饮食喂养4月后,实验组BMSCs的成骨和成脂分化能力比对照组降低。
     5.大鼠外周血中相关细胞因子含量的检测
     细胞因子芯片结果显示,高热量饮食喂养1个月后,MIP-3α、VEGF、TIMP1、 MMP-8、p-NGF、Fractalkine、L-Selectin和LIX的水平比对照组高出20%以上,IL-1R6和PDGF-AA的表达平均值明显降低。在喂养2个月之后,实验组CINC-1、 Leptin、TNF-α、CINC-3和Prolactin-R含量比对照组增加20%或以上,IL-1R6和PDGF-AA的血清含量回升至对照组水平;而IL-1β、MIP-3α和TIMP1的血清含量比对照组降低了20%以上,β-NGF、Fractalkine和L-Selectin血清含量降低了约15%,MMP-8和VEGF含量则降低至对照组水平。喂养4月后,实验组VEGF、CINC-1、 Leptin、TNF-α、CINC-3和Prolactin-R的血清含量均比对照组高30%以上;IL-1β和IL-1R6的含量降低至对照组的65%左右。因而Leptin、CINC-1、CINC-3和Prolactin-R含量在高热量饮食喂养过程中相对稳定的增加,IL-1β持续降低。
     6.添加炎症因子对大鼠BMSCs体外定向分化能力的影响
     在体外诱导分化液中添加CINC-3能明显降低正常饮食组大鼠BMSCs的成脂分化相关标志基因的表达,但对成骨分化相关标志基因的表达水平无明显影响;CINC-1对对照组BMSCs成脂和成骨分化标志基因表达的影响均不明显;而IL-1β能明显逆转高热量饮食组BMSCs中降低的成脂分化标志基因表达,同时进一步降低其成骨分化标志基因的表达。
     7.大鼠BMSCs基因表达谱分析
     在喂养1月后,实验组和对照组BMSCs基因表达谱即有明显差异,喂养2个月时差异更加显著,发生改变的基因数量增加,主要涉及的生物学过程集中在代谢、炎症及肿瘤发生等。其中在细胞因子-细胞因子受体相互作用、JAK-STAT信号通路、MAPK信号通路等与炎症密切相关的通路有大量基因的表达发生下调,另外参与调控干细胞功能的信号通路包括Toll样受体(TLR)信号通路、Wnt信号通路、TGF-β信号通路等均有大量的基因表达发生改变。基因芯片分析进一步证实了微环境中炎症因子水平变化导致BMSCs生物学特性改变。
     结论
     1.高热量饮食干预1月后,大鼠的血脂以及胰岛素耐量即有明显升高,相应的组织器官也有明显病理学改变,而直到喂养4月后血糖水平才发生改变。该结果提示,高热量摄入引起的相关组织器官病理改变与血脂以及胰岛素耐量变化同步,且早于血糖改变。
     2.高热量摄入大鼠来源的BMSCs在贴壁细胞中的比例减少,且体外的增殖能力和定向分化能力降低,提示高热量摄入会导致BMSCs的生物学特性改变,进而影响组织器官再生和损伤修复。
     3.高热量摄入大鼠外周血炎症相关细胞因子包括Leptin、CINC-1和CINC-3的含量明显升高,IL-1β水平则显著降低;体外诱导分化时,添加CINC-3和IL-1β明显改变BMSCs成脂分化标志基因的表达;提示微环境中细胞因子含量的变化可能是BMSCs定向分化能力改变的原因之一。BMSCs基因表达谱分析结果显示与细胞因子信号传导和干细胞功能相关的通路中有大量基因表达发生改变,进一步证实细胞因子和干细胞功能之间有重要联系。本研究中关于CINC-3降低BMSCs成脂分化能力的发现为首次报道。
Background:
     High calorie intake has been recognized as one of the important risk factors for a variety of diseases, including obesity, cardiovascular disease and metabolic syndrome. Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that hold potentials to give rise to cells of diverse lineages, participating in the regeneration and reconstructing of multiple damaged tissues. A growing body of evidence suggests that high-fat-diet (HFD) can result in significant pathological changes in tissues or organs, but the influences of HFD on the biological characteristics of BMSCs remains to be elucidated. It is imperative to uncover the changes of BMSCs under the high calorie intake circumstances for the understanding and treatment of metabolic diseases.
     Objectives:
     1. To establish a high-calorie intake animal model by feeding rats with high-fat diet (HFD) and to define the effects of HFD on physiological, biochemical, and histopathology of tissues and organs in animal model, and to assess impacts of HFD on the biological characteristics of BMSCs.
     2. To study the cytokine profiles of peripheral blood of rats under HFD feeding, and to detect the effects of specified cytokines on the differentiation potentials of BMSCs.
     3. To explore the effects of HFD on gene expression profiles of rats BMSCs so as to provide a theoretical basis for understanding the effects of HFD on BMSCs which might give further impacts on regeneration and reconstructing of multiple damaged tissues in metabolic diseases.
     Methods:
     1. Construction of rats animal models with high-calorie intake
     Normal diet (ND, basal diet) and customized HFD (60%of basal diet,20%sucrose,10%lard and10%egg yolk powder) were used to feed6-week-old female Sprague-Dawley (SD) rats respectively. Studies on rat physiological and biochemical indicators (including body weight, body length, fasting blood glucose, blood lipid and insulin levels, insulin tolerance levels) and histopathological changes in the corresponding organs were performed at different feeding time points.
     2. Isolation and characterization of rat BMSCs in vitro
     BMSCs were isolated by whole bone marrow adherent method and maintained in complete medium. Cells were cultured in the incubator with the atmosphere of5%CO2and100%humidity. Cells were digested and passaged when they reached80%to90%confluency. The expression of MSC cell surface markers, percentage of apoptotic cells and distribution of cells in different phases of cell cycle of harvested adherent cells were assessed by flow cytometry. In addition, proliferation ability of BMSCs was detected by MTT assay. Total mRNA of BMSCs at specified time points was collected using TRI Reagent and real-time PCR was used to detect the expressions of relevant marker genes. BMSCs at P3were subjected to osteogenic and adipogenic differentiation in vitro. Real-time PCR analysis, Alizarin Red S staining and Oil Red O staining were performed to detect the osteogenic and adipogenic abilities of BMSCs.
     3. Analysis of relevant cytokines in rat serum
     In order to study the impacts of HFD on the inflammatory cytokines profiles, the fasting serum was collected from tail vein of rats after1,2or4months of feeding and the levels of the relevant cytokines were measured according to the protocol of the RayBio(?) Rat Cytokine Antibody Array G-Series2.
     4. Impacts of the specified cytokines on the differentiation ability of BMSCs in vitro
     In vitro adipogenesis and osteogenesis of BMSCs isolated from4-month HFD or ND fed rats were performed. CINC-1or CINC-3was supplemented in differentiation medium of ND BMSCs while IL-1β was added to the induction medium of HFD BMSCs during adipogenic and osteogenic differentiation in vitro. After induced differentiation, expressions of marker genes were analyzed to assess the impacts of cytokines on the differentiation potentials of BMSCs.
     5. Detection and analysis of gene expression profiles of BMSCs
     The total mRNA of BMSCs (P1) was purified and analyzed by the Rat Genome2302.0Array (Affymetrix). The targets were prepared and hybridization followed by cleaning, dyeing and scanning was operated according to manufacturers' instructions. Data were collected by GeneChip(?) Scanner3000and analyzed by using Bio MAS (Molecule annotation system)3.0software (CapitalBio Corporation, China).
