用户名: 密码: 验证码:
曲线拟合和径向基函数神经网络方法定量解析分子荧光光谱及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代分析技术的发展,巨量的分析数据的获得变得容易,数据的复杂性越来越强。获得的化学数据中不仅包含丰富的化学信息,而且还混杂有噪声、背景等干扰信息。传统的信息数据处理方法已经不能满足分析的需要。本文以“化学分离”代替“化学或物理分离”用于复杂体系重叠光谱的定量解析,使得多组分的分析变得简单、直接和快速。将曲线拟合和径向基函数神经网络方法用于分子荧光分析,为光谱的应用提供了新思路和新方法。
     本文第一章绪论部分简要回顾了化学计量学历史和发展,对多元校正和分辨在光谱中的应用进行了综述。第二章就涉及的的相关算法的基本原理加以阐述。
     第三章将毛细管电泳与(Genetic Algorithm, GA)优化输入变量下的径向基函数(Radial basic function, RBF)神经网络方法相结合用于定量解析重叠的毛细管电泳图,无需分离即可实现对难分离的苯二酚、苯酚和对硝基苯的同时、准确定量检测。
     第四章和第五章将修正高斯模型为GA的适应性函数用于拟合荧光光谱图,有效地解决了分子荧光光谱法检测过程中荧光光谱相互干扰的间题。考察了不同尿液中内源性荧光物质对加替沙星(GFLX)荧光的干扰。应用拟合荧光光谱图可有效地消除了内源性荧光物质的干扰。在优化条件下,GFLX的浓度在0.06-3.5μg·mL-1范围内,与其荧光强度之间具有良好的线性,相关系数为0.9994。检出限为0.02μg·mL-1,回收率为99.2%~109.4%,相对标准偏差为1.3%-2.7%。在优化条件下,邻苯二酚、间苯二酚和对苯二酚的浓度分别在0.02-10μg·mL-1、0.01-10μg·mL-1和0.01-10μg·mL-1范围内,与其荧光强度之间具有良好的线性,相关系数分别为0.9920、0.9999和0.9996,其检出限分别为0.005μg·mL-1、0.003μg·mL-1和0.002μg·mL-1。该方法用于水中邻、间、对苯二酚含量的同时测定,其回收率分别为为84.0%-117%,其相对标准偏差(RSD)为0.3%-2.9%。本文提出的拟合同步荧光光谱法无需分离即可实现对尿液中的加替沙星和三种苯二酚同分异构体同时、准确、灵敏的定量检测,测定结果满意。
     第六章在相关文献的基础上,通过模拟数据就图的噪声水平和子峰间的分离度与通用回归神经网络(Generalized redrevession neural networks, GRNN)和反向传播(BackPropogation,BP)神经网络建模的影响进行了系统研究。通过计算机模拟含有不同噪声和不同分离度的谱图,平均选取谱图上对应的数据点作为神经网络的输入变量,训练建模。对比神经网络的预测误差,讨论了识别能力与噪声及分离度之间的相关性,为两种神经网络的应用与研究提供一定的参考。研究结果显示,在提供的训练条件下,两种神经网络识别能力随着谱图的噪声水平的增大逐渐降低,以BP神经网络模型的识别能力随谱图中子峰间分离度的增大而提高。
     第七章以GA优化RBF神经网络的输入变量,用于提高RBF神经网络重叠谱图的定量解析精度。该方法在一定程度上提高了RBF神经网络的预测能力,缓解了神经网络训练过程中的“过拟合”现象,简化了RBF神经网络模型的结构,提高了RBF神经网络的学习能力。本研究实现了对同步荧光光谱重叠谱图的有效定量解析,在理论和实验的结合上为RBF神经网络在光谱的应用提供了依据。
     第八章将PCA用于优化RBF的输入变量方法用于提高神经网络的识别能力。通过PCA可去除沉余、不相关的数据点,在一定程度上提高神经网络模型的学习能力。应用本方法有效消除了尿液中内源性荧光物质对NOR荧光的干扰,建立了测定尿液中NOR的新方法,在优化条件下,神经网络模型NOR的预测误差为15.32%,网络结构为2:3:1。该方法快捷、方便,可实现尿液中NOR的无干扰测定。
     第九章将PCA和GA两种数据压缩技术分别用于RBF神经网络输入变量的优化,以提高神经网络模型的识别能力。以这两种方法分别对相同的模拟数据和实验数据进行优化,用优化后的数据训练建模,计算比较了两种方法的神经网络模型的预测误差和神经网络结构。在优化的条件下,对于PCA优化后神经网络,平均预测误差为16.1%(模拟数据)和17.81%(实验数据);网络结构为:7:14:3(模拟数据)和8:22:3(实验数据)。结果表明,以PCA优化能够改善神经网络结构,以GA优化能够提高神经网络的预测能力。
With the rapid development of modern analytical technology, analysts can now easily and quickly obtain more data points, and the data sets is becoming complex more and more. These data arrays not only contain amass of chemical information, but also involve some interferers including irrelevance chemical components, noise and background. The traditional methods of the processing data for analytical method can not meet the analysis needs. The use of mathematical seperation instead of "chemical or phisical seperation" for quantification resolution of overlapped spectra of complex matrices could make multi-component analysis with the characteristics of being simple, direct and faster. The curve fitting and radial rasis function neural network are used for molecular fluorescence analysis. It provides a new way and method for the application of spectroscopy.
     First of all, it is described that the history and development of chemometrics, and the research advance of multivariate resolution and calibration in spectrum are reviewed. The basic principle of the related algorithms is introduced in the second chapter.
     In Chapter3, the radial basis function artificial neural network based on genetic algorithm was combined with capillary electrophoresis for quantitative resolution of overlapped peaks in electrophoretogram. It is achieved that the simultaneous and accurate quantification of hardly separating dihydroxhenzene, ohenol and p-nitrophenol.
     Chapters4and5used the exponentially modified Gaussian (EMG) model-based genetic algorithm as a fitness function for fitting fluorescence spectrogram. The method was effective for solving the interference of fluorescent substance in the course of the multi-component quantitative analysis. As a example, the interference of endogenous fluorophores in different urines on fluorescence of gatifloxacin (GFLX) was examined by using the fitting fluorescence spectrogram. Another example, the proposed method can effectively correct the overlapping interferences of fluorescence spectra of the three isomers. Under the optimized experimental conditions, the good linear relationship between the fluorescence intensity and concentration of GFLX concentration was obtained in the range of0.06μg·mL-1-3.5μg·mL-1with a correlation coefficient of0.9994. The detection limit and recovery were0.02μg·mL-1and99.2%-109.4%, respectively, with the relative standard deviation from1.3%to2.7%. In addition, the good linear relationship between the fluorescence intensity and concentration of catechol, resorcinol and hydroquinone was obtained in the range of0.02μg·mL-1-10μg·mL-1,0.01μg·mL-1-10μg·mL-1and0.01μg·mL-1-10μg·mL-1with a correlation coefficient of0.9920,0.9990and0.9996, respectively. Their detection limits were0.005、0.003and0.002μg·mL-1, respectively, and the recoveries were in the range of84.0%-117%with the relative standard deviation of0.3%-2.9%. The proposed fitting fluorescence spectrometric method was rapid, simple and highly sensitive for the determination of GFLX in different human urine and catechol, resorcinol and hydroquinone in water without preseparation. The results are satisfactory.
     In Chapter6. the effects of noise level and resolution between sub-peaks on modeling of the General Regression Neural Network (GRNN) and Back Propogation (BP) artificial neural network were investigated in detail by simulated data based on involved references. The different noise and resolution of spectrums were simulated by computer. The data points corresponding spectrum selected evenly were used as input variables of the neural network, and neural network model was trained. Prediction error of neural network was compared and the relation of the recognition capability and noise and total resolution of overlapped spectroscopy was discussed to provide valuable reference for application of the neural network. It was shown that under the training conditions provided in this work the recognition capability of the two artificial neural networks reduced gradually with increasing noise level, and the accuracy of the quantification results by General Regression Neural Network model was improved with the increase of the total resolution.
