用户名: 密码: 验证码:
小麦种质资源对酸和铝的耐性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性土壤是指表土pH<5.5的土壤,红壤、黄壤以及红黄壤等土壤属于酸性土壤。这是自然形成的酸性土壤。另一方面,随着环境变化,酸雨(pH<5.6)问题变得更加突出和严重,导致土壤酸化面积增大。铝是地球上最丰富的元素之一,在酸性pH条件下,结合态的铝极易形成游离态的高活性铝并对作物致毒,而在非酸性土壤中则不易发生。因此,在酸性土壤中种植作物会遇到一个不可回避的现实,那就是极易发生铝毒害而生长受挫并最终导致产量损失。如何在这些“问题土壤”中提高作物产量是一项值得重点研究的问题。我国南方一直受此问题困绕,红壤和黄壤是我国南方热带、亚热带地区重要的土壤资源,主要分布在长江以南的云南、贵州等省的大部份以及四川、西藏、湖北、安徽和江苏等五省区南面。同时,中国南方也是酸雨危害最严重的地区,包括长江以南的四川盆地、贵州、湖南以及福建、广东等省,是仅次于欧洲和北美的世界第三大酸雨区。在西南小麦区,丘陵山地多、复杂的地理、气候因素、日照时数少、病虫害发生频繁而严重,更是加大了小麦育种的难度。我国南方小麦耐铝遗传育种一直以来都没有引起足够的重视。在这种现状下,本文对小麦种质资源对酸和铝的耐性进行了评价,主要结果如下:
     1.设置了pH7.00(中性)、pH4.50(酸性)和pH4.50+50μM/L Al~(3+)(酸性含铝)的水培营养液处理了四川的45份主栽小麦品种、53份地方品种和26份育成品系,以期望了解它们在耐酸和耐铝方面的差异。结果显示,再生根伸长量在三种类型的小麦中均存在较大的变异,但都以中性pH7.00处理最长,酸性pH4.50处理居中,酸性pH4.50含铝处理最短。除育成品系在pH7.00和pH4.50处理下的差异不显著外,3种处理下再生根伸长量间的差异都达到显著或极显著水平。在pH7.00,pH4.50以及pH4.50含铝处理下的再生根伸长量,主栽小麦分别是7.93,7.59和5.83cm;地方品种分别是7.26,6.82和4.92cm;育成品系分别是8.01,7.84和5.57cm;三种类型的小麦在耐酸指数上也存在较大的遗传变异,但都在0.80以上,耐酸能力总体较强。主栽小麦耐酸指数变异范围为0.82-1.29,平均值为0.96,耐酸指数≥1.00的主栽小麦有12份(26.67%);地方品种耐酸指数变异范围为0.93-1.24,平均值为1.05。耐酸指数≥1.00的地方小麦有38份(71.70%);育成品系耐酸指数变异范围为0.83-1.15,平均值为0.98,耐酸指数≥1.00的育成品系有12份(46.15%);三种类型的小麦在耐铝指数上也存在较大的遗传变异。主栽小麦耐铝指数变异范围为0.55-1.00,平均值为0.78,有12份(26.67%)主栽小麦的耐铝程度与中国春接近或更强。其中,国审品种的耐铝能力较强;地方品种耐铝指数变异范围为0.50-1.03,平均值为0.73。有9份(16.98%)地方品种的耐铝程度与中国春接近或更强;育成品系耐铝指数变异范围为0.50-0.93,平均值为0.72,有5份品系的耐铝程度与中国春接近或更强(19.23%);三种类型的小麦比较,再生根伸长量在pH7.00、pH4.50以及pH4.50含铝处理都是主栽小麦和育成品系间没有显著差异,但极显著大于相应处理条件下地方品种的再生根伸长量;耐酸指数表现为地方品种极显著大于主栽品种和育成品系,而主栽品种和育成品系间差异不显著;耐铝指数表现为主栽品种显著大于地方品种和育成品系,而地方品种和育成品系间差异不显著;三种类型的小麦均是耐酸指数显著大于耐铝指数;从中筛选到了成都光头、射洪青冈麦、川育16和川麦32等耐铝小麦可供耐铝育种使用。
     2.设置了pH7.00,pH4.50和pH4.50+50μM/L Al~(3+)三种水培营养液处理了155份西藏小麦以评价其耐酸和耐铝性能。再生根伸长量在每种处理下都存在较大的遗传变异。在pH4.50,pH7.00以及pH4.50含铝处理下平均值分别为7.35,7.14和4.41cm。3种处理下的平均再生根伸长量差异极显著;西藏小麦耐酸水平较高,耐酸指数变异范围为0.87-1.25,平均值为1.03,耐酸指数≥1.00的西藏小麦有92份(59.35%);西藏小麦耐铝指数变异范围为0.38-1.01,平均值为0.61,但总体耐铝能力较差,可筛选到7份材料(4.51%)的耐铝指标与中国春接近或更强;发现Asl543和Asl242的耐铝性能优于耐铝抗源中国春。