     Results
     1. Establishment of rat model with high-calorie intake
     HFD changes the physiological and biochemical properties of rats. Body mass and Lee's obesity index of the HFD rats were significantly higher than that of ND rats after3months of feeding. The fasting total cholesterol, fasting serum insulin levels and insulin tolerance of HFD rats were significantly increased since the1st month, and the difference between both groups increased in a time-dependent manner. Interestingly, the fasting blood glucose of rats in both groups didn't show significant differences until feeding for4months.
     2. HFD changed the histopathology of rat
     Multiple tissues of HFD rats showed obvious pathological changes. Liver biopsy demonstrated that lipid droplets were presented in the hepatocytes of1month HFD fed rat and the hepatic steatosis became more serious at2nd month. Abnormal accumulation of fat in subcutaneous and abdominal cavity was observed. The diameters of omental fat cells were significantly increased than that of control group after feeding for1month onwards, and the difference between two groups was gradually increased in a time-dependent manner. The number of osteoclasts in the bone marrow of femur in HFD rats was significantly increased when compared with ND rats after feeding for4months.
     3. Isolation and characterization of rat BMSCs
     The adherent cells were obtained after adherent culture of12to14days and the morphologies of BMSCs isolated from HFD and ND rats were similar after two passages. Percentages of CD31-/CD90+cells in HFD and ND rats decreased along with the feeding time while the percentage of CD31-/CD90+cells in HFD rats was significantly lower than in ND rats after one month feeding. After feeding for4months, there was no significant difference in the apoptosis and cell cycle profiles of HFD and ND BMSCs, but the proliferation abilities of HFD BMSCs were dramatically decreased than ND BMSCs.
     4. Comparison of the differentiation abilities of rat BMSCs in vitro
     During the adipogenic differentiation, the expression of adipogenic markers in BMSCs in HFD group were significantly higher than those from ND group after1month of feeding, but rapidly decreased after2months. For osteogenic differentiation, there was no significant difference in the expressions of Runx2mRNA between HFD and ND BMSCs after feeding for2months. After feeding for4months, both the expressions of osteogenic genes expression were significantly decreased in HFD BMSCs than in ND BMSCs, suggesting that the capacities of differentiation potentials of rat BMSCs were significantly inhibited.
     5. Evaluation of cytokines levels in peripheral blood serum of rats
     Results of cytokine antibody microarray showed that after HFD feeding for1month, levels of MIP-3a, VEGF, TIMP1, MMP-8, beta-NGF, Fractalkine, L-Selectin and LIX in HFD rats showed20%increase than in ND rats while the levels of IL-1R6and PDGF-AA were significantly reduced. After feeding for2months, levels of CINC-1, leptin, TNF-alpha, CINC-3and Prolactin-R in HFD rats were increased by20%or more when compared to ND rats while serum levels of IL-1R6and PDGF-AA went back to the same levels as ND rats. Levels of IL-1β, MIP-3a and TIMP1in HFD rats were20%lower than that in ND rats; the serum levels of beta-NGF, Fractalkine and L-Selectin in HFD rats were decreased by about15%while MMP-8and VEGF levels returned to the same level as control group. After feeding for4months, levels of VEGF, CINC-1, leptin, TNF-alpha, CINC-3and Prolactin-R in serum of HFD rat were higher than that in ND rats for more than30%while level of IL-1β continued to decrease to less than65%of ND rats.
     6. Effect of CINC-1, CINC-3and IL-1β on the differentiation ability of rat BMSCs in vitro
     Supplement of CINC-3in the differentiation medium could significantly reduce the mRNA expression of adipogenic markers of ND BMSCs, but showed no influence in the expressions of osteogenic differentiation marker genes. No significant effect of CINC-1on the expressions of adipogenic or osteogenic marker gene in ND BMSCs was observed. Supplementation of IL-1β could rescue the inhibited mRNA expressions of adipogenic markers but further inhibited the expressions of osteogenic markers in HFD BMSCs.
     7. Evaluation and analysis of the gene expression profiles of BMSCs
     After1month of feeding, the gene expression profiles of HFD BMSCs were significantly different from ND BMSCs. The differences of BMSCs between two groups were more pronounced after feeding for2months. Genes with significant changes were mainly involved in metabolism and inflammation signal pathways, including cytokines and cytokines receptor interaction, JAK-STAT signaling and MAPK signaling; as well as the pathways that regulated the functions of BMSCs, such as Toll-like signaling, Wnt signaling and TGF-1β signaling. The results of microarray analysis further confirmed that the changes in the serum levels of inflammatory cytokines could change the biological characteristics of BMSCs.
     Conclusion
     1. After1month of HFD intervention, blood lipids and insulin resistance were significantly increased and the histopathologies of corresponding organs were also changes. However, the blood glucose level of HFD rats did not change until feeding for4months, suggesting that the pathological changes of corresponding organs were synchronous with the changes in the blood lipids and insulin tolerance, and occurred earlier than the changes of blood glucose. These findings indicated that multiple clinical scenarios rather than blood glucose alone should be tested for early diagnosis of metabolic diseases in future.
     2. The BMSCs isolated from HFD rats showed reduced percentages in adherent cell population, decreased proliferation and differentiation abilities in vitro, suggesting that HFD may affect the biological characteristics of BMSCs, and thus caused impacts on the regeneration and reconstruction ability of tissues and organs in organism.
     3. HFD modified serum levels of inflammatory cytokines in rats, of which leptin, CINC-1and CINC-3were significantly elevated while IL-1β were reduced. Supplementation of CINC-3and IL-1β in induced differentiation culture of BMSCs in vitro significantly changed the expression of differentiation-related marker genes, indicating that changes of inflammatory cytokines in the microenvironment may be one of the factors that resulted in the change of the differentiation abilities of BMSCs. The results of gene expression microarray analysis demonstrated that a large number of genes involved in pathways that regulate cytokine signaling or stem cell functions were down or up-regulated, suggesting a correlation between cytokines and biological properties of BMSCs. In this study, we firstly reported that CINC-3could inhibit the adipogenic differentiation ability of BMSCs.
引文
[1]K. Esposito,D. Giugliano. The metabolic syndrome and inflammation:association or causation?[J]. Nutr Metab Cardiovasc Dis,2004,14(5):228-32.
    [2]S. B. Patel, G. P. Reams, R. M. Spear, et al. Leptin:linking obesity, the metabolic syndrome, and cardiovascular disease[J]. Curr Hypertens Rep,2008,10(2):131-137.
    [3]E. Mansilla, V. Diaz Aquino, D. Zambon, et al. Could metabolic syndrome, lipodystrophy, and aging be mesenchymal stem cell exhaustion syndromes?[J]. Stem Cells Int,2011(943216).
    [4]S. Touati, F. Meziri, S. Devaux, et al. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats[J]. Med Sci Sports Exerc,2011,43(3):398-407.
    [5]M. Cortez, L. S. Carmo, M. M. Rogero, et al. A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells[J]. Inflammation,2013, 36(2):379-386.
    [6]B. A. Neuschwander-Tetri,S. H. Caldwell. Nonalcoholic steatohepatitis:summary of an AASLD Single Topic Conference[J]. Hepatology,2003,37(5):1202-1219.
    [7]R. H. Eckel, K. G. Alberti, S. M. Grundy, et al. The metabolic syndrome[J]. Lancet,2010, 375(9710):181-183.