     In Chapter7, the genetic algorithm (GA) was used in optimizing input variables of radial basis function (RBF) artificial neural network to improve the precision of quantitative analysis of the unresolved spectra by artificial neural network. Using the proposed method can, in some extent, increase prediction capability, reduce "over-fitting" of the trained networks and structure of RBF artificial neural network, and improve learning ability of artificial neural network. Effective quantification analysis of overlaped synchronous fluorescence spectrms was achieved. This work provides a basis on the combination of theory and experiment for the application of RBF artificial neural network in spectroscopy.
     In Chapter8, the principal components analysis (PCA) was used in optimizing input variables of the radial basis function artificial neural network to improve the recognition capability. The irrelevant data points were removed by PCA. Therefore learning ability of artificial neural network can be improved to some extent. Use of the presented method can eliminate effectively the interference of endogenous fluorophores in urines on fluorescence of Norfloxacin (NOR). A new fluorescence method for the determination of NOR in urines was developed. Under the optimized conditions, the prediction error of Neural Network model for NOR was15.32%, and Neural Network Structure was2:3:1。 The method is quick and convenient for the determination of Norfloxacin in urine without interference。
     In Chapter9, the two kinds of data compression technology (PCA and GA) are widely used for feature extraction. The GA and PCA were used in optimizing same input variables of the radial basis function artificial neural network, respectively, to improve the recognition capability of neural network. The same simulated and experimental data were optimized by GA and PCA, and neural network models were trained. The prediction error of the two neural network models for three isomers and Neural Network Structure were calculated and compared. Under the optimized conditions, after obtimized with PCA, the prediction error is16.1%(simulated data) and17.81%(experimental data), and the structure of neural network model is7:14:3(simulated data) and8:22:3(experimental data). The results indicate that the use of PCA for the optimization of neural network has better neural network structure than use of GA, and the use of GA for the optimization of neural network has higher recognition capability than use of PCA.
引文
[1]汪尔康.21世纪的分析化学[M].北京:科学出版社,1999,11.
    [2]Escandar G M, Olivieri A C, Faber N M, et al. Second-and third-order multivariate calibration:data, algorithms and applications[J]. Trends in Analytical Chemistry,2007,26:752-765.
    [3]Sanchez E, Kowalski B R. Tensorial calibration:I. First-order calibration[J]. Chemom,1988,2:247-263.
    [4]Trevisan M G, Poppi R J. Determination of doxorubicin in human plasma by excitation, emission matrix fluorescence and multi-way analysis[J]. Analytica Chimica Acta,2003,493(5):69-81.
    [5]Rodriguez. Cuesta M J, Boque R, Rius F X, et al. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensionalexcitation[J]. Emission matrix fluorescence and parallel factor analysis. Analytica Chimica Acta,2003,491(3):47-56
    [6]Hergert L A, Escandar G M. Spectrofluorimetric study of the13-cyclodextrin, ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum[J]. Talanta,2003,60(2):235-246.
    [7]Espinosa-Mansilla A, Munoz de la Pena A, Gomez D G, et al. Photoinduced spectrofluorimetric determination of fluoroquinolones inhuman urine by using three-and two-way spectroscopic data and multivariate calibration [J]. Analytica Chimica Acta,2005,531(1):257-266
    [8]高鸿.分析化学前沿[M].北京:科学出版社,1991:1-100.
    [9]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法[M].长沙:湖南科学技术出版社,1996:12:100.
    [10]许禄,邵学广.化学计量学方法[M].北京:科学出版社,2004:1-100.
    [11]陆晓华.化学计量学[M].武汉:华中理工大学出版社,1997:1-100.
    [12]俞汝勤.化学计量学导论[M].长沙:湖南教育出版社,1991:1-100.
    [13]史永刚,冯新泸,李子存.化学计量学的发展现状明[J].光谱实验室,2002,19:201-205.
    [14]Hansch C, Fujita T. Classical and three-dimensional QSAR in agrochemistry, In:ACS symposium series, USA, New York:American Chemical Society,1995,23-56.
    [15]Fraga C G, Prazen B J, Synovec R E. Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on bothdimensions[J]. Analytical Chemistry,2001,73(24):5833-5840.
    [16]Mohimen A, Dobo A, Hoerner J K, et al. Achemometric approach to detectionand characterization of multiple protein conformers in solution Using electrospray ionization mass spectrometry[J]. Analytical Chemistry,2003,75(16):4139-4147.
    [17]Opez-Diez E C, Goodacre R. Characterization of microorganisms using UV resonance Raman Spectroscopy and chemometrics[J]. Analytical Chemistry,2004,76(3):585-591
    [18]Vogt F, Mizaikoff B. Introduction and application of secured principal component regression for analysis of uncalibrated spectral features in optical spectroscopy and chemical sensing [J]. Analytical Chemistry,2003,75(13):3050-3058.
    [19]Einax J. Chemometries in Environmental Chemistry Statistical Methods [M]. Berlin Germany: Springer-Verlag,1995.
    [20]Baldenius K U, vondem Bussche-Hunnefeld L, Hilgemann E, Hoppe P, Sturmer R. Chapter4:Vitamin E (Tocopherols, Tocotrienols). In:Ullmann's Encyclopedia of Industrial Chemistry[J], Weinheim, Germany:VCH,1996,27:478-488.
    [21]Chaudry U A, Popelier P L A. Estimation of pKa using quantum topological molecular similarity descriptors:Application To carboxylie acids, anilines and phenols [J]. Journal of Organic Chemistry,2004,69(1):233-241.
    [22]Lakshminarayanan S, Mhatre P, Gudi R. Identification of bilinear models for chemical Processes using canonical variate analysis[J]. Industrial&Engineering Chemistry Research.2001,40(3):4415-4427.
    [23]Shen M, Wagner M S, Castner D G, et al. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion[J]. Langmuir,2003,19(2):1692-1699.
    [24]Rios P, Stuart J A, Grant E. Plastics disassembly versus bulk recycling:Engineering design for end-of-life electronics resource recovery[J]. Environmental Science&Technology,2003,37(5):5463-5470
    [25]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003,171-180.
    [26]BookshK S, Kowalski B R. Theory of analytical chemistry [J]. Analytical Chemistry[J],1992,66(15):782A-791.
    [27]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003,151-183.
    [28]梁逸曾,俞汝勤.分析化学手册(第十分册):化学计量学[M].北京:化工出版社.2000,2:1-743.
    [29]Dief A S. Advanced matrix theory for scientists and engineers[M]. Tunbridge Wells&London:Abacus Press,1982:16-34.
    [30]Kisner H J. Brown C W, Kavarnos G J. Mutltiple analytical frequencies and standards for the least-squares spectrometric analysis of serum-lipids[J]. Analytical Chemistry,1983,55(11):1703-1707.
    [31]Hoskuldsson A. PLS regression methods[J]. Journal of Chemometrics,1988,2(4):211-228.
    [32]Manne R. Analysis of two partial least squares algorithms for multivariate calibration[J]. Chemometrics and Intelligent Laboratory Systems,1987,1:187-197.
    [33]Thijssen P C, Kateman G. Optimal designs with information theoryin least-squares problems[J]. Analytica ChimicaActa,1984,157:99-115.
    [34]VandeginsteB G M, Massart D L, Buydens L C M, et al. Handbook of Chemometrics and qualimetries: Part B[J]. Amsterdam:Elsevier,2003,349-379.
    [35]Zupan J, Gasteiger J. Neural Networks:A New Method for Solving Chemical Problems or just a Passing Phase[J]. Analytica Chimica Acta,1991,248:1-30.
    [36]Harshman R A. Foundations of the PARAFAC procedure:models and conditions for an'explanatory' multi-modal factor analysis[R]. UCLA Working Papers in Phonetics,1970,16(1):1-84.
    [37]Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition[J]. Psychometrika,1970,35(3):283-319.
    [38]Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis [J]. Analytical Chemistry,1986,58(2):496-499
    [39]Wilson B E, Sanchez E, Kowalski B R. An improve algorithm for the generalized rank annihilation method[J]. Journal of Chemometrics,1989,3(3):493-498.