     3.设置了pH7.00,pH4.50和pH4.50+50μM/L Al~(3+)三种水培营养液处理了野生二粒小麦、栽培二粒小麦、圆锥小麦、硬粒小麦、波斯小麦以及波兰小麦6个四倍体小麦亚种共计254份材料,以期评价四倍体小麦亚种的耐酸和耐铝性能。再生根伸长量、耐酸和耐铝指数分别在亚种内和亚种间存在较大的遗传变异;四倍体小麦总体耐酸能力较强,平均值在1.00以上,亚种间耐酸排序依次为波兰小麦≥栽培二粒小麦>波斯小麦≥野生二粒小麦≥圆锥小麦≥硬粒小麦;四倍体小麦总体耐铝能力较差,但亚种间存在差异,平均耐铝指数最大的野生二粒小麦(0.70),最小的是栽培二粒小麦(0.40)。亚种间耐铝排序依次为野生二粒小麦≥硬粒小麦>圆锥小麦≥波兰小麦≥波斯小麦>栽培二粒小麦;虽然四倍体小麦总体耐铝能力较差,但一些亚种内仍存在一定比例的耐铝基因型,如野生二粒小麦等,但也有的亚种几乎没有,如栽培二粒小麦;筛选到波斯小麦PI341800和PI94752的耐铝性能优于耐铝抗源中国春。
     4.设置了pH4.50和pH4.50+50μM/L Al~(3+)以及pH4.50+100μM/L Al~(3+)三种水培营养液处理了45份节节麦材料以评价其耐铝性能。再生根伸长量、耐铝指数分别在居群间存在较大的遗传变异。再生根伸长量以pH4.50的最长,pH4.50+100μM/LAl~(3+)的最短,pH4.50+50μM/LAl~(3+)的居中。pH4.50的再生根伸长量变异范围为2.46-5.53 cm,平均值为4.00cm,pH4.50+50μM/LAl~(3+)再生根伸长量变异范围为0.81-1.72cm,平均值为1.24cm。pH4.50+100μM/LAl~(3+)的再生根伸长量变异范围为0.36-1.13cm,平均值为0.67cm。pH4.50+50μM/L Al~(3+)的耐铝指数变异范围为0.18-0.49,平均值为0.33。pH4.50+100μM/L Al~(3+)的耐铝指数变异范围为0.09-0.32,平均值为0.18;节节麦材料在50μM/LAl~(3+)的苏木精染色除As65和As88的染色程度相对较轻,为2级,其余染色均较深,为3级,而中国春的染色程度更轻,为1级;综合耐铝指数以及苏木精染色结果认为所有节节麦都不耐铝,发现耐铝节节麦可能性较小。
     5.设置了pH4.50和pH4.50+50μM/L Al~(3+)处理20份人工合成小麦,以期了解合成六倍体小麦的耐铝能力。再生根伸长量有较大的变异。pH4.50处理的比pH4.50+50μM/L Al~(3+)处理的更长。pH4.50的再生根伸长量变异范围为1.07-5.96cm,平均值为3.12cm,pH4.50+50μM/LAl~(3+)再生根伸长量变异范围为0.39-3.46cm,平均值为1.57cm;人工合成小麦耐铝指数变异范围为0.32-0.79,平均值为0.48。20份合成小麦中,有2份材料的耐铝指数在0.70以上,其余均在0.70以下。人工合成小麦的耐铝能力普遍较差,不及中国春。
When soil pH lower than 5.5,it is defined as acidic soil.Red,yellow,and red and yellow soils are naturally formed acid soils.On the other hand,as the environment changes, acid rain(pH below 5.6) highlight the problem to even more seriously,leading to an increased soil acidification area.Aluminum(Al) is one of the most abundant elements on earth.In the acidic pH conditions,combined aluminum can easily change to freely aluminum ions and finally injure to the roots of the crops.However,when corps cultivated on non-acidic soils it is not easily injured by aluminum toxicity.As a result,when crop are cultivated in acid soils,it will face an unavoidable reality that is prone to aluminum toxicity and the growth of frustration and eventually lead to yield loss.Therefore,it is very crucial to improve the crop yields on acid soil.