    [8]T. Kadowaki, T. Yamauchi, N. Kubota, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome [J]. J Clin Invest,2006, 116(7):1784-1792.
    [9]E. Cersosimo,R. A. DeFronzo. Insulin resistance and endothelial dysfunction:the road map to cardiovascular diseases[J]. Diabetes Metab Res Rev,2006,22(6):423-436.
    [10]K. E. Peters, J. Beilby, G. Cadby, et al. A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome[J]. BMC Med Genet.2013,14:15(doi:10.1186/1471-2350-14-15).
    [11]C. L. Wu, B. O. Diekman, D. Jain, et al. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad:the effects of free fatty acids[J]. Int J Obes (Lond),2013,37(8):1079-1087.
    [12]C. Wang, R. A. Seifert, D. F. Bowen-Pope, et al. Diabetes and aging alter bone marrow contributions to tissue maintenance[J]. Int J Physiol Pathophysiol Pharmacol,2009, 2(1):20-28.
    [13]T. R. McGuire, S. K. Brusnahan, L. D. Bilek, et al. Inflammation associated with obesity:relationship with blood and bone marrow endothelial cells[J]. Obesity (Silver Spring),2011,19(11):2130-2136.
    [14]K. E. Wellen.G. S. Hotamisligil. Obesity-induced inflammatory changes in adipose tissue[J]. J Clin Invest,2003,112(12):1785-1788.
    [15]Vikie Lamontagne, Souhad El Akoum, I. Cloutier. High-Fat Diets-Induced Metabolic Alterations Alter the Differentiation Potential of Adipose Tissue-Derived Stem Cells[J]. pen Journal of Endocrine and Metabolic Diseases,2013.2013(3):197-207.
    [16]R. Cancedda, B. Dozin, P. Giannoni, et al. Tissue engineering and cell therapy of cartilage and bone[J]. Matrix Biol.2003,22(1):81-91.
    [17]A. Stolzing, N. Coleman, A. Scutt. Glucose-induced replicative senescence in mesenchymal stem cells[J]. Rejuvenation Res,2006.9(1):31-35.
    [18]V. Gopalakrishnan, R. C. Vignesh, J. Arunakaran, et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages[J]. Biochem Cell Biol,2006,84(1):93-101.
    [19]C. C. Chuang, R. S. Yang, K. S. Tsai, et al. Hyperglycemia enhances adipogenic induction of lipid accumulation:involvement of extracellular signal-regulated protein kinase 1/2, phosphoinositide 3-kinase/Akt, and peroxisome proliferator-activated receptor gamma signaling[J]. Endocrinology.2007,148(9):4267-4275.
    [20]M. T. Nguyen, S. Favelyukis, A. K. Nguyen, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem,2007, 282(48):35279-35292.
    [21]C. Grunfeld, M. Soued, S. Adi, et al. Interleukin 4 inhibits stimulation of hepatic lipogenesis by tumor necrosis factor, interleukin 1, and interleukin 6 but not by interferon-alpha[J]. Cancer Res.1991.51(11):2803-2807.
    [22]N. Furuya, M. Takenaga, Y. Ohta, et al. Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats[J]. Regen Med, 2012,7(4):503-512.
    [23]C. de Luca, J. M. Olefsky. Inflammation and insulin resistance [J]. FEBS Lett,2008, 582(1):97-105.
    [24]J. Rieusset, K. Bouzakri, E. Chevillotte, et al. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients[J]. Diabetes.2004,53(9):2232-2241.
    [25]S. H. Ralston. R. G. Russell, M. Gowen. Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women[J]. J Bone Miner Res,1990,5(9):983-988.
    [26]P. C. Calder. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases[J]. Am J Clin Nutr,2006.83(6 Suppl):1505-1519.
    [27]Grunfeld C, S. M. Evidence for two classes of cytokines that stimulate hepatic lipogenesis:relationships among tumor necrosis factor, interleukin-1 and interferon-alpha.[J]. endocrinology.1990.127(1):46-54.
    [28]Y. Hori, S. Inoue, Y. Hirano. et al. Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells[J]. Tissue Eng,2004,10(7-8):995-1005.
    [29]M. S. Winzell, B. Ahren. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes[J]. Diabetes,2004,53 (Suppl 3):215-219.
    [30]M. Zhang, X. Y. Lv, J. Li, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model[J]. Exp Diabetes Res, 2008(704045).
    [31]K. Srinivasan, B. Viswanad, L. Asrat, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat:a model for type 2 diabetes and pharmacological screening[J]. Pharmacol Res.2005.52(4):313-320.
    [32]G. Winocur, C. E. Greenwood. Studies of the effects of high fat diets on cognitive function in a rat model[J]. Neurobiol Aging,2005,26 (Suppl 1):46-49.
    [33]S. K. Panchal, L. Brown. Rodent models for metabolic syndrome research[J]. J Biomed Biotechnol,2011, (351982).
    [34]R. Buettner, J. Scholmerich, L. C. Bollheimer. High-fat diets:modeling the metabolic disorders of human obesity in rodents[J]. Obesity (Silver Spring),2007,15(4):798-808.
    [35]N. Hariri,L. Thibault. High-fat diet-induced obesity in animal models[J]. Nutr Res Rev, 2010,23(2):270-299.
    [36]W. Ma, D. Zhao, C. Su, et al. [Gene expression of hormone sensitive lipase and lipoprotein lipase in obesity-prone and obesity-resistant rats induced by high-fat diet][J]. Wei Sheng Yan Jiu,2007,36(3):320-322.
    [37]M. K. Lingohr, R. Buettner, C. J. Rhodes. Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes?[J]. Trends Mol Med,2002,8(8):375-384.
    [38]N. D. Oakes, G. J. Cooney, S. Camilleri, et al. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding[J]. Diabetes,1997,46(11):1768-1774.
    [39]M. Rossmeisl, J. S. Rim, R. A. Koza, et al. Variation in type 2 diabetes--related traits in mouse strains susceptible to diet-induced obesity [J]. Diabetes,2003,52(8):1958-1966.
    [40]S. Ikemoto, M. Takahashi, N. Tsunoda, et al. High-fat diet-induced hyperglycemia and obesity in mice:differential effects of dietary oils[J]. Metabolism,1996, 45(12):1539-1546.
    [41]R. Buettner, K. G. Parhofer, M. Woenckhaus, et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types[J]. J Mol Endocrinol,2006, 36(3):485-501.
    [42]H. Wang, L. H. Storlien, X. F. Huang. Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression[J]. Am J Physiol Endocrinol Metab,2002,282(6):1352-1359.
    [43]J. G. Mercer, Z. A. Archer. Diet-induced obesity in the Sprague-Dawley rat:dietary manipulations and their effect on hypothalamic neuropeptide energy balance systems[J]. Biochem Soc Trans,2005.33(Pt 5):1068-1072.
    [44]王根辈,栗志文,曹晶,等.高热量饮食诱发大鼠营养性肥胖动物模型的研究[J].吉林医学,1984,1(4):226-229.
    [45]杨爱君,崔雁,叶卉初,等.营养性肥胖动物模型的建立[J].临床和实验医学杂志,2005,2005(3):156-157.
    [46]孙志.张中成.刘志诚,等.营养性肥胖动物模型的实验研究[J].临床和实验医学杂志,2002,2002(4):466-467.
    [47]L. H. Storlien. A. B. Jenkins, D. J. Chisholm, et al. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid[J]. Diabetes,1991.40(2):280-289.