    [40]Sanchez E, Kowalski B R. Tensorial resolution:A direct trilinear decomposition[J]. Journal of Chemometrics,1990,4(1):29-45
    [41]Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues In multiway analyses using the direct trilinear decomposition method[J]. Journal of Chemometrics,1993,7(2):77-88
    [42]俞汝勤.化学计量学导论[M].长沙:湖南教育出版社,1991:1-100.
    [43]Barry L, Jerry W Chemometrics (Publication Date), Analytical Chemistry,2010,82(12):4699-4711.
    [44]Escandar, Graciela M, Olivieri, et al. Second-and third-order multivariate calibration:data, algorithms and applications. Trends in Analytical Chemistry[J],2007,26,752-765.
    [45]Sanchez E, Kowalski B R, Tensorial calibration:I. First-order calibration[J]. Chemom,1988,4:247-263.
    [46]Lennholm H, Wallbacks L, Iversen T. A13C-CP/MAS-NMR-Spectroscopic study of the effect of laboratory kraft cooking on cellulose structure[J]. Nordic Pulp&Paper Research Journal,1995,10(1):46-50.
    [47]Broderick G, Paris J, Valade J L, et al. Applying latent vector analysis to pulp characterization [J]. Paperi Ja Puu-Paper and Timber,1995,77(6-7):410-418.
    [48]Michell A. Vibrational spectroscopysa rapid means of estimating plantation [J]. Pulpwood Quality Appita,1994,47(1):29-37
    [49]Malkavaara P, Alen R. A spectroscopic method for determining lignin content of softwood and hardwood kraft pulps[J]. Chemometrics and Intelligent Laborary Systens,1998,44(1-2):287-292.
    [50]Cadet F, Bertrand D, Robert P, et al. Quantitative determination of sugar cane sucrose by multidimensional statistical analysis of their mid-infrared attenuated total reflectance spectra[J]. Applied Spectroscopy,1990,45(2):166-170.
    [51]Berzas Nevado J J, Rodriguez F, Villasenor L. Simultaneous spectrophotometric determination of Tartrazine, Sunset Yellow and Ponceau4R in commercial products by partial least squares and principal component regression multivariate calibration methods[J]. Fresenius'journal of analytical chemistry1998, Volume361,5:465-472.
    [52]Nevado J J, Flores J R, Llerena M J, et al. Simultaneous spectrophotometric determination of tartrazine, patent blue V, and indigo carmine in commercial products by partial least squares and principal component regression methods[J]. Talanta,1999,48(4):895-903.
    [53]Berzas-Nevado J J, Guiberteau-Cabanillas C, Contneto-Salcedo A M, et al. Spectrophotometric simultaneous determination of amaranth, ponceau4R, allura red and red2G by partial least squares and principal component regression multivariate calibration[J]. Analytical Letters,1999,32(9):1879-1898.
    [54]Duran-Meras I, Munoz de la Pena A, Espinosa-Mansilla A, et al. Multicomponent determination of flavour enhancers in food preparations by partial least squares and principal component regression modelling of spectrophotometric data[J]. Analyst,1993,118,807-813.
    [55]张国文,倪永年.主成分回归-紫外光度法同时测定食用香料麦芽酚和乙基麦芽酚[J].理化检验(化学分册),2004,40(8):438-44.
    [56]Alas El-Gindy, Ashour A, Abdel-Fattah L, et al. Spectrophotometric Determination of benazepril hydrochloride and hydrochlorothiazide in binary mixture using second derivative, second derivative of the ratio spectra and chemometric methods [J]. Journal of Pharmaceutical and Biomedical Analysis,2001,25(2):299-307.
    [57]El-Gindy A, El-Yazby F, Mostafa A, et al. HPLC and chemometric methods for the simultaneous determination of cyproheptadine hydrochloride, multivitamins, and sorbic acid[J]. Journal of Pharmaceutical and Biomedical Analysis,2004,35(4):703-713.
    [58]El-Gindy A, Emara S, Mostafa A. HPLC and chemometric-assisted spectrophotometric methods for simultaneous determination of atenolol, amiloride hydrochloride and chlorthalidone[J]. Ⅱ Farmaco,2005,60(2):269-278.
    [59]El-Gindy A, Ashour A, Abdel-Fattah L, et al. Spectrophotometric and HPTLC-densitometric determination of lisinopril and hydrochlorothiazide in binary mixtures [J]. Journal of Pharmaceutical and Biomedical Analysis,2001,25(5):923-93.
    [60]周彤,钟家跃,袁萍.非线性主成分回归分光光度法同时测定复方制剂中两组分的含量[J].分析试验室,2004,23(2):57-59.
    [61]陈闽军,程翼宇,刘雪松.用局部拟合主成分回归计算光度分析法测定黄连生物碱[J].化学学报,2003,61(10):1623-1627.
    [62]职统兴,尚丽平,邓琥等.主成分回归荧光光谱法同时分析多组分混合体系[J].应用化工,2008,37(10):1231-1234.
    [63]张国文,王福民,潘军辉.主成分回归-分光光度法同时测定西维因和异丙威[J].理化检验(化学分册),2008,44:715-718.
    [64]L6pez-de-Alba P L, Wrobel-Kaczmarczyk K, Wrobel K, et al. Spetrophotometric determination of Allura Red (R40) in soft drink powders using the universal calibration matrix for partial least squares multivariate method[J]. Analytical Biochemistry,1996,330:19-29.
    [65]Rambla F J, Garrigues S, De La Guardia M. PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices [J]. Analytica Chimica Acta,1997,334:41-53.
    [66]Ni Y N, Gong X F. Simultaneous spectrophotometric determination of mixtures of food colorants [J]. Analytica Chimica Acta,1997,354:163-171.
    [67]任健敏,白玲,倪永年.偏最小二乘分光光度法同时测定茶叶中痕量铁、钴和镍[J].江西农业大学学报,2001,23(1):123-125.
    [68]白玲,倪永年.偏最小二乘分光光度法同时测定痕量铁、锰、铜、锌、钴和镍[J].分析试验室.2002,21,(1):39-42
    [69]Capitan-Vallvey L F, Fernandez M D, De Orbe I, et al. Simultaneous determination of the colorants tartrazine, ponceau4R and sunset yellow FCF in foodstuffs by solid phase spectrophotometry using partial least square multivariate calibration[J]. Talanta,1998,47:861-868.
    70] Capitan-Vallvey L F, Fernandez M D, Orbe I D, et al, Simultaneous determination of the colorants sunset yellow FCF and quinoline yellow by solid-phase spectrophotometry using partial least squares multivariate calibration [J]. Analytical Letters,2002,35(4):615-633.
    [71]Schulz H, Engelhardt U H, Wegent A, et al. Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves [J]. Journal of Agricultural Food Chemistry,1999,47(12):5064-5067.
    [72]Moberg L, Karlberg B, Blomqvist S, et al. Comparison between a new application of multivariate regression and current spectroscopy methods for the determination of chlorophylls and their corresponding pheopigments[J]. Analytica Chimica Acta,2000,411,137-143.
    [73]Dinc E, Baydan E, Kanbur M, et al. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse leas t-squares and principal component regression methods[J]. Talanta,2002,58(3):579-594.
    [74]Capitfan-Vallvey L F, Navas N, Olmo M, et al. Resolutionof mixtures of three nonsteroidal anti-inflammatory drugs by fluorescence using partial least squares multivariate calibration with previous wavelength selection by Kohonenartificial neural networks[J]. Talanta,2000,52(6):1069-1079.
    [75]颜杰,丁德荣,刘世庆.小波变换-偏最小二乘算法及其在复方甲硝唑注射液分析中的应用[J].分析测试学报,2000,19(1):71-73.
    [76]王燕,陈国松,王镇浦.化学计量学法辅助紫外分光光度法同时测定小儿复方苯巴比妥片剂中四组分的研究[J].分析试验室,2000,19(5):27-30.
    [77]Erdal Dine, Ustundag O. Chemometric resolution of a mixture containing hydrochlorothiazide and amiloride by absorption and derivative spectrophotometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,29(1-2):371-379.
