用户名: 密码: 验证码:
四缸径向往复柱塞泵动力端部件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的高速腾飞及知识经济时代的到来,现代工业设备的自动化水平得到了飞速提高,现代工业装备表现出高度自动化、集成化、智能化的趋势;工业生产对现代设备综合性能提出了越来越高的要求,普通的常规机械设备已不能完全满足使用要求,柱塞泵作为工业设备的重要组成部分同样面临严峻挑战。本论文致力于设计出一种全新的径向柱塞往复泵,为改善基于常规的曲柄连杆机构和传统的凸轮机构往复泵的缺陷,泵的动力端运用微可调滑动机构。拥有设计新颖、结构简单、性能可靠、运行平稳、低耗能、低噪音、装拆便捷,应用范围广等诸多优点。
     本文所做的一系列的研究和探讨是基于柱塞泵的动力端作为研究目标的,分析了常规曲柄连杆机构及传统凸轮机构柱塞泵的结构原理及其弊端所在,在此基础上开发出了一种新型的四缸径向柱塞泵,并就动力端提出了两种设计方案,详细阐述了其工作原理及结构方案,通过对动力端的关键零部件进行结构设计及工艺分析,进一步改善动力端的性能。
     利用Pro/E建立动力端两种方案的三维模型,并分析计算两种方案的优劣之处;选取优势方案并将三维模型导入Adams,建立往复泵的动力端模型的虚拟样机,添加边界条件及驱动后对往复泵泵的动力端进行仿真分析计算,快捷方便的得出动力端关键零部件的运动学及动力学参数曲线,可清晰观察柱塞泵的运动学特性。结合理论分析计算及多体动力学仿真分析的结果,进行对比分析研究为泵进一步设计和改进提供参考依据。对偏心主轴完成了结构与工艺特性研究及动平衡设计,可有效减小由主轴组件的质心同其旋转中心不同轴所引起的惯性力。利用ANSYS对偏心主轴进行结构分析和疲劳破坏分析,研究分析两种分析应力、应变情况;同时研究分析偏心主轴振动性,对其进行考虑预应力影响的模态分析,列出各阶固有频率,并考察偏心主轴在各阶固有频率下发生共振时的应力、应变情况以防其发生共振破坏。
     本文的拥有以下创新之处:
     1、该柱塞泵动力端的新型方案采用微可调弧面滑动机构代替常规曲柄连杆机构和传统凸轮机构,使其同时具备的承载能力强及结构简单的优势。
     2、将柱塞组件连接处设计成可转动球面式,有效减小了弧形滑块的所受的弯矩;用新型复位机构取代传统的弹簧及油泵复位机构,使得复位简单、可靠。
With the development of industrial technology and the era of knowledge-based economy coming, the modern industrial equipments display highly automated, integrated and intelligent trend. Industrial production has Raising higher and higher requirements to performance of the modern equipment. Ordinary and conventional mechanical equipment already can not fully meet the requirements, the piston pump is also facing serious challenges as an important part of the industrial equipment. This paper is committed to design and develop a new four-cylinder radial piston pump and the pump power end uses micro-adjustable circular curved sliding mechanism to replace the conventional crank linkage and cam mechanism. With the many advantages, such as modern design, simple structure, reliable performance, smooth running, low power, low noise, convenient assembly and disassembly and wide application.
     A series of research and discussion is done in this article, based on radial piston reciprocating pump power end. Investigated the structural principle and disadvantages of the conventional crank linkage and the conventional cam mechanism piston pump and on this basis, developed a new four-cylinder radial piston pump, at that time put two design program forward of the power end. To elaborate on its working principle and structure. Designing and analyzing structural of the key components to improve the performance of the power end.
     Using Pro/E to establish the power end's3D model of two schemes and analyzing the strengths and weaknesses of the two programs. Selected the advantage program and imported3D model to Adams and established the virtual prototype of the reciprocating pump power end model. To simulate and calculate pump power end of the reciprocating pump after added the boundary conditions and driving. To draw the kinematics and kinetic parameters'curve of the key components of the power end and which can observe kinematic characteristics of the piston pump quickly and easily.
     Combined with the results of theoretical calculation and multi-body dynamics simulation to comparative and analyze, with this, can provide a theoretical basis for the pump design and improvement. To make structure, dimensions and balancing design of the key components of the pump power end——Eccentric spindle could reduce inertia force effectively which is caused by the centroid of the spindle components and its center of rotation axis could not share a same line. Made a structural analysis and fatigue failure analysis of eccentric spindle with ANSYS and researched stress and strain according to two kinds of analysis, while analyzed the oscillation of the eccentric spindle, and to carry the modal analysis out which considers prestressed influence. To lists the many steps natural frequencies and to examine the stress and strain for preventing the eccentric spindle is damaged when the resonance happened.
     The innovation of this paper is:
     1. The new radial piston pump power end used micro-adjustable circular curved sliding mechanism to replace the conventional crank linkage and conventional cam mechanism which Contains advantages of the simple structure of cam mechanism and the carrying capacity of the crank.
     2. Designed the connection of the piston components to be rotating spherical surface can reduce the moment of arc slider effectively. Used new restoration mechanism to replace the traditional spring and pump restoration mechanism, to make restoration become simple and reliable.