    [48]G. Perseghin, P. Scifo. F. De Cobelli, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans:a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents[J]. Diabetes, 1999.48(8):1600-1606.
    [49]H. N. Ginsberg, Y. L. Zhang, A. Hernandez-Ono. Regulation of plasma triglycerides in insulin resistance and diabetes[J]. Arch Med Res.2005,36(3):232-240.
    [50]A. A. Ali, M. T. Velasquez, C. T. Hansen, et al. Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes[J]. J Nutr Biochem,2004,15(10):583-590.
    [51]S. C. Woods, R. J. See ley, P. A. Rushing, et al. A controlled high-fat diet induces an obese syndrome in rats[J]. J Nutr.2003,133(4):1081-1087.
    [52]Y. Kadota, T. Toyoda, Y. Kitaura, et al. Regulation of hepatic branched-chain alpha-ketoacid dehydrogenase complex in rats fed a high-fat diet[J]. Obes Res Clin Pract, 2013.7(6):439-444.
    [53]L. C. Bailey-Downs, D. Sosnowska, P. Toth, et al. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats:implications for vascular aging [J]. J Gerontol A Biol Sci Med Sci,2012, 67(6):553-564.
    [54]M. Cuchel, D. J. Rader. Macrophage reverse cholesterol transport:key to the regression of atherosclerosis?[J]. Circulation,2006,113(21):2548-2555.
    [55]B. H. Rovin, H. Song. Chemokine induction by the adipocyte-derived cytokine adiponectin[J]. Clin Immunol,2006,120(1):99-105.
    [56]Y. Wang, K. S. Lam, J. Y. Xu, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner[J]. J Biol Chem, 2005,280(18):18341-18347.
    [57]D. J. Rader. High-density lipoproteins as an emerging therapeutic target for atherosclerosis[J]. JAMA,2003,290(17):2322-2324.
    [58]J. B. Dixon, P. S. Bhathal, P. E. O'Brien. Nonalcoholic fatty liver disease:predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese[J]. Gastroenterology, 2001,121(1):91-100.
    [59]I. R. Wanless, J. S. Lentz. Fatty liver hepatitis (steatohepatitis) and obesity:an autopsy study with analysis of risk factors[J]. Hepatology,1990,12(5):1106-1110.
    [60]H. S. Glauber, W. M. Vollmer, M. C. Nevitt, et al. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density [J]. J Clin Endocrinol Metab,1995,80(4):1118-1123.
    [61]B. J. Deroo, K. S. Korach. Estrogen receptors and human disease[J]. J Clin Invest.2006, 116(3):561-570.
    [62]T. Kadowaki, T. Yamauchi, N. Kubota, et al. Adiponectin and adiponectin receptors in obesity-linked insulin resistance[J]. Novartis Found Symp,2007,286(164-76; discussion 176-82,200-203.
    [63]E. A. Greco, R. Fornari, F. Rossi, et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index[J]. Int J Clin Pract,2010,64(6):817-820.
    [64]M. Kassem. Mesenchymal stem cells:biological characteristics and potential clinical applications[J]. Cloning Stem Cells.2004,6(4):369-374.
    [65]F. H. Seeger, T. Tonn, N. Krzossok, et al. Cell isolation procedures matter:a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction[J]. Eur Heart J,2007,28(6):766-772.
    [66]H. Yoshimura. T. Muneta, A. Nimura, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium. periosteum, adipose tissue, and muscle [J]. Cell Tissue Res,2007,327(3):449-462.
    [67]J. Zhang, H. Qi, H. Wang, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft[J]. Artif Organs,2006,30(12):898-905.
    [68]王.张本斯,邓力,等.大鼠骨髓间充质干细胞的分离纯化与初步鉴定[J].中国组织化学与细胞化学杂志,2003,12(2):161.大鼠骨髓间充质干细胞的分离纯化与初步鉴定[J].中国组织化学与细胞化学杂志,2003,12(2):161-167.
    [69]李连达,吴理茂,刘红,等.大鼠骨髓间质干细胞的培养和生物学特征[J].科学技术与工程,2003,3(6):457.
    [70]许杰华,李丹,单鸿,等SPIO标记下大鼠骨髓间充质干细胞生物学特性及多向分化潜能及体外M R成像[J].中山大学学报:医学科学版,2009,30(2):142-145.
    [71]王茵,楼正清,来伟旗,等.SD大鼠血液生化指标正常参考值范围的探讨[[J].卫生毒理学杂志,2000,14(02):112-113.
    [72]陈谦,陈静,崔颜宏,等.不同培养代数大鼠骨髓基质细胞向神经元样细胞转分化能力的比较[J].神经解剖学杂志,2009,25(1):1-5.
    [73]须钰华,胡静波,周燕,等.培养基对兔骨髓间充质干细胞扩增与分化的影响[J].中国组织工程研究与临床康复,2007,11(3):467-470.
    [74]R. Majeti, M. W. Becker, Q. Tian, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells[J]. Proc Natl Acad Sci U S A,2009, 106(9):3396-3401.
    [75]V. N. Lama, S. H. Phan. The extrapulmonary origin of fibroblasts:stem/progenitor cells and beyond[J]. Proc Am Thorac Soc,2006,3(4):373-376.
    [76]L. Leyton, A. F. Quest, C. Bron. Thy-1/CD3 coengagement promotes TCR signaling and enhances particularly tyrosine phosphorylation of the raft molecule LAT[J]. Mol Immunol,1999,36(11-12):755-768.
    [77]Z. F. Yang, P. Ngai, D. W. Ho, et al. Identification of local and circulating cancer stem cells in human liver cancer[J]. Hepatology,2008.47(3):919-928.
    [78]李月白,曹亚伟,吴学建.等.地塞米松对人骨髓间充质干细胞成脂分化的基因调控[J].中华实验外科杂志,2006,23(12):1522-1523.
    [79]王琳,刘德瑜,石心泉,等.外诱导小鼠骨髓基质干细胞向成骨细胞分化相关基因表达的研究[J].中华创伤骨科杂志.2006,8(11):1062-1066.
    [80]瞿中和,王喜忠,丁明孝,等.细胞生物学.2006.
    [81]M. A. Westhoff, O. Bruhl, L. Nonnenmacher. et al. Killing me softly--future challenges in apoptosis research[J]. Int J Mol Sci,2014,15(3):3746-3767.
    [82]J. Wang, K. Yan, Z. Q. Wu, et al. TDP-43 interaction with the intracellular domain of amyloid precursor protein induces p53-associated apoptosis[J]. Neurosci Lett, 2014,569:131-136.
    [83]I. Chowdhury, W. E. Thompson, C. Welch, et al. Prohibitin (PHB) inhibits apoptosis in rat granulosa cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins[J]. Apoptosis.2013.18(12):1513-1525.
    [84]高超,华子春.细胞凋亡检测方法新进展[J].中国细胞生物学学报,2011,33(5):564-569.
    [85]H. L. Lazar, G. Philippides. C. Fitzgerald, et al. Glucose-insulin-potassium solutions enhance recovery after urgent coronary artery bypass grafting[J]. J Thorac Cardiovasc Surg,1997,113(2):354-60; discussion 360-362.
    [86]W. Zhang, X. Wang, H. Jin, et al. Effects of high glucose plus high insulin on proliferation and apoptosis of mouse endothelial progenitor cells[J]. Inflamm Res,2008. 57(12):571-576.