    [78]Erdal Dine, Murat Palabiyik I, Ustundag O, et al. Simultaneous spectrophotometrie determination of chlorphenoxamine hydrochloride and caffeineina pharmaceutical preparation using first derivative of the ratio spectra and chemometric methods [J]. Journal of Pharmaceutical and Biomedical Analysis,2002,28(3):591-600.
    [79]Dine E, Yucesoy C, Feyyaz O. Simultaneous spectrophotometric determination of mefenamic acid and paracetamol in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and chemometric methods. Journal of Pharmaceutical and Biomedical Analysis[J],2002,28(6):1091-1100.
    [80]Dine E, Baleanu D. Spectrophotometric quantitative determination of cilazapril and hydrochlorothiazide in tablets by chemometric methods [J]. Journal of Pharmaceutical and Biomedical Analysis,2002,30(3):715-723.
    [81]Dine E, Yucesoy C, Murat Palablylk I, et al. Simultaneous spectrophotometrie determination of cyproterone acetate and estradiolvalerate in pharmaceutical preparations by ratio spectraderivative and chemometric methods[J]. Journal of Pharmaceutical and Biomedical Analysis,2003,32(3):539-547.
    [82]Dine E, Serin C, Tugcu-Demiroz F, et al. Dissolution and assaying of multicomponent tablets by chemometric methods using comuputer-aided spectrophotometer[J]. International Journal of Pharmaceutics,2003,250(2):339-350
    [83]Dine E, Ustundag O. Spectrohotometric quantitative resolution of hydrochlorothiazide and spironolactonein tablets by chemometric analysis methods[J]. IL Farmaco,2003,58(6):1151-1161.
    [84]Espinosa-Mansilla A, Munoz de la Pena A, Salinas F, et al. Partial least Squares mutlicomponent fluorimetric determination of nuoroquinolones in human urine samples[J]. Talanta,2004,62(4):853-860.
    [85]周彤,钟家跃,冯江.非线性偏最小二乘导数分光光度法同时测定复方新诺明中二组分的含量[J].光谱学与光谱分析[J],2004,25(5):616.
    [86]Sena M M, Chaudhry Z F, Collins C H, et al. Direct Determination of diclofenac in pharmaceutical formulations containing B vitamins by using UV spectrophotometer and partial least squares regression[J]. Journal of Pharmaceutical and Biomedical Analysis,2004,36(4):743-749.
    [87]张国文,倪永年.偏最小二乘-同步荧光光谱法同时测定鳗鱼组织中三种喹诺酮药物残留量[J].光谱学与光谱分析,2006,26(01):113-116.
    [88]范华均,张薇,晏蓉等.偏最小二乘光度法同时测定多种酚的研究及应用[J].高等学校化学学报,1994,15(9):1305-1308.
    [89]何文琪,史红兵,陈意秋.用偏最小二乘法-荧光光谱法定量分析芳烃混合物[J].分析化学,1995,9(10):1009-1012.
    [90]弓晓峰,黄坚锋,倪永年.偏最小二乘法用于同步荧光法同时测定维生素B1、B2、B6[J].分析化学,1994,22(9):935.
    [91]王镇浦,陈国松.偏最小二乘法辅助分光光度法同时测定痕量锰、铁、铜和锌[J].分析化学;1996,1.
    [92]Fakayode S O, Swamidoss I M, Busch M A, et al. Determination of the enantiometric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest-host complexs formed with modified cyclodextrins[J]. Talanta,200565:838-845.
    [93]李彦威,方慧文,梁素霞等.偏最小二乘紫外分光光度法同时测定丁烯二酸的顺反异构体[J].分析化学,2008,36(1):95-98.
    [94]Guo D, Wang Y L. Application of artificial neural network technique to the formulation design of dielectric ceramics[J]. Sensors and Actuators,2002,102:93-98.
    [95]齐小明,张录达,柴丽娜等.主成分-逐步回归-BP算法在近红外光谱定量分析中应用的研究[J].北京农学院学报[J],1999,14(3):47-52.
    [96]Ni Y N, Liu C. Artificial neural networks and multivariate calibration for Spectrophotometric different kinetic determination of food antioxidants[J]. Analytica Chimica Acta,1999,396(2-3):221-230.
    [97]殷龙彪,李正,许立等.自动调节光谱响应的高精度多组分分析研究.人工神经网络分光光度法田[J].化学学报,1993,51:379-385.
    [98]李燕,孙秀云,王俊德.人工神经网络法测定五组分红外光谱体系四[J].光谱学与光谱分析,2000,20(6):773-776.
    [99]刘辉军,吕进,林敏等.基于RBF网络和NIRS的绿茶水分含量分析模型[J].中国计量学院学报,2005,16(3):188-190.
    [100]Franco V G, Perm J C, Mantovani V, et al. Monitoringsubstrate and products in a bioprocess with FTIR spectroscopy coupled to artificialneural networks enhanced with a genetic algorithm based method for wavelength selecfion[J]. Talanta,2006,68(3):1005-1012.
    [101]丁德荣,刘世庆,王煜等.人工神经网络分光光度法用于增效联磺片三组分的同时测定叨[J].沈阳药科大学学报,1999,16(2):110-113.
    [102]严拯宇,王朝晖,姜新民等.人工神经网络应用于光谱分析同时测定增效联磺片三组分含量[J].分析科学学报,1999,15(4):297-301.
    [103]Gatonovic-Kustdn S A, Beresford R, Razzak M, Determination of enantiomeric composition of ibuprofen in solid state mixtures of the two by DRIFT spectroscopy[J]. Analytica Chimica Acta,2000,417(1):317-39.
    [104]刘培义,任玉林,苟玉慧等.人工神经网络-近红外光谱法用于甲氧苄胺嘧啶粉末药品的非破坏定量分析[J].高等化学学校化学学报,2000,21(4):544-546.
    [105]王煜,刘世庆,马恩龙等.偏最小二乘法-BP神经网络用于多组分药物测定[J].分析实验室,2000,19(4):34-36.
    [106]吴泽鑫,李小昱,王为等.基于近红外光谱的番茄农药残留无损检测方法研究[J].湖北农业科学,2010,49,(4):961-963.
    [107]殷龙彪,李正,许立等.人工神经网络在多组分红外光谱分析中的应用[J].分析化学,1993,21(4):435-438.
    [108]刘平,梁逸曾,王素国等.多元非线性荧光校正的人工神经网络方法[J].化学学报,1997,54:386-392.
    [109]Kompany-Zareh M, Massoumi A, Pezeshk-Zadeh S, Simultaneous spectrophotometic determination of Fe and Ni with xylenol orange using principal component analysis and artificial neuralnetworksin some industrial samples[J]. Talanta,1999,48(2):283-292.
    [110]方力,张燕,丁佳等.紫外分光光度法同时测定硝酸盐氮和亚硝酸盐氮明[J].分析测试技术与仪器,1999,5(3):142-146.
    [111]吴根华,何池洋,陈荣.人工神经网络用于荧光分析法同时测定苯酚和间苯二酚[J].光谱学与光谱分析,2002,22(5):813-815.
    [112]于洪梅,陈刚,朱晓明.改进的人工神经网络分光光度法同时测定锆和钛[J].理化检验(化学分册),2005,41(5):355-357.
    [113]方艳红,王琼,徐金瑞.分光光度法结合人工神经网络同时测定铜、镉和镍[J].光谱实验室,2005,22(4):782-784.
    [114]朱金林,曹永生,陈奕卫等.二次旋转设计和反向人工神经网络在铅、福、汞和镍同时测定中的应用明[J].化学分析计量,2001,10(2):10-12.
    [115]吴军,杨梅.人工神经网络用于紫外光谱同时测定苯、甲苯和二甲苯的含量[J].理化检验(化学分册),2006,42(7):511-513.
    [116]刘丙萍,李燕,张琳等。人工神经网络对VOCs的自动识别[J].光谱学与光谱分析,2006,26(1):51-53.
    [117]邓勃,莫华.人工神经网络及其在分析化学中的应用[J].分析试验室,1995,14(5):85-87.
    [118]Ho C N, Christian G D, Davidson E R. Application of the method of rank annihilation to quan titative analyses of multicomponent fluorescence data from the video fluorometer[J]. Analytical Chemistry,1978,50(8):1108-1113.
