用户名: 密码: 验证码:
径向往复泵动力端部件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断高速发展,现代设备的自动化水平越来越高,对液压泵的性能要求也越来越高。本课题致力于研制开发一种新型的四缸径向柱塞往复泵,泵的动力端采用了单拐双滑机构取代传统的凸轮机构和曲柄连杆机构,具有设计新颖,结构简单紧凑,比传统泵体积小,噪音低,节能,外形美观,运转平稳,性能可靠,单人拆装维修方便,使用范围广等一系列特点。
     本文以径向柱塞往复泵的动力端为研究对象,探讨了传统凸轮机构往复泵的结构原理以及不足之处,在此基础上设计出了一种新型的四缸径向柱塞往复泵的工作原理以及结构方案,并进一步对动力端的关键零部件进行分析研究和结构改进。
     利用三维建模软件Pro/E建立了泵体的三维模型,为进一步的仿真分析和结构改进奠定了基础。建立了泵的动力端虚拟样机,利用Admas软件对泵的动力端进行仿真分析,方便快速的得到了动力端各零部件的运动学和动力学参数,直观地展现了四缸径向柱塞往复泵的运动特性。动力学仿真分析的结果,为四缸径向柱塞往复泵的进一步设计和改进提供了可靠的依据。对动力端关键零部件偏心轴体进行了结构尺寸设计以及动平衡设计,并对轴体进行有限元分析,验算偏心轴体的强度。研究了滑板上承受的扭矩和由于承受扭矩而产生的滑板上的载荷分布不均匀的状况,将原径向对称布置的四个柱塞往复体的柱塞中心线相对于主轴对称线绕主轴旋转的反方向依次偏置一定距离,极大的减小了滑板上承受的扭矩和滑板上由于承受扭矩而产生的弯曲应力,改善了滑板上所受载荷不均匀分布的状况,有效的减小了滑板的磨损。
     本文的创新之处在于:
     1、新型柱塞往复泵的动力端采用单拐双滑机构取代传统的凸轮机构和曲柄连杆机构,既具有曲柄连杆机构的承载能力,又具有凸轮机构的简单结构形式。
     2、提出了将原径向对称布置的四个柱塞往复体的柱塞中心线相对于主轴对称线绕主轴旋转的反方向依次偏置一定距离的设计方案,极大的减小了滑板上承受的扭矩和滑板上由于承受扭矩而产生的载荷不均匀分布的状况,有效的提高了滑板摩擦副的可靠性。
With the continuously rapid development of science and technology, the equipments become more and more automatic and the requirements of the hydraulic pump are also higher.This subject is about researching a new type of four cylinder radial reciprocating piston pump.The power end of the pump uses a double slide cane instead of traditional CAM and crank rod system.It is novel designed, simple and compact structure, smaller and lower noise than traditional pump, energy saving, appearance beautiful, smooth operation, reliable performance, single disassembling and maintenance convenience, wide utilization and so on.
     The research object is based on the power end of the radial piston reciprocating pump, discussed the deficiencies of the traditional CAM mechanism structure theory and reciprocating pump, devised a new type structure scheme and working principle of the four cylinder radial piston reciprocating pump, designed the key parts of the power structure further, analysised and improved performance.
     It established the 3d model of the pump body with three-dimensional modeling software Pro/E, for analysising and simulationing the structure improvement further. It established the virtual prototype of the pump power and simulation analysised by Admas,conveniently and fast gained the kinematics and dynamics parameters of the power end parts,intuitively showing the motion characteristics of the four cylinder radial reciprocating piston pump. It provided the reliable basis for designing and improving the four cylinder radial reciprocating piston pump further by combining to the results of the dynamics simulation and the theoretical calculation. It designed the structure、size and dynamic balance of the key parts of the eccentric shaft, and finite element analysised it. Research the distribution of bending stress due to the torque and load points of skateboard. It offseted a certain distance between the four piston centerline and the spindle symmetric line relatived to the spindle rotation direction. It would greatly decreased the bending stress、the degree of load distributed non-uniform and effectively reduced the wear of skateboard, because of reducing the torque of skatbord.