    [87]Y. M. Li, B. Deng, L. H. Li, et al. [Effects of glucose and insulin in the cell differentiation from bone marrow stem cells to osteoblasts][J]. Zhonghua Yi Xue Za Zhi, 2009,89(36):2583-3585.
    [88]方海宁,刘志平,邓丽春,等.葡萄糖及吡格列酮对大鼠骨髓间充质干细胞脂肪分化的影响[J].中国骨质疏松杂志,2008,14(8):561-566.
    [89]G. Tie, K. E. Messina, J. Yan, et al. Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells [J]. J Am Heart Assoc,2014, 3(1):e000241.
    [90]D. F. Chen, H. L. Zhang, S. H. Du, et al. Cholesterol myristate suppresses the apoptosis of mesenchymal stem cells via upregulation of inhibitor of differentiation[J]. Steroids, 2010,75(13-14):1119-1126.
    [91]J. Xu, J. Qian, X. Xie, et al. High density lipoprotein cholesterol promotes the proliferation of bone-derived mesenchymal stem cells via binding scavenger receptor-B type I and activation of PI3K/Akt, MAPK/ERK1/2 pathways[J]. Mol Cell Biochem, 2012,371(1-2):55-64.
    [92]H. Li, H. Guo, H. Li. Cholesterol loading affects osteoblastic differentiation in mouse mesenchymal stem cells[J]. Steroids,2013,78(4):426-433.
    [93]M. Hosseini, S. Asgary. Effects of dietary supplementation with ghee, hydrogenated oil. or olive oil on lipid profile and fatty streak formation in rabbits[J]. ARYA Atheroscler. 2012,8(3):119-124.
    [94]S. Lv, L. Wu, P. Cheng, et al. Correlation of obesity and osteoporosis:Effect of free fatty acids on bone marrow-derived mesenchymal stem cell differentiation[J]. Exp Ther Med,2010, 1(4):603-610.
    [95]S. Legiran, M. L. Brandi. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity[J]. Clin Cases Miner Bone Metab,2012.9(3):145-149.
    [96]E. L. Scheller, J. Song, M. I. Dishowitz. et al. Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells[J]. Stem Cells.2010,28(6):1071-1080.
    [97]G. R. Lee, M. K. Shin, D. J. Yoon, et al. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet (HFD)-induced obese mice[J]. Obesity (Silver Spring),2013.21(1):115-122.
    [98]H. Miao, J. Ou, Y. Ma, et al. Macrophage CGI-58 Deficiency Activates ROS-Inflammasome Pathway to Promote Insulin Resistance in Mice[J]. Cell Rep,2014, 7(l):223-235.
    [99]M. Wallace, C. Morris, C. M. O'Grada, et al. Relationship between the lipidome. inflammatory markers and insulin resistance [J]. Mol Biosyst,2014,10(6):1586-1595.
    [100]K. E. Joung, K. H. Park, L. Zaichenko, et al. Early Life Adversity Is Associated With Elevated Levels of Circulating Leptin, Irisin, and Decreased Levels of Adiponectin in Midlife Adults[J]. J Clin Endocrinol Metab,2014, jc20133669.
    [101]S. Chearskul, S. Kooptiwut, S. Pummoung, et al. Obesity and appetite-related hormones[J]. J Med Assoc Thai,2012,95(11):1472-1479.
    [102]V. Nobili, G. Svegliati-Baroni, A. Alisi. et al. A 360-degree overview of paediatric NAFLD:recent insights[J]. J Hepatol,2013,58(6):1218-1229.
    [103]J. Yang, Y. Park, H. Zhang, et al. Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice[J]. Am J Physiol Heart Circ Physiol, 2009,296(6):1850-1858.
    [104]S. Ahsan, S. Ahmed, S. D. Ahmed, et al. Status of serum adiponectin related to insulin resistance in prediabetics[J]. J Pak Med Assoc,2014,64(2):184-188.
    [105]M. M. Amin, G. F. Asaad, R. M. Abdel Salam, et al. Novel CoQ10 antidiabetic mechanisms underlie its positive effect:modulation of insulin and adiponectine receptors, Tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats[J]. PLoS One,2014,9(2):e89169.
    [106]M. Atwa, A. Emara, M. Balata, et al. Serum leptin, adiponectin, and resistin among adult patients with acanthosis nigricans:correlations with insulin resistance and risk factors for cardiovascular disease[J]. Int J Dermatol,2013, (doi:10.1111/ijd.12340).
    [107]何姜.重组脂联素对氧化应激状态下内皮细胞NF-κB、iNOS和NO信号表达的影响[J].D,2009,福州(福建医科大学).
    [108]C. Herder, S. Schneitler, W. Rathmann, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents[J]. J Clin Endocrinol Metab,2007,92(12):4569-4574.
    [109]F. Sallusto, C. R. Mackay, A. Lanzavecchia. The role of chemokine receptors in primary, effector, and memory immune responses[J]. Annu Rev Immunol,2000, 18:593-620.
    [110]F. J. Minano, M. Sancibrian, M. Vizcaino, et al. Macrophage inflammatory protein-1: unique action on the hypothalamus to evoke fever [J]. Brain Res Bull,1990, 24(6):849-852.
    [111]M. C. Dieu-Nosjean, C. Massacrier, B. Homey, et al. Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors[J]. J Exp Med,2000, 192(5):705-718.
    [112]I. Dimova, G. Popivanov. V. Djonov. Angiogenesis in cancer-general pathways and their therapeutic implications[J]. J BUON,2014,19(1):15-21.
    [113]B. K. Majeti, J. H. Lee, B. H. Simmons, et al. VEGF is an important mediator of tumor angiogenesis in malignant lesions in a genetically engineered mouse model of lung adenocarcinoma[J]. BMC Cancer,2013,13(1):213.
    [114]M. R. Tabandeh, A. Oryan, A. Mohammadalipour. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat[J]. Int J Biol Macromol,2014,65:424-430.
    [115]A. Mauro. L. Lipari, S. Tortorici, et al. Expression of MMP-2 and MMP-9 in odontogenic myxoma in a child:report of a clinical case[J]. Odontology,2013, 101(2):233-238.
    [116]X. M. Lu. Y. H. Shu, C. H. Qiu, et al. Protective effects and anti-apoptotic role of nerve growth factor on spinal cord neurons in sciatic nerve-injured rats[J]. Neurol Res. 2014.1743132814Y0000000321.
    [117]S. K. Kritas. A. Caraffa. P. Antinolfi. et al. Nerve growth factor interactions with mast cells[J]. Int J Immunopathol Pharmacol,2014.27(1):15-19.
    [118]A. Schafer, C. Schulz, M. Eigenthaler, et al. Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion[J]. Blood,2004, 103(2):407-412.
    [119]A. D. Lucas, C. Bursill, T. J. Guzik, et al. Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1)[J]. Circulation,2003, 108(20):2498-2504.
    [120]L. A. Kohn, Q. L. Hao, R. Sasidharan, et al. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin[J]. Nat Immunol, 2012,13(10):963-971.
    [121]徐俊昌,吴涛,钟招明,等.瘦素对hBMSCs成骨分化的作用及机制研究[J].中国修复重建外科杂志,2009,23(2):140-144.
    [122]杨孝良.瘦素对人前脂肪细胞增殖及分化的影响[J].[D],2009,
    [123]郑仁东,任安.泌乳素与自身免疫性疾病的研究进展[J].国际内科学杂志,2008.35(4):230-233.