    [119]Harshman R A. Foundations of the PARAFAC procedure:models and conditions for an'explanatory' multi-modal factor analysis. UCLA Working Papers in Phonetics,1970,16(1):1-84.
    [120]Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons[J]. Journal of Chemometrics,1998,12(1):1-26.
    [121]Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm-the property of being insensitive to excess factors used in calculation [J]. Journal of Chemometrics,2001,15(5):439-453.
    [122]Bro R. Multiwaycalibration multilinear PLS. Journal of Chemometrics,1996,1U(1):47-61.
    [123]Burdick D S, Tu X M, McGown L B, et al. Resolution of multicomponent fluorescent mixtures by analysis of the excitation-emission-frequency array[J]. Journal of Chemometrics,1990,4(1):15-28.
    [124]何文琪,王超明,吴丹等.芳烃混合物的三维荧光光谱的降秩因子分析[J].光谱学与光谱分析,1993,13(5):33-36.
    [125]Beltran J L, Guiteras J, Ferrer R. Three-way multibariate calibration procedures applied to high performance liquid chromatography coupled with fast-scanning determination of polycyclic aromatic hydrocarbons in water samples[J]. Analytical Chemistry,1998,70(9):1949-1955.
    [126]JiJi R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic[J]. Analytica Chimica Acta,1999,397(1-3):61-72.
    [127]Cao Y Z, Chen Z P, Mo C Y, et al, A PARAFAC algorithm using penalty diagonalization error (PDE) for three-way data array resolution[J]. Analyst,2000,125(12):2303-2310.
    [128]Roch T H. Evaluation of total luminescence data with chemometrical methods:a tool for environmental monitoring [J]. Analytica Chimica Acta,1997,356(1):61-74.
    [129]Pedersen D K, Munck L, Engelsen S B. Screening for dioxin contamination in fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes [J]. Journal of Chemometrics,2002,16(8-10):451-460.
    [130]Esteves da Silva J C G, Leitao J M M, Costa F S, et al. Detection of verapamil drug by fluorescence and trilinear decomposition techniques [J]. Analytica Chimica Acta,2002,453:105-115.
    [131]Trevisan M G, Poppi R J. Determination of doxorubicin in human plasma by excitation-emission matrix fluorescence and multi-way analysis[J]. Analytica Chimica Acta,2003,493(1):69-81.
    [132]Lu J Z, Wu H L, Jiang J H, et al. An improved trilinear decomposition algorithm based on a Lagrange operator[J]. Analytical Sciences,2003,19:1037-1043.
    [133]Rodriguez-Cuesta M J, Boque R, Rius F X, et al. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-emission matrix fluorescence and parallel factor analysis[J]. Analytica Chimica Acta,2003,491(1):47-56.
    [134]de la Pena A M, Espinosa-Mansilla A, Gonza lez gomez D, et al. Interference-free analysis using three-way fluorescence data and the parallel factor model. Determination of fluoroquinolone antibiotics in human serum[J]. Analytical Chemitry,2003,75(11):2640-2646.
    [135]de la Pena A M, Espinosa Mansilla A, Mora Diez N, et al. Second-order calibration of excitation-emission matrix fluorescence spectra for the determination of N-phenylanthranilic acid derivatives [J]. Applied Spectroscopy,2006,60(3):330-338.
    [136]Rodriguez-Cuesta M J, Boque F, Rius F X, et al. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-emission matrix fluorescence and parallel factor analysis[J]. Analytica Chimica Acta,2003,491(1):47-56.
    [137]Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses:fluorescence determination of ciprofloxacin in human urine[J]. Analytical Chemistry,2004,76(10):2798-2806.
    [138]Fang D M, Wu H L, Ding Y J, et al. Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation-emission matrix fluorescence coupled with second-order calibration algorithms[J]. Talanta,2006,70:58-62.
    [139]Espinosa-Mansilla A, Munoz de la Pena A, Gonzalez Gomez D, et al. Determinations of fluoroquinolones and nonsteroidal anti-inflammatory drugs in urine by extractive spectrophotometry and photoinduced spectrofluorimetry using multivariate calibration[J]. Analytica Chimica Acta,2005,347(2):275-286.
    [140]Zhu S H, Wu H L, Xia A L, et al. Quantitative analysis of hydrolysis of carbaryl in tap water and river by excitation-emission matrix fluorescence coupled with second-order calibration[J]. Talanta,2008,74(5):1579-1585.
    [141]Rodriguez N, Real B D, Ortiz M C, et al. Usefulness of parallel factor analysis to handle the matrix effect in the fluorescence determination of tetracycline in whey milk[J]. Analytica Chimica Acta,2009,632(1):42-51.
    [142]Booksh K S, Muroski A R. Single-measurement excitation/emission matrix spectronuorometer for determination of hydrocarbons in ocean water.2. calibration and quantitation of naphthalene and styrene[J]. Analytical Chemistry,1996,68(20):3539-3544.
    [143]吴海龙,莫翠云,曹玉珍等.交替三线性分解校正法与荧光分析法相结合同时测定阿米洛利,心得安和潘生丁[J].计算机与应用化学,2002,19(1):15-18.
    [144]Chen Z P, Wu H L, Jiang J H, et al, A novel trilinear decomposition algorithm for second-order linear calibration. Chemom[J]. Chemometrics and Intelligent Laboratory System,2000,52(1):75-86.
    [145]Hergert L A, Escandar G M. Spectronuorimetric study of the β-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum[J]. Talanta,2003,60(2-3):235-246.
    [146]Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum[J]. Talanta,2003,60(6):1113-1121.
    [147]Gui M, RutanS C, Agbodian A. Kinetic detection of overlapped aminoacids in thin-layer chromatography with a direct trilinear decomposition method[J]. Analytical Chemistry,1995,67(18):3293-3299.
    [148]Trevisan M G, Poppi R J. Determination of doxorubicin in human plasma by excitation-emission matrix fluorescence and multi-way analysis[J]. Analytica Chimica Acta,2003,493(1):69-81.
    [149]Escandar G M, Gonzalez Gomez D, Espi nosa Mansilla A, et al. Determination of carbanazepine in serum and pharmaceutical preprations using immobilization on a nylon support and fluorescence detection[J]. Analytica Chimical Acta,2004,506(2):161-170.
    [150]Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinearl east-squares and parallel factor analyses:fluorescence determination of ciprofloxacin in human urine[J]. Analytical Chemistry,2004,76(10):2798-2806
    [151]刘平,梁逸曾,王素国等.多元非线性荧光校正的人工神经网络方法[J].化学学报,1997,55(4):386-392.
    [152]Saurina J, Leal C, Compano R, et al. Determination of triphenyltin in sea-water by excitation-emission matrix fluorescence and multivariate curve resolution[J]. Analytica Chimica Acta,2000,409(1-2):237-245
    [153]Garcia I, Sarabia L A, Ortiz M C. Detection capability of tetracyclines analysed by a fluorescence technique:comparison between bilinear and trilinear partial least squares models[J]. Analytica Chimica Acta,2004,501:193-203
    [154]Valverde R S, Gil Garcia M D, Galera M M, et al. Highly collinear three-way photoinduced spectrofluorimetric data arrays modelled with bilinear least-squares:Determination of tetracyclines in surface water samples[J]. Talanta,2006,70:774-783.
    [155]Patricia Valderrama, Poppi R J. Detemination of propranolol enantimoersin plasma and urine by spectronuorimetry and second-order standard addition method[J]. Analytica Chimica Acta,2009,651(1):31-35.
    [156]Ferreira M M C, Brandes M L, Ferreira I M C, et al. Chemometric study of the fluorescence of dental calculus by trilinear decomposition[J]. Applied Spectrosc,1995,49(9):1317
    [157]Wentzell P D, Nair S S, Guy R D. Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane[J]. Analytical Chemistry,2001,73(7):1408-1415.
    [158]Sanchez E, Kowalski BR. Tensorial resolution:a direct trilinear decomposition[J]. Journal of Chemometrics,1990,4(1):29-45.