     The innovationes of this paper lies in:
     1. It devised a new type structure scheme and working principle of the four cylinder radial piston reciprocating pump, has the bearing capacity of the crank rod system and the simple structure form of CAM.
     2. It offseted a certain distance between the four piston centerline and the spindle symmetric line relatived to the spindle rotation direction. It would greatly decreased the bending stress、the degree of load distributed non-uniform and effectively reduced the wear of skateboard.
引文
[1]吴远库.径向柱塞泵重要摩擦副的技术研究[D].西安:西北工业大学,2005.
    [2]刘小红.新型径向柱塞泵动力学分析及变量控制研究[O].西安:西北工业大学,2004.
    [3]赵亚风.高压低噪声机电控制式径向柱塞泵(JBP系列)的结构特点及性能[J].重型机械,2001,(01):13-14.
    [4]刘连山.液压传动与控制:人民交通出版社,1983.12
    [5]俞云飞.液压泵的发展展望[J]:液压气动与密封,2003.(4):10-15
    [6]闻德生.开路式柱塞泵[M].北京:航空工业出版社,2002.
    [7]吴远库.径向柱塞泵重要摩擦副的技术研究[D].西安:西北工业大学,2005.
    [8]刘小红.新型径向柱塞泵动力学分析及变量控制研究[O].西安:西北工业大学,2004.
    [9]赵亚风.高压低噪声机电控制式径向柱塞泵(JBP系列)的结构特点及性能[J].重型机械,2001,(01):13-14.
    [10]王伟健.低噪声双作用径向柱塞泵的设计与研究[O].兰州:兰州理工大学,2006.
    [11]徐绳武.柱塞式液压泵(M).北京:机械工业出版社,1985.
    [12]裘信国.断面配流径向式液压泵特性的研究:[博士学位论文].浙江:浙江工业大学,2009
    [13]杨国来,王伟健,王连波,张守印.低噪声径向柱塞泵的设计与研究[J].机床与液压,2007,(2):
    [14]杨国来,王伟健,张守印,赵亚风.新型双作用径向柱塞泵的定子曲线设计及流量脉动分析[J].机床与液压,2005,(11):123-24.
    [15]杨国来,王伟健,张守印,卢堑.新型双作用柱塞泵减振二角槽的研究[J].液压与气动,2005,(12):62-65
    [16]杨国来,王伟健,张守印,吴艳玲.新型双作用径向柱塞泵的设计[J].液压与气动,2005,(6):78-79
    [17]BIERISWISSHYDRAULICS. RadialPistonPumPs[OL]. httP://www.bierihydraulies.eor n/standard-eomPonents/PumPs.html,2007-4-5
    [18]方建忠.多排式轴向柱塞泵的关键技术研究及动态仿真:[硕士学位论文].重庆:重庆大学,2007
    [19]范卓立.基于虚拟样机技术的轴向柱塞泵运动及动力特性仿真分析:[硕士学位论文]. 河北:燕山大学,2007
    [20]杨智伟.轴向柱塞泵虚拟样机仿真技术: [硕士学位论文],浙江:浙江大学,2006
    [21]徐文琴.径向柱塞泵静压支承圆柱副性能研究: [硕士学位论文],浙江:浙江工业大学,2004
    [22]贾跃虎.径向柱塞泵设计参数分析[J].液压气动与密封,2004(2)
    [23]刘陪忠.新型径向柱塞泵设计参数分析[J].液压气动与密封,2006(3)
    [24]市川长雄.关于柱塞压力平衡理论[J],油压化设计1965,Vol3,No2
    [25]赵道生.ZBD-75轴向柱塞泵缸体——柱塞,2008(2):46-48
    [26]谈宏华,陈卓如,金朝铭,张守礼.径向柱塞马达柱塞腔内动态压力研究[J].北京航空航天大学学报,1996.6
    [27]黄天成,吕伦,袁新梅.柱塞泵泵头体应力集中及疲劳寿命分析.机械设计与制造,2008(12):193-194
    [28]李岚.平衡式径向柱塞泵的设计.机械传动,2007(4):102-103
    [29]周德生.汽车曲轴加工新技术.机械工人,2006(5):34-36
    [30]邹云飞,荆崇波.径向柱塞泵配流轴受力平衡性分析.机床与液压,2009(11):18-79
    [31]严桃平.新型径向柱塞泵的结构分析:淮阳工学院学报.2002(3):Vol.37 No.11
    [32]徐文琴,姜伟.径向柱塞泵变量泵受力分析研究.机床与液压,2004(8):83-87