    [124]杨晓娟,田卫东.成脂分化转录调控因子及其作用机制的研究进展[J].国际口腔医学杂志,2008,2008(S1):204-207.
    [125]D. C. Yang, H. J. Tsay, S. Y. Lin, et al. cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin[J]. PLoS One,2008,3(2):e1540.
    [126]V. Cirmanova, M. Bayer, L. Starka, et al. The effect of leptin on bone:an evolving concept of action[J]. Physiol Res,2008,57 (Suppl 1):143-151.
    [127]J. Harvey, M. L. Ashford. Leptin in the CNS:much more than a satiety signal[J]. Neuropharmacology,2003,44(7):845-854.
    [128]M. Iida, K. Watanabe, M. Tsurufuji, et al. Level of neutrophil chemotactic factor CINC/gro, a member of the interleukin-8 family, associated with lipopolysaccharide-induced inflammation in rats[J]. Infect Immun,1992. 60(4):1268-1272.
    [129]B. B. Lorenzetti, F. H. Veiga, C. A. Canetti, et al. Cytokine-induced neutrophil chemoattractant 1 (CINC-1) mediates the sympathetic component of inflammatory mechanical hypersensitivitiy in rats[J]. Eur Cytokine Netw,2002,13(4):456-461.
    [130]N. Lehman, M. Di Fulvio, N. McCray, et al. Phagocyte cell migration is mediated by phospholipases PLD1 and PLD2[J]. Blood,2006,108(10):3564-3572.
    [131]J. L. Halpern, A. Kilbarger, C. C. Lynch. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor[J]. Cancer Lett,2011, 308(1):91-99.
    [132]H. Yoshida, S. Miura, H. Kishikawa, et al. Fatty acids enhance GRO/CINC-1 and interleukin-6 production in rat intestinal epithelial cells[J]. J Nutr,2001, 131(11):294329-50.
    [133]A. H. Tavares, K. G. Magalhaes, R. D. Almeida, et al. NLRP3 inflammasome activation by Paracoccidioides brasiliensis[J]. PLoS Negl Trop Dis,2013,7(12):e2595.
    [134]A. Hogmalm, M. Bry, B. Strandvik, et al. IL-lbeta expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice[J]. Am J Physiol Lung Cell Mol Physiol.2014,306(1):23-34.
    [135]S. E. Shoelson. J. Lee, A. B. Goldfine. Inflammation and insulin resistance [J]. J Clin Invest,2006.116(7):1793-1801.
    [136]C. Laflamme, G. Bertheau-Mailhot, M. S. Giambelluca, et al. Evidence of impairment of normal inflammatory reaction by a high-fat diet[J]. Genes Immun,2014, (doi: 10.1038).
    [137]K. C. McGrath, X. H. Li, P. T. Whitworth, et al. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[J]. J Lipid Res,2014,55(3):421-430.
    [138]E. H. Akamine, A. C. Marcal, J. P. Camporez, et al. Obesity induced by high-fat diet promotes insulin resistance in the ovary[J]. J Endocrinol,2010,206(1):65-74.
    [139]Maedler K, Sergeev P, Ehses JA, et al. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1 beta in human islets. Proc Natl Acad Sci U S A. 2004,101(21):8138-8143.
    [140]V. D. Dixit. Nlrp3 inflammasome activation in type 2 diabetes:is it clinically relevant?[J]. Diabetes,2013,62(1):22-24.
    [141]G. Y. Liu, Q. H. Liang, R. R. Cui, et al. Leptin promotes the osteoblastic differentiation of vascular smooth muscle cells from female mice by increasing RANKL expression[J]. Endocrinology,2014,155(2):558-567.
    [142]I. F. Charo, R. M. Ransohoff. The many roles of chemokines and chemokine receptors in inflammation[J]. N Engl J Med,2006,354(6):610-621.
    [143]N. B. Sautter, E. H. Shick, R. M. Ransohoff, et al. CC chemokine receptor 2 is protective against noise-induced hair cell death:studies in CX3CR1(+/GFP) mice[J]. J Assoc Res Otolaryngol,2006,7(4):361-372.
    [144]H. Lu, D. Huang, N. Saederup, et al. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury[J]. FASEB J,2011, 25(1):358-369.
    [145]M. J. Stuart, B. T. Baune. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment:A systematic review of biomarker studies[J]. Neurosci Biobehav Rev.2014,42:93-115.
    [146]T. Nagasawa. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4[J]. J Mol Med (Berl),2014,92(5):433-439.
    [147]P. J. Koelink, S. A. Overbeek, S. Braber, et al. Targeting chemokine receptors in chronic inflammatory diseases:an extensive review[J]. Pharmacol Ther,2012, 133(1):1-18.
    [148]L. G. Guang, A. L. Boskey, W. Zhu. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells[J]. Int J Biochem Cell Biol.2013, 45(8):1813-1820.
    [149]M. Shahnazari, V. Chu. T. J. Wronski, et al. CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations [J]. FASEB J.2013,27(9):3505-3513.
    [150]M. Honczarenko, Y. Le, M. Swierkowski, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J]. Stem Cells, 2006.24(4):1030-1041.
    [151]F. L. van de Veerdonk, M. G. Netea. New Insights in the Immunobiology of IL-1 Family Members[J]. Front Immunol,2013.4(167):doi:10.3389.
    [152]M. Moll, J. B. Kuemmerle-Deschner. Inflammasome and cytokine blocking strategies in autoinflammatory disorders[J]. Clin Immunol,2013,147(3):242-275.
    [153]B. Sederquist, P. Fernandez-Vojvodich, F. Zaman, et al. Impact of inflammatory cytokines on longitudinal bone growth[J]. J Mol Endocrinol,2014, (dio:10.15130).
    [154]K. D. Huebner, N. G. Shrive. C. B. Frank. Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis[J]. J Orthop Res, 2014,32(4):566-572.
    [155]X. Ying, L. Peng, H. Chen, et al. Cordycepin prevented IL-beta-induced expression of inflammatory mediators in human osteoarthritis chondrocytes[J]. Int Orthop,2013, (DOI 10.1007).
    [156]C. Chavey, G. Lazennec, S. Lagarrigue, et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance [J]. Cell Metab,2009, 9(4):339-349.
    [157]S. J. Burke, D. Lu, T. E. Sparer, et al. NF-kappaB and STAT1 control CXCL1 and CXCL2 gene transcription[J]. Am J Physiol Endocrinol Metab,2014,306(2):131-149.
    [158]毛梅,吕学军,王艺,等IL-8/CXCR_2轴促进兔内皮祖细胞迁移、增殖及VEGF的表达[J].第三军医大学学报,2009,31(24):429-431.
    [159]S. K. Raghuwanshi. Y. Su, V. Singh, et al. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions[J]. J Immunol,2012,189(6):2824-2832.
    [160]N. S. Sauter, F. T. Schulthess, R. Galasso, et al. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia[J]. Endocrinology,2008,149(5):2208-2218.
    [161]K. Maedler, P. Sergeev, J. A. Ehses, et al. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1 beta in human islets[J]. Proc Natl Acad Sci USA,2004,101(21):8138-8143.
    [162]E. A. Bostrom, P. Lundberg. The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation[J]. PLoS One,2013,8(12):e81665.
    [163]J. Seufert, T. J. Kieffer, C. A. Leech, et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets:implications for the development of adipogenic diabetes mellitus[J]. J Clin Endocrinol Metab.1999,84(2):670-676.