    [1]ZHOU Tian-yuan, ZHANG Zhu-jun. Antibodyin Human Serum[J]. Chinese Journal of Analytical Chemistry,1996,24(8):877-881.
    [2]GAO Ying-zheng, YONG Xi. The Nature of Aqueous Surfactant Two Phasesand Its Applications:(I) The Microenvironment Properties of Aqueous Surfactant Two Phases [J],Analytica Chimica Acta,1996,54(5),491-504.
    [3]Rietord A, Prognon P, Brion F, et al. Liquid chromatographic determination using lanthanides as time-resolved luminescence probes for drags and Xenobiotics[J]. Advantages and Limitations. Analyst,1997,122(5):59-60.
    [4]陈国珍,黄贤智,郑朱梓等.荧光分析方法[M].北京:科学出版社,1990,第二版.
    [5]Miliani C, Romani A, Favaro G. A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1998,4,581-588.
    [6]Van Bommel M R, Berghe I V, Wallert A M, et al. High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes[J]. Journal of Chromatography A,2007,1,260-272.
    [7]Ling Lian-sheng, He zhi-ke, Chen Fang, et al. Single-Misnatch Detection Using Nucleic Acid Molecular "Light Switch"[J]. Talanta,2003,59(2):269-275.
    [8]Yang Xiao-feng, Guo Xiang-qun, Li Hua. Fluorimetric Determination of Hemoglobin Using Spiro Forms Rhodamine B Hydrazide in a Micellar Medium[J]. Talanta,2003,61(4):439-445.
    [9]Mahgoub Hoda. Spectrophotometric and fluorimetric determination of aztreonam in bulk and dosage Forms[J]. Jourmal of Pharmaceutical and Biomedical Analysis,2003,31(4):767-774.
    [10]Goldberg D E. Genetic Algorithms in Search:Optimization and Machine Learning, Addison-Wesley Reading, MA,1989.
    [11]Arcos M J, Ortiz M C, Villahoz B, Sarabia L A. Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture[J]. Analytica Chimica Acta,1997,339:63-77.
    [12]Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection[J]. Journal of Chemometrics,1992,6:267-281.
    [13]Leardi R, Gonzales A L. Genetic algorithms applied to feature selection in how and when to use them[J]. Chemometrics and Intelligent Laboratory System,1998,41:195-207.
    [14]刘立平,牛熠.遗传算法综述.东莞理工学院学报.2005,12(3):48-52.
    [15]Statheropoulos M, Pappa A, Karamertzanis P. Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA)[J]. Analytica Chimica Acta,1999,401:35-43.
    [16]Yu R Q. Introduction to Chemometrics[M], Hunan Eduction Publishing House, Changsha, China, 1991.
    [17]仲红波.小波变换、神经网络和遗传算法及其结合用于化学信号处理[D].中国科学院研究生院博士学位论文,2002,3.
    [18]Massart D L, Vandeginste B G M, Deming S M, et al. In:Chemometrics:A Textbook, Elsevier, Amsterdam,1988.
    [19]Specht D F, A general regression neural networks, IEEE Trans, Neural Networks,1991,26:568.
    [20]Younes C, Suranjan P, Leonard F. A generalized regression neural network and its application for leaf wetness prediction to forecast plants disease[J]. Chemometrics and Intelligent Laboratory System,1999,48:47-58.
    [21]Osmak s, Gosak D, Glasnovic A. Dynamic mathematical model of deep bed filtration Process[J]. Computer&Chemical Engineering,21:763-768.
    [22]王煜,刘世庆,马恩龙等.偏最小二乘法-BP神经网络用于多组分药物测定分析试验室[J],2000,19(4):34-36.
    [23]Arcos M J, Ortiz M C, Villahoz B, et al. Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture[J]. Analytica Chimica Acta,1997,339:63-77.
    [1]CUI Hua, HE Cai-xia, ZHAO Gui-wen. Determination of polyphe-nols by high-performance liquid chromatography with inhibited chemiluminescence detection [J]. Chromatogr A,1999,855:171-179.
    [2]MOLDOVEANU S C, Kiser M. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke [J]. Journal of Chromatography A,1141,90-97.
    [3]黄少鹏,徐金瑞,王琼.薄层色谱法同时测定邻苯二酚、间苯二酚和对苯二酚异构体[J].分析化学,1999,27(3):331-333.HUANG Shaopeng, XU Jinrui, WANG Qiong. Simultaneous Determination of o-, m-,p-Dihydroxybenzene Isomer by Thin-Layer Chromatography[J]. Chinese Journal of Analytical Chemistry,1999,27(3):331-333.
    [4]耿玉珍,刘葵,刘连伟.吸光度比值导数法同时测定苯酚、邻苯二酚和对苯二酚[]].分析化学,1997,25(9):1024-1210.GENG Yuzhen, LIU Kui, LIU Lianwei. Simultaneous determination of phenol, catechol and hydroquinone by absorbance ratio derivative method[J]. Chinese Journal of Analytical,1997,25(9):1024-1210.
    [5]LI Shifeng, LI Xiangzhi, XU Jing, et al. Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system[J]. Talanta,2008,75:32-37.
    [6]SUN Yugang, CUI Hua, LI YingHui, LIN Xiangqin, Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method[J]. Talanta,2000,53:661-666.
    [7]PISTONESI M F, DINEZIO M S, CENTURION M E, et al. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares(PLS)[J]. Talanta,2006,69(5):1265-1268.
    [8]陈义.毛细管电泳技术及应用[M].北京:化学工业出版社.2000:1.
    [9]张裕平,熊辉,袁倬斌.硝基苯类化合物的高效毛细管电泳的分离测定[J].分析化学,2001.29(12):1481.ZHANG Yuping, XIONG Hui, YUAN Yibin. Determination of nitrobenzene compounds by high performance capillary electrophoresis[J]. Chinese Journal of Analytical,2001.29(12):1481.
    [10]刘学良,王进防,王俊德,商振华,Hartmut F毛细管区带电泳法快速分离硝基酚和除草剂[J],色谱,2001,19(2):173-175.Liu Xueliang, Wang Jinfang, Wang Junde, Shang Zhenhua, Hartmut FRANK. Sensitive and Rapid Analysis of Nitrophenols and Herbicides by Capillary Zone Electrophoresis (CZE)[J].Chinese Journal of Chromatography,2001,19(2):173-175.
    [11]刘学良,王进防,王俊德,商振华.毛细管电泳中获得稳定电渗流的毛细管预处理方法[J].分析化学,2000,28(9):1110-1113.Liu Xueliang, Wang Jinfang, Wang Junde, Shang Zhenhua. A Procedure for Obtaining Reproducible Results in Capillary Electrophoresis [J]. Chinese Journal of Analytical,2000,28(9):1110-1113.
    [12]Shao Xue-guang, CHEN Zonghai, LIN Xiangqin. Resolution of multicomponent overlapping chromatogram using an immune algorithm and genetic algorithm[J]. Chemometricsand Intelligent Laboratory Systems,2000,50:91-99.
    [13]ARCOS M J, ORTIZ M C, VILLAHOZ B, et al. Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture.[J]. Anal. Chim. Acta,1997,339:63-77.
    [14]DAVID V, SANCHEZ A. Searching for a solution to the automatic RBF network design problem[J]. Neurocomputing,2002,421(4):147-170.
    [15]SEASHOLTZ M B, KOWALSKI B R. The parsimony principle applied to multivariate calibration[J]. Anal. Chim. Acta,1993,277:165-177.
    [16]LIVINGSTON D J, MANALLACK D T. Statistics using neural networks:chance effects[J]. Med. Chem.1993,36,1295-1297.
    [17]BROADHURST D, ROWLAND J J, KELL D B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry[J]. Anal. Chim. Acta,1997,348:71-86.
    [1]Hao Y, Cai W S, Shao X G. Spectrochimica Acta, Part A,2009,72(1):115.
    [2]Ni Y N, Wang Y, Kokot S. Talanta,2009,78(4):432.
    [3]陆晓华.化学计量学[M].武汉:华中理工大学出版社,1997.57.