    [33]孙毅,姜继海.虚拟样机技术在轴向柱塞泵运动仿真与分析中的应用研究.液压与气动,2010(2):24-26
    [34]李凯,钱志博,贺炜炜.鱼雷柱塞变量泵配流阀参数设计与仿真.计算机仿真.2010(2)
    [35]贺小峰,朱磊磊.轴向柱塞泵主轴动平衡的设计及实验研究.流体机械,2007 Vol.35,No.6:8-13
    [36]段绍林.6112曲轴国产化工艺设计.汽车制造技术,2005(3):32-34
    [37]王东,聂松林,朱玉泉.柱塞配流水压轴向柱塞泵运动学分析.第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与启动学术会议
    [38]冯平法,盛力,吴志军,郁鼎文.柱塞式液压泵曲轴载荷特性及力学性能分析.机械设计与制造.2007(5):155-157
    [39]谢慧萍,汪建平,张庆功.偏心柱塞泵三维建模与运动学仿真.煤矿机械2009 Vol.30,No4
    [40]郑建荣.ADAMS-虚拟样机技术入门与提高.北京:机械工业出版社,2001:10-12
    [41]余新康,王建.基于ADAMS的液压系统虚拟样机.工程机械.2003,11:42-45
    [42]赵文辉.机电一体化系统虚拟样机的异构建模很仿真.系统仿真学报,2001,13,(5):592-595
    [43]姜士湖,阎相祯,虚拟样机技术及其在国内的应用前景.机械.2003,30(2):4-9
    [44]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002
    [45]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [46]蒙艳玫,李尚平,刘正士.虚拟样机技术及其在创新产品开发中的应用.广西科学,2001,8(4):256-259
    [47]王成,王效岳.虚拟样机技术及ADAMS.机械工程与自动化.2004(6):66-75
    [48]MSC. ADAMS interface Version4.2-summer 2004. IMSGINE S.A.,2004
    [49]Deeken, Michael. Simulation of the tribological contacts in an axial piston machine.2004 ASME International Mechanical Engineering Congress and Exposition, IMECE,2004:71-75
    [50]Deeken, Michael. Displacement unit simulation in DSHplus.?lhydraulik und Pneumatik,2001,45:60-64
    [51]Deeken, Michael Simulation of fluid power components using DSHplus and ADAMS, 2001 ASME International Mechanical Engineering Congress and Exposition,2001:2559-2565
    [52]Huang, C. CASPAR based slipper performance prediction in axial piston pumps. Proceed-ings of 3rd FPNI-PhD symposium on Fluid Power, Terassa, Spain,2004:229-238
    [53]Hao Zhang, Lew Kasper, Rich Kimpel. Development of a Virtual Prototype of Piston Pump for Hydrostatic Transmission. Proceedings of the Sixth ICFP,2005:485-489
    [54]G. Zeiger, A. Akers. Torque on The Swashplate of An Axial Piston Pump. Transactions of the ASME,1985,107:220-22
    [55]Joseph A. Mileti and Paul M. Lawhead. Controlled Pressure Pumps for More Efficient Hydraulic Systems. Abex Corp. Aerospace Div.861844.
    [56]Dipl. Ing. Peter Antoszkiewicz and Dr. Martin Piechnick. Simulation of a hydraulic variable axial piston double pump of bent axis design with subsystems. The 1st MSC. ADAMS European User Conference,2003:200-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700