     The wheat production in South China has been plagued by this issue.Red and yellow soil are the major soil types for South China tropical and subtropical regions,mainly in the south of the Yangtze River,Yunnan and Guizhou provinces as well as south of Sichuan, Tibet,Hubei,Anhui and Jiangsu provinces.At the same time,China Southern is also against the most serious acid rain areas,including the Yangtze River to the south of the Sichuan Basin,Guizhou,Hunan and Fujian and Guangdong provinces,is second only to North America,Europe and the world's third largest acid rain area.In the southwest of wheat area,complex geography,climate,combined with less sunshine,serious pests and diseases,lead to wheat breeding being difficult task.Attention has never been paid to the wheat genetic studies on Al tolerance in southern China.Thus,in this study,we evaluated the wheat germplasms for Al-tolerance.The main results were as follows:
     1.In order to compare the differences in acid and aluminum tolerance among Sichuan wheats,three types of nutrient culture solutions,pH7.00 culture solutions(neutral),pH4.50 culture solution(acid) and pH4.50 +50μM/L Al~(3+) culture solutions(aluminum cintained acid),were used to treat 45 Sichuan wheat cultivars,53 landraces,as well as 26 local breeding lines.Higher variations were observed in the root regenerate length(RRL) in each of three groups of Sichuan wheats,and the tendency was similiar in three groups of Sichuan wheats.The mean RRL in the neutral pH7.00 culture solution was the longest, whereas that of the aluminum contained pH4.50 culture solution was the shortest.The RRLs among treatments were significantly different or different from each other except for there was no diffferance in pH7.00 and pH4.50 treatment in local breeding lines.In pH7.00, pH4.50 and aluminum contained pH4.50,the mean RRLs among Sichuan wheat cultivar were 7.93,7.59 and 5.83cm,respectively,and the mean RRLs were 7.26,6.82 and 4.92cm for wheat landraces and were 8.01,7.84 and 5.57cm for local breeding lines,respectively. Higher variations were also observed in acid tolerance index.Among Sichuan wheats,the acid tolerance indexes were higher than 0.80,indicating that Sichuan wheats had the strong capacity of acid tolerance.The acid tolerance index of cultivars varied from 0.82 to 1.29, with an average of 0.96,and 12(26.67%) of them were not less than 1.00.The acid tolerance index of landrances varied from 0.93 to 1.24,with an average of 1.05 and 38 (71.70%) of them were not less than 1.00.The acid tolerance index of breeding lines varied from 0.83 to 1.15,with an average of 0.98 and 12(46.15%) of them were not less than 1.00. There were rich diversities in Al tolerance index for three groups of Sichuan wheats.The Al-tolerant index of cultivars varied from 0.55 to 1.00,with an average of 0.78,and 12 (26.67%) of them showed much better aluminum tolerance than CS,a known tolerance wheat resource.It is interesting that the wheat cultivars register by country show much better aluminum tolerance than the others.The Al-tolerant index of landraces ranged from 0.50 to 1.03,with an average of 0.73,and 9(16.98%) of them showed the same or superior Al-tolerant as CS.The Al-tolerant index of breed lines varied from 0.50 to 0.93,with an average of 0.72,and 5 lines(19.23%) showed the same or much better aluminum tolerance as CS.When compared the RRLs among the three wheat groups,there was no siginificant difference between wheat cultivars and breeding lines in each of the treatments but both significantly higher than that of the corresponding treatment for wheat tandraces.For acid tolerance index,there was siginificant difference between wheat cultivars and breeding lines,but both were smaller than that of wheat landrances.For Al-tolerance index,there were no difference between Sichuan wheat landraces and breeding lines,but both were smaller than that of the wheat cultivars.When compared the acid tolerance index with aluminum tolerance index,the results were the same as acid tolerance index.In this study, some wheat with good aluminum tolerance,such as Chengduguangtou,Shehongqing-gangmai, Chuanmai No.32 and Chuanyu No.16 were screened out,and could be used in the improvement of wheat aluminum tolerance.