    [4]ZHANG Xiu-qi, LIU Hui, ZHANG Jian-bin, et al. Progressing Chemistry,2002,14(5):174.
    [5]李冶,李庆凯,周志恒.吉林大学学报:信息科学版,2002,20(4):9.
    [6]赵南京,刘文清,崔志成.光谱学与光谱分析,2006,26(5):922.
    [7]史永刚,冯新泸,李子存.化学计量学[M],北京;中国石化出版社,2003.127.
    [8]Jeasonne M S, Foley J P, J. Chromatogr. A,1989,461:149.
    [9]卢佩章,戴朝政,张祥民.色谱理论基础[M],北京:科学出版社,1997.45.
    [10]陆俊,高淑梅,熊婕,等.激光技术,2010,34(1):45.
    [11]爱登高娃.光谱学与光谱分析,2007,27(8):1615.
    [12]ZHU Xia-shi, GONG Ai-qin, YU Su-hai. Spectrochimica Acta, Part A,2008,69(2):478.
    [13]WU Hao, ZHAO Guo-yan, DU Li-ming. Spectrochimica. Acta, Part A,2010,75(5):1624.
    [14]Nguyen H A, Grellet J, Ba B B, et al. Journal Chromatography B,2004,810(1):77.
    [15]Tasso L, Costa T D. Journal of Pharmaceutical and Biomedical Analysis,2007,44(1):205.
    [16]张玉奎,董礼孚,包绵生,等,分析测试通报,1984,3:16.
    [17]SHAO Xue-guang, CHEN Zong-hai, LIN Xiang-qin. Chemometrics and Intelligent Laboratory Systems,2000,50:91.
    [18]黄贤智,郑朱梓,许金钩等.荧光分析方法[M],北京:科学出版社,1990,201.
    [19]Ocana J A, Barragan F J, Callejon M. Journal of Pharmaceutical and Biomedical Analysis,2005,37(2):327.
    [20]杜煜,郭惠元.国外医药抗生素分册,2001,22(1):34.
    [1]Dalluge, J. J.; Nelson, B. C.; Thomas, J. B.; Sander, L. C. J. Chromatogr. A1998,793,265.
    [2]Physicians for smoke-free Canada,1999, http://www.smoke-free.ca,cited March1999.
    [3]Huo, Zhaohui; Zhou, Yanli; Liu, Qin; He, Xulun; Liang, Yong; Xu, Maotian. Microchim. Acta2011,173(1-2),119.
    [4]Du, Haijun; Ye, Jianshan; Zhang, Jiaqi; Huang, Xiaodan; Yu, Chengzhong. J. Electroanal. Chem.2011,650(2),209.
    [5]Unnikrishnan, Binesh; Ru, Puliang; Chen, Shenming. Sensor. Actuat. B:Chem. Available online3May2012
    [6]CUI Hua, HE CaiXia, ZHAO Gui-Wen. J. Chromatogr. A,1999,855:171-179.
    [7]Huang, Shaopeng; Xu, Jinrui; Wang, Qiong. Chin. J. Anal. Chem.1999,27(3),331.
    [8]Asan, A.; Isildak, I. J. Chromatogr. A2003,988,145.
    [9]Moldoveanu, S. C.; Kiser, M. J. Chromatogr. A2007,1141,90.
    [10]Haghighi, Behzad; Dadashvand, Reza. Anal. Bioanal. Chem.2006,384(5),1246.
    [11]LI Shi-Feng, LI Xiang-Zhi, Xu Jing, WEI Xian-Wen. Talanta,2008,75:32-37.
    [12]Geng, Yuzhen; Liu, Kun; Liu, Lianwei. Chin. J. Anal. Chem.1997,25(9),1024.(耿玉珍,刘葵,刘连伟.分析化学1997,25(9),1024.)
    [13]Li, Weifen; Xie, Chenggen; Zong, Jiajia; Zhou, Hankun. Metall. Anal.2009,29(7),31.(李淮芬,谢成根,宗佳佳,周汉坤.冶金分析2009,29(7)31.)
    [14]Pistonesi, M. F.; Di Nezio, M. S.; Centurion, M. E.; Palomeque, M. E.; Lista, A. G; Fernandez Band, B.S. Talanta2006,69,1265.
    [15]Yang, Jidong; Zhang, Shuran; Liu, Shaopu. Acta Chim. Sinica2007,65,2309.(杨季冬,张书然,刘绍璞.化学学报2007,65,2309.)
    [16]Jeasonne, M. S.; Foley, J. P. J. Chromatogr. A1989,461,149.
    [17]Li, Ye; Li, Qingkai; Zhou, Zhiheng. J. Jilin Univ.(Information Science Edition)2002,20(4),9.(李冶,李庆凯,周志恒.吉林大学学报:信息科学2002,20(4),9.)
    [18]Zhang, Y. ukui; Dong, Lifu; Bao, Miansheng; Zhou, Guimin, Lin, Chongjing; Lu, Peizhang. J. Instrum. Anal.1984,3,16.(张玉奎,董礼孚,包绵生,周桂敏,卢佩章.分析测试通报1984,3,16).
    [19]Foley, J. P. Equations for chromatographic peak modeling and calculation of peak area. Anal. Chem.1987,59,1984-1987.
    [20]Holland J H, Ann Arbor:Univ. of Michigan Press,1975.
    [1]仲红波.小波变换、神经网络和遗传算法及其结合用于化学信号处理[D].中国科学院研究生院博士学位论文,2002,P3
    [2]Massart D L, Vandeginste B G M, et al. In:Chemometrics:A Textbook, Elsevier, Amsterdam,1988.
    [3]李华,Bocaz-Beneventi G, Havel J化学计量学方法用于毛细管电泳中未完全分离峰定量解析的研究.计算机与应用化学[J],2002,19:296-297.
    [4]Havel J, Madden J E, Haddad P R. Prediction of retention times for anions in ion chromatography using Artificial Neural Networks [J]. Chromatographia,1999,49:481-488.
    [5]Havlis J, Madden J E, Revilla A L, Havel J J. High-performance liquid chromatographic determination of deoxycytidine monophosphate and methyldeoxycytidine monophosphate for DNA demethylation monitoring:experimental design and artificial neural networks optimization [J]. Journal of Chromatography B,2001,755:185-194.
    [6]Bocaz-Beneventi, R. Latorre, Farkova M, Havel J. Artificial neural networks for quantification in unresolved capillary electrophoresis peaks[J]. Analytica Chimica Acta,2002,45:247-263.
    [7]Dohnal V, Li H, Farkova M, et al. Quantitative analysis of chiral compounds from unresolved peaks in capillary electrophoresis using multivariate calibration with experimental design and artificial neural networks[J]. Chirality,2002,14:509-518.
    [8]马晓旻.电泳峰中相关因素对人工神经网络分析的影响.安徽农业科学[J],2010,38(11),6028-6026.
    [9]Specht, Donald F. A general regression neural networks[J]. Neural Networks, IEEE Transactions on,1991,26:568-576.
    [10]Younes C, Suranjan P, Leonard F. A generalized regression neural network and its application for leaf wetness prediction to forecast plants disease [J]. Chemometrics and Intelligent Laboratory System,1999,48,47-58.
    [11]Osmak s, Gosak D, Glasnovic A. Dynamic mathematical model of deep bed filtration Process[J]. Computer&Chemical Engineering,21:763-768.
    [12]王煜,刘世庆,马恩龙等.偏最小二乘法-BP神经网络用于多组分药物测定[J].分析实验室,2000,19(4):34-36.
    [13]Shao X G, Chen Z H, Lin X Q. Resolution of multicomponent overlapping chromatogram using an immune algorithm and genetic algorithm[J]. Chemometrics and Intelligent Laboratory Systems,2000,50:91-99.
    [14]Courtois S, Phan-Tan-Luu R. Neural networks applied to the choice of an optimal experimental design[J]. Analysis,1998,26:304.
    [1]Liang Y Z. White grey and black multicomponents systems and their chemometric algorithm, changsha: pulishing house of science and technology.1996:60.
    [2]Massart D L, Vandeginste B G M, Doming S M, et al. In Chemometrics:A Textbook, Elsevier, Amsterdam,1988.