引文
[1]方建忠.多排式轴向柱塞泵的关键技术研究及动态仿真:[硕士学位论文].重庆:重庆大学,2007
    [2]范卓立.基于虚拟样机技术的轴向柱塞泵运动及动力特性仿真分析:[硕士学位论文].河北:燕山大学,2007
    [3]杨智伟.轴向柱塞泵虚拟样机仿真技术:[硕士学位论文],浙江:浙江大学,2006
    [4]徐文琴.径向柱塞泵静压支承圆柱副性能研究:[硕士学位论文],浙江:浙江工业大学,2004
    [5]贾跃虎.径向柱塞泵设计参数分析[J].液压气动与密封,2004(2)
    [6]刘陪忠.新型径向柱塞泵设计参数分析[J].液压气动与密封,2006(3)
    [7]市川长雄.关于柱塞压力平衡理论[J],油压化设训1965, Vol3, No2
    [8]赵道生.ZBD-75轴向柱塞泵缸体——柱塞,2008(2):46-48
    [9]谈宏华,陈卓如,金朝铭,张守礼.径向柱塞马达柱塞腔内动态压力研究[J].北京航空航天大学学报,1996.6
    [10]黄天成,吕伦,袁新梅.柱塞泵泵头体应力集中及疲劳寿命分析[J].机械设计与制造,2008(12):193-194
    [11]李岚.平衡式径向柱塞泵的设计[J].机械传动,2007(4):102-103
    [12]周德生.汽车曲轴加工新技术.机械工人[J],2006(5):34-36
    [13]邹云飞,荆崇波.径向柱塞泵配流轴受力平衡性分析[J].机床与液压,2009(11):18-79
    [14]严桃平.新型径向柱塞泵的结构分析[J]:淮阳工学院学报2002 (3):Vol.37 No.11
    [15]徐文琴,姜伟.径向柱塞泵变量泵受力分析研究.机床与液压,2004(8):83-87
    [16]孙毅,姜继海.虚拟样机技术在轴向柱塞泵运动仿真与分析中的应用研究[J].液压与气动,2010(2):24-26
    [17]李凯,钱志博,贺炜炜.鱼雷柱塞变量泵配流阀参数设计与仿真[J].计算机仿真.2010(2)
    [18]贺小峰,朱磊磊.轴向柱塞泵主轴动平衡的设计及实验研究[J].流体机械,2007 Vol.35, No.6:8-13
    [19]段绍林.6112曲轴国产化工艺设计[J].汽车制造技术,2005(3):32-34
    [20]王东,聂松林,朱玉泉.柱塞配流水压轴向柱塞泵运动学分析.第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与启动学术会议
    [21]冯平法,盛力,吴志军,郁鼎文.柱塞式液压泵曲轴载荷特性及力学性能分析[J].机械设 计与制造.2007(5):155-157
    [22]谢慧萍,汪建平,张庆功.偏心柱塞泵三维建模与运动学仿真[J].煤矿机械2009 Vol.30, No4
    [23]郑建荣ADAMS-虚拟样机技术入门与提高.北京:机械工业出版社,2001:10-12
    [24]余新康,王建.基于ADAMS的液压系统虚拟样机[J].工程机械.2003,11:42-45
    [25]赵文辉.机电一体化系统虚拟样机的异构建模很仿真[J].系统仿真学报,2001,13,(5):592-595
    [26]姜士湖,阎相祯,虚拟样机技术及其在国内的应用前景.机械.2003,30(2):4-9
    [27]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002
    [28]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [29]蒙艳玫,李尚平,刘正士.虚拟样机技术及其在创新产品开发中的应用[J].广西科学,2001.8(4):256-259
    [30]王成,王效岳.虚拟样机技术及ADAMS机械工程与自动化.2004(6):66-75
    [31]MSC.ADAMS interface Version4.2-summer 2004.IMSGINE S.A.,2004
    [32]Deeken,Michael.Simulation of the tribological contacts in an axial piston machine.2004 ASME International Mechanical Engineering Congress and Exposition,IMECE,2004:71-75
    [33]Deeken,Michael.Displacement unit simulation in DSHplus.lhydraulik und Pneumatik,2001, 45:60-64
    [34]Deeken,Michael Simulation of fluid power components using DSHplus and ADAMS,2001 ASME International Mechanical Engineering Congress and Exposition,2001:2559-2565
    [35]Huang,C.CASPAR based slipper performance prediction in axial piston pumps. Proceed-ings of 3rd FPNI-PhD symposium on Fluid Power,Terassa,Spain,2004:229-238
    [36]Hao Zhang,Lew Kasper,Rich Kimpel.Development of a Virtual Prototype of Piston Pump for Hydrostatic Transmission.Proceedings of the Sixth ICFP,2005:485-489
    [37]G.Zeiger,A.Akers.Torque on The Swashplate of An Axial Piston Pump.Transactions of the ASME,1985,107:220-22
    [38]Joseph A.Mileti and Paul M.Lawhead.Controlled Pressure Pumps for More Efficient Hydraulic Systems.Abex Corp.Aerospace Div.861844.
    [39]Dipl.Ing.Peter Antoszkiewicz and Dr.Martin Piechnick.Simulation of a hydraulic variable axial piston double pump of bent axis design with subsystems.The 1st MSC.ADAMS European User Conference,2003:200-205
    [40]Joseph A.Mileti and Paul M.Lawhead.Controlled Pressure Pumps for More Efficient Hydraulic Systems.Abex Corp.Aerospace Div.861844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700