    [164]T. Mracek, B. Cannon, J. Houstek. IL-1 and LPS but not IL-6 inhibit differentiation and downregulate PPAR gamma in brown adipocytes[J]. Cytokine.2004.26(1):9-15.
    [165]F. C. McGillicuddy, C. M. Reynolds. O. Finucane. et al. Long-term exposure to a high-fat diet results in the development of glucose intolerance and insulin resistance in interleukin-1 receptor I-deficient mice[J]. Am J Physiol Endocrinol Metab,2013, 305(7):834-844.
    [166]滕晓坤,肖胜华.基因芯片与高通量DNA测序技术前景分析[J].中国科学,2008,38(10):891-899.
    [167]熊伟.基因芯片技术在生命科学研究中的应用进展及前景分析[J].生命科学仪器. 2010,8(4):32-36.
    [168]N. Rasouli, P. A. Kern. Adipocytokines and the metabolic complications of obesity[J]. J Clin Endocrinol Metab,2008,93(11 Suppl 1):64-73.
    [169]X. Yu, B. H. Park, M. Y. Wang, et al. Making insulin-deficient type 1 diabetic rodents thrive without insulin[J]. Proc Natl Acad Sci U S A,2008,105(37):14070-14075.
    [170]D. Xu, C. Yin. S. Wang, et al. JAK-STAT in lipid metabolism of adipocytes[J]. JAKSTAT,2013,2(4):e27203.
    [171]S. Kwan Tat. M. Padrines, S. Theoleyre, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology[J]. Cytokine Growth Factor Rev, 2004,15(1):49-60.
    [172]P. Darvin, Y. H. Joung, Y. M. Yang. JAK2-STAT5B pathway and osteoblast differentiation[J]. JAKSTAT,2013,2(4):e24931.
    [173]L. Song, Y. Li, Y. X. Sun, et al. IL-6 inhibits apoptosis of human myeloma cell line XG-7 through activation of JAK/STAT pathway and up-regulation of Mcl-1[J]. Ai Zheng,2002,21(2):113-116.
    [174]C. H. Chou, S. L. Lai, C. N. Chen, et al. IL-6 regulates Mcl-IL expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes:implication of an anti-apoptotic role during liver regeneration[J]. PLoS One,2013,8(6):e66268.
    [175]M. Sugano, K. Tsuchida, T. Hata, et al. RNA interference targeting SHP-1 attenuates myocardial infarction in rats[J]. FASEB J,2005,19(14):2054-2056.
    [176]E. Tibaldi, F. Zonta, L. Bordin, et al. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling[TJ. Biochim Biophys Acta.2014,1843(2):288-298.
    [177]P. C. Joshi, L. Applewhite, P. O. Mitchell, et al. GM-CSF receptor expression and signaling is decreased in lungs of ethanol-fed rats[J]. Am J Physiol Lung Cell Mol Physiol,2006,291(6):1150-1158.
    [178]G. de Lartigue, C. Barbier de la Serre, E. Espero, et al. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons [J]. Am J Physiol Endocrinol Metab.2011.301(1):187-195.
    [179]M. W. de Backer. M. A. Brans, A. J. van Rozen, et al. Suppressor of cytokine signaling 3 knockdown in the mediobasal hypothalamus:counterintuitive effects on energy balance[J]. J Mol Endocrinol.2010.45(5):341-353.
    [180]J. Avruch. MAP kinase pathways:the first twenty years[J]. Biochim Biophys Acta, 2007,1773(8):1150-60.
    [181]J. E. Jun, I. Rubio, J. P. Roose. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells [J]. Front Immunol, 2013. (doi:10.3389).
    [182]X. Sui. N. Kong, L. Ye, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents[J]. Cancer Lett,2014, 344(2):17417-9.
    [183]Y. H. Joung. E. J. Lim, P. Darvin, et al. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs[J]. PLoS One,2012,7(10):e47477.
    [184]S. Chikamatsu. T. Furuno, Y. Kinoshita. et al. Effects of Cot expression on the nuclear translocation of NF-kappaB in RBL-2H3 cells[J]. Mol Immunol,2007. 44(7):1490-1497.
    [185]J. Thorburn, S. Xu, A. Thorburn. MAP kinase-and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells[J]. EMBO J, 1997.16(8):1888-1900.
    [186]X. Chen-Deutsch, A. Kutner. J. S. Harrison, et al. The pan-caspase inhibitor Q-VD-OPh has anti-leukemia effects and can interact with vitamin D analogs to increase HPK1 signaling in AML cells[J]. Leuk Res,2012,36(7):884-8.
    [187]韩勇彬,胡大海,高宗科,等.游离脂肪酸激活HaCaT细胞表面TLR对NFKB信号转导通路的影响[J].中国美容医学,2009,8(8):1128-1130.
    [188]H. Wang, J. Brown, S. Gao, et al. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells [J]. J Immunol,2013. 191(3):1164-1174.
    [189]王贞[D]Toll样TLR2和TLR4的激活对小鼠骨髓间充质干细胞免疫调节作用的影响[J].[D],2010,广州(:中山大学):
    [190]R. Carrero, I. Cerrada, E. Lledo, et al. IL1-beta induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-kappaB [J]. Stem Cell Rev,2012, 8(3):905-916.
    [191]J. Chang, F. Liu, M. Lee, et al. NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation[J]. Proc Natl Acad Sci USA,2013,110(23):9469-9474.
    [192]B. Banaganapalli, C. Mulakayala, G. D. et al. Synthesis and biological activity of new resveratrol derivative and molecular docking:dynamics studies on NFkB[J]. Appl Biochem Biotechnol,2013,171(7):1639-1657.
    [193]K. P. Stone, A. J. Kastin, W. Pan. NFkB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia[J]. Cell Physiol Biochem,2011. 28(1):115-124.
    [194]W. Li, H. Li, A. D. Bocking, et al. Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway [J]. Biol Reprod. 2010,83(3):481-477.
    [195]S. Arimilli, J. B. Johnson, M. A. Alexander-Miller, et al. TLR-4 and -6 agonists reverse apoptosis and promote maturation of simian virus 5-infected human dendritic cells through NFkB-dependent pathways [J]. Virology.2007,365(1):144-156.
    [196]N. Wegling, G. D. Palmer, C. Pilapil, et al. Interleukin-1 beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways[J]. Arthritis Rheum.2009,60(3):801-12.
    [197]K. Sonomoto, K. Yamaoka, K. Oshita. et al. Interleukin-1 beta induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway[J]. Arthritis Rheum,2012.64(10):3355-3363.
    1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues[J]. Science,1997,276(5309):71-74.
    2. Friedenstein AJ, Gorskaja JF, Kulagina NN. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol,1976, 4(5):267-274.
    3. Ashton BA, Allen TD, Howlett CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo[J]. Clin Orthop Relat Res,1980, 151:294-307.
    4. Bab I, Ashton BA, Gazit D, et al. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo[J]. J Cell Sci,1986,84:139-151.
    5. Castro-Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny [J]. Blood,1980, 56(2):289-301.
    6. Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow[J]. Blood,2001,98(8):2396-2402.
    7. In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation[J]. Blood, 2003,102(4):1548-1549.
    8. Nakahara H, Dennis JE, Bruder SP, et al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells[J], Exp Cell Res,1991, 195(2):492-503.