    [3]Tetko I V, Luik A I, Poda G I. Applications of neural networks in structure-activity relationships of a small number of molecules [J]. Journal of Medicinal Chemistry,1993,36:811-814.
    [4]Seasholtz M B, Kowalski B R. The parsimony principle applied to multivariate calibration[J]. Analytica Chimica Acta,1993,277:165-177.
    [5]Livingstone D J, Manallack D T. Statistics using neural networks:chance effects[J]. Journal of Medicinal Chemistry,1993,36,1295-1297.
    [6]Broadhurst D, Rowland J J, Kell D B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry[J]. Analytica Chimica Acta,1997,348:71-86.
    [7]Khayamian T, Ensafi A A, Atabati M. Extending the dynamic range of the determination of copper by adsorption differential pulse stripping method using a principal component artificial neural network[J]. Microchemical Journal,2000,65:347-351.
    [8]Kompany-Zareh M, Massoumi A, Pezeshk-Zadeh S. Simultaneous spectrophotometric determination of Fe and Ni with xylenol orange using principal component analysis and artificial neural networks in some industrial samples[J]. Talanta,1999,48:283-292.
    [9]Zhang Y X, Li H, Hou AX, et al. Artificial neural networks based on genetic input selection for quantification in overlapped capillary electrophoresis peaks[J]. Talanta,2005,65:118-128.
    [10]David V, Sanchez A. Searching for a solution to the automatic RBF network design problem[J]. Neurocomputing,2002,421:147-170.
    [11]Shao X G, Chen Z H, Lin X Q. Resolution of multicomponent overlapping chromatogram using an immune algorithm and genetic algorithm [J]. Chemometrics and Intelligent Laboratory Systems,2000,50:91-99.
    [12]Arcos M J, Ortiz M C, Villahoz B, et al. Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture[J]. Analytica Chimica Acta,1997,339:63-77.
    [13]Li Y, Li Q K, Zhou Z H. Application of gauss curve fitting in single-channel sequential scanning ICP-AES[J]. Journal of Jilin University (Information Science Edition),2002,20:9-17.
    [14]Zhao N J, Liu W Q, Cui Z C. Analysis of the characters of organic matter in water using spectral fluorescence signature and fitting gaussian[J]. Spectroscopy and Spectral Analysis,2006,26:922-924.
    [15]Foley J P. Systematic errors in the measurement of peak area and peak height for overlapping Peaks[J]. Journal of Chromatography A,1987,384:301-313.
    [16]Courtois S, Phan-Tan-Luu R. Neural networks applied to the choice of an optimal experimental design. Analysis,1998,26:304-310.
    [1]Rahman N, Ahmad Y, Azmi S N H. Kinetic spectrophotometric method fOr the determination of norfloxacin in pharmaceutical formulations[J]. EuropeanJournal of Pharmaceutics and Biopharmaceutics,2004,57(2):359-367.
    [2]Amin A S, El-Sayed G O, Issa Y M. Utility of certain n-acceptors for the spectrophotometric determination of norfloxaeinl[J]. Analyst,1995,20:1189-1193
    [3]Veiopoulou C J, Ioannou P C, Lianidou E S. Application of terbium sensitized fluorescence for the determination of fluoroquinolone antibiotics pefloxacin, ciprofloxacin and norfloxacin in serum [J]. Pharmaceutical and Biomedical Analysis,1997,15(12):1839-1844.
    [4]Vilchez J L, Ballesteros O, Taoufiki, et al. Determination of the antibacterial norfloxacin in human urine and serum samples by solid—phase spectrofluorimetry[J]. Analytica Chimica Acta,2001,444(2):279-286.
    [5]SHEN J Y, KIM M R, LEE C J, et al. Supercritical fluid extraction of the fluoroquinotones norfloxacin and ofloxacin orally treated-chicken breast muscles[J]. Analytica Chimica Acta,2004,513(2):451-455.
    [6]Zendelovska D, Stafilov T. Razvoj i validacija metode za odredivanje ofloksacija i lomeflokascinau humanoj plazmi pomocu visokoefikasne tecne hromatografije. Journal of the Serbian Chemical Society,2005,70(12):1451-1461.
    [7]Lee H B, Peart T E, Svoboda M L. Determination of ofloxacin, norfloxacin and extraction, liquid chromatography fluorescence detection and liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A,2007,1139(1):1139:45-52.
    [8]Farhan A S, Saeed A M, Sultana N, et al. Quantitative determination of fluoroquinolonic antibiotics: Pefloxacin, Norfloxacin, Ciprofloxacin and Ofloxacin in pharmaceutical preparations and human serum by high-performance liquid chromatography using multi-wavelength calibration technique [J]. Chemical Analysis,2009,54(6):1465-1485.
    [9]Dagostino P A, Hancock J R。Provost L R. Rapid Communication of Mass Spectrum,1995,9(11):1038.
    [10]Mot A C, Soponar F, Medvedovici A, et al. Simultaneous spectrophotometric determination of aspirin, paracetamol, caffeine, and chlorphenamine from pharmaceutical formulations using multivariate regression methods[J]. Analytical Letters,2010,43(5):804-813.
    [11]Hao Y, Cai W S, Shao X G. Spectrochim. A strategy for enhancing the quantitative determination ability of the diffuse reflectance near-infrared spectroscopy[J]. Spectrochimica Acta, Part A,2009,72(1):115-119.
    [12]Ni Y N, Wang Y, Kokot S. Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics[J]. Talanta,2009,78(4):432.
    [13]陆晓华.化学计量学[M].武汉:华中理工大学出版社,1997:57.
    [14]张秀琦,刘辉,郑建斌等.信号处理技术在重叠化学信号解析中的应用[J].化学进展,2002,14(03):174.
    [15]Statheropoulos M, Pappa A, Karamertzanis P, et al. Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA), Analytica Chimica Acta,1999,401:35-43.
    [16]Yu R Q. Introduction to Chemometrics[M]. Hunan EductionPublishing House, Changsha, China,1991.
    [17]Arcos M J, Ortiz M C, Villahoz B, Sarabia L. A Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture[J]. Analytica Chimica Acta,1997,339:63-77.
    [1]朱尔一等.化学计量学技术及应用[M].北京:科学出版社,2001,81-82.
    [2]Vandeginste B G M, Massart D L, Buydens L M C, et al. Handbook of Chemometrics and Quali-metrics: Part B, Elsevier, Amsterdam,1998,34.
    [3]仲红波.小波变换、神经网络和遗传算法及其结合用于化学信号处理[D].中国科学院研究生院博士学位论文,2002:3.
    [4]Seasholtz M B, Kowalski B R. The parsimony principle applied to multivariate calibration[J]. Analytica Chimica Acta,1993,277:165-177.
    [5]Livingstone D J, Manallack D T. Statistics using neural networks:chance effects[J]. Journal of Medicinal Chemistry,1993,36,1295-1297.
    [6]Broadhurst D, Rowland J J, Kell D B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry[J]. Analytica Chimica Acta,1997,348:71-86.
    [7]Zhang Y X. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis[J]. Talanta,2007,73:68-75.
    [8]Zhang Y X, Li H, Hou A X, et al. Artificial neural networks based on genetic input selection for quantificationin overlapped capillary electrophoresispeaks[J]. Talanta,2005,65:118-128.
    [9]张婧.基于遗传算法-偏最小二乘法的红外光谱特征提取解析烯烃共轭类型[D].2007.7.
    [10]Statheropoulos M, Pappa A, Karamertzanis P, et al. Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA), Analytica Chimica Acta,1999,401:35-43.
    [11]Yu R Q. Introduction to Chemometrics, Hunan Eduction Publishing House, Changsha, China,1991
    [12]Arcos M J, Ortiz M C, Villahoz B, et al. A Genetic-algorithm-based wavelength selection in multicomponent spectrometric determinations by PLS:application on indomethacin and acemethacin mixture[J]. Analytica ChimicaActa,1997,339:63-77.
    [13]Tetko I V, Luik A I, Poda G I, et al. Applications of neural networks in structure activity relationships of a small number of molecules[J]. Chemistry,1993,36:811-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700