    9. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell,2002,13(12):4279-4295.
    10. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow[J]. Proc Nat Acad Sci USA,2000,97(7):3213-3218.
    11. Marinova-Mutafchieva L, Taylor P, Funa K, et al. Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint[J]. Arthritis Rheum,2000,43(9):2046-2055.
    12. Javazon EH, Beggs KJ and Flake AW. Mesenchymal stem cells:paradoxes of passaging[J]. Exp Hematol,2004,32(5):414-425.
    13. Haynesworth SE, Baber MA and Caplan Al. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies[J]. Bone, 1992,13(1):69-80.
    14. Galmiche MC, Koteliansky VE, Briere J, et al. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway[J]. Blood,1993,82(1):66-76.
    15. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    16. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J]. J Cell Physiol,1999,181(1):67-73.
    17. Sordi V, Malosio ML, Marchesi F, et al.Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets[J]. Blood.2005,106(2):419-427.
    18. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells [J]. Exp Hematol,2003,31(10):890-896.
    19. Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection[J]. J Cell Biochem,2003, 89(6):1235-1249.
    20. Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells [J]. Arthritis Rheum,2002, 46(12):3349-3360.
    21. Gindraux F, Selmani Z, Obert L, et al. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule[J]. Cell Tissue Res,2007,327(3):471-483.
    22. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential [J]. Blood,2004,103(5):1662-1668.
    23. Gronthos S, Simmons PJ, Graves SE, et al. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix[J]. Bone, 2001,28(2):174-181.
    24. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation [J]. Biol Blood Marrow Transplant,2005, 11(5):321-334.
    25. Gotherstrom C, Ringden O, Tammik C, et al. Immunologic properties of human fetal mesenchymal stem cells [J]. Am J Obstet Gynecol.2004,190(1):239-245.
    26. Zvaifler NJ. Marinova-Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals [J]. Arthritis Res,2000,2(6):477-488.
    27. Frid MG, Brunetti JA, Burke DL, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage[J]. Am J Pathol,2006.168(2):659-669.
    28. in't Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential [J]. Haematologica,2003.88(8):845-852.
    29. Hanada K, Dennis JE, Caplan AI. Caplan, Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells [J]. J Bone Miner Res.1997. 12(10):1606-1614.
    30. Diefenderfer DL, Osyczka AM. Reilly GC. et al. BMP responsiveness in human mesenchymal stem cells[J]. Connect Tissue Res,2003,44 Suppl 1:305-311.
    31. Knippenberg M. Helder MN, Zandieh Doulabi B, et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells[J]. Biochem Biophys Res Commun,2006,342(3):902-908.
    32. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine[J]. Muscle Nerve,1995. 18(12):1417-1426.
    33. Woodbury D, Schwarz EJ, Prockop DJ. et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res,2000,61(4):364-370.
    34. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells[J]. Blood,2001,98(9):2615-2625.
    35. Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow[J]. Tissue Eng,1998,4(4):415-428.
    36. Kopen GC, Prockop DJ, Phinney DG. Phinney, Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains[J]. Proc Natl Acad Sci U S A,1999, 96(19):10711-10716.
    37. Kohyama J, Abe H, Sliimazaki T, et al. Brain from bone:efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent[J]. Differentiation,2001,68(4-5):235-244.
    38. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery [J]. Proc Natl Acad Sci U S A,2002, 99(4):2199-2204.
    39. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99(10):3838-3843.
    40. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol,2003,57(1):11-20.
    41. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood,2005,105(4):1815-1822.
    42. JJiang XX. Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. Blood,2005, 105(10):4120-4126.
    43. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness[J]. Blood. 2005,105(5):2214-2219.
    44. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions [J]. Blood,2006,107(1):367-372.
    45. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol,2002,30(1):42-48.
    46. Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy[J]. Blood,2005, 106(5):1755-1761.
    47. Djouad F, Fritz V, Apparailly F, et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis[J]. Arthritis Rheum,2005,52(5):1595-1603.
    48. Baggiolini M. Chemokines in pathology and medicine[J]. J Intern Med,2001, 250(2):91-104.
    49. Baggiolini M. Chemokines and leukocyte traffic[J]. Nature,1998,392(6676): 565-568.
    50. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif[J]. Nature,1997.385(6617):640-644.
    51. Kelner GS, Kennedy J, Bacon KB, et al. Lymphotactin:a cytokine that represents a new class of chemokine [J]. Science,1994,266(5189):1395-1399.
    52. Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues [J]. Mol Immunol,2005,42(7):799-809.
    53. Grabovsky V, Dwir O, Alon R. Endothelial chemokines destabilize L-selectin-mediated lymphocyte rolling without inducing selectin shedding [J]. J Biol Chem,2002,277(23):20640-20650.
    54. Middleton J, Neil S, Wintle J, et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells[J]. Cell,1997,91(3):385-395.
    55. Aurrand-Lions M, Johnson-Leger C, Imhof BA. The last molecular fortress in leukocyte trans-endothelial migration[J]. Nat Immunol,2002,3(2):116-118.
    56. Sanchez-Madrid F, del Pozo MA. Leukocyte polarization in cell migration and immune interactions [J]. EMBO J,1999,18(3):501-511.
    57. Levesque JP, Hendy J, Takamatsu Y, et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide[J]. J Clin Invest,2003,111(2):187-196.
    58. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation,2003,107(9):1322-1328.
    59. Wynn RF. Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood,2004,104(9):2643-2645.
    60. Von Luttichau I, Notohamiprodjo M, Wechselberger A, et al. Human adult CD34-progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4[J]. Stem Cells Dev,2005,14(3):329-336.
    61. Kortesidis A, Zannettino A, Isenmann S, et al. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells [J]. Blood,2005,105(10):3793-3801.
    62. Lee RH, Hsu SC. Munoz J, et al. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice[J]. Blood,2006,107(5):2153-2161.
    63. Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J]. Stem Cells, 2006.24(4):1030-1041.
    64. Ringe J, Strassburg S, Neumann K, et al. Towards in situ tissue repair:human mesenchymal stem cells express chemokine receptors CXCR1. CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2[J]. J Cell Biochem,2007, 101(1):135-146.
    65. Ponte AL. Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells:comparison of chemokine and growth factor chemotactic activities[J]. Stem Cells,2007,25(7):1737-1745.
    66. Carrero R, Cerrada I, Lledo E, et al. IL-lbeta induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-kappaB[J]. Stem Cell Rev,2012, 8(3):905-916.
    67. Cai Z, Zhang X2, Wang G3, et al. BDNF attenuates IL-1 beta-induced F-actin remodeling by inhibiting NF-kappaB signaling in hippocampal neurons[J]. Neuro Endocrinol Lett.2014,35(1):13-19.
    68. Wang Y, Fu Y, Du L, et al. Inhibitory effect of resveratrol on expression of IL-1beta in mesenchymal stem cells exposed to radiation[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2014,32(2):108-111.
    69. Margoni A, Fotis L, Papavassiliou AG. Papavassiliou, The transforming growth factor-beta/bone morphogenetic protein signalling pathway in adipogenesis[J]. Int J Biochem Cell Biol,2012,44(3):475-479.
    70. de Caestecker M. The transforming growth factor-beta superfamily of receptors [J]. Cytokine Growth Factor Rev,2004,15(1):1-11.
    71. Zamani N, CW Brown. Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure[J]. Endocr Rev,2011, 32(3):387-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700