     2.One hounded and fifty-five Tibet wheat landraces were evaluated for acid tolerance and aluminum tolerance using three hydroponic nutrient solutions(i.e.pH7.00 culture solution,pH4.50 culture solution and pH4.50 contained 50μMAl~(3+) culture solution).The RRLs in each of treatment showed rich diversities.The RRLs for treatment pH4.50, pH7.00 and pH4.50 contained solution were different from each other,and were 7.35,7.14 and 4.41 cm,respectively.Tibet wheat had good acid tolerance.The acid tolerance indexes of Tibet wheat varied from 0.87 to 1.25,with an average of 1.03,and the acid tolerance indexes of 92 accessions(59.35%) were higher than 1.00.However,Tibet wheat showed poor aluminum tolerance.The aluminum tolerance indexes of Tibet wheat varied from 0.38 to 1.01,with a mean of 0.61.Only 7 accessions of Tibet wheat(4.51%) had the tolerance index equal to or higher than that of CS.Much better aluminum tolerance was observed in As1543 and As1242.
     3.For comparison the acid tolerance and aluminum tolerance among six tetraploid wheats,three treatment of pH7.00,pH4.50 and pH4.50 plus 50μM/L Al~(3+) hydroponic nutrient solutions were performed on a total of 254 accessions of Triticum turgidum ssp. dicoccoides,T.turgidum ssp.dicoccon,T.turgidum ssp.turgidum,T.turgidum ssp.durum, T.turgidum ssp.carthlicum and T.turgidum ssp.polinicum.The RRLs,acid tolerance index and aluminum tolerance index showed rich diversities either among or within subspecies.The tetraploid wheats showed good acid tolerance with an average of above 1.00 in terms of acid tolerance index.The order for acid tolerance among six subspecies were T.turgidum ssp.polinicum≥T.turgidum ssp.dicoccon> T.turgidum ssp.carthlicum≥T.turgidum ssp.dicoccoides≥T.turgidum ssp.turgidum≥T.turgidum ssp.durum.The tetraploid wheat species showed poor aluminum tolerance.However,there were great differences in aluminum tolerance among the six tetraploid wheat species.T.turgidum ssp. dicoccoides was the most tolerance specie with an average tolerance,index of 0.70,while T. turgidum ssp.dicoccon was the most sensitive specie with an average tolerance index of 0.40.The order of aluminum tolerance for tetraploid wheats were Triticum turgidum ssp. dicoccoides≥T.turgidum ssp.durum>T.turgidum ssp.turgidum≥T.turgidum ssp. polinicum≥T.turgidum ssp.carthlicum>T,turgidum ssp.dicoccon.Thought tetraploid wheats showed poor aluminum tolerance,some tolerance genotypes could be screened out. In this study,two T.turgidum ssp.carthlicum accessions(i.e.PI341800 and PI94752) with the Al-tolerance superior to Chinese Spring were found.
     4.Forty-five accessions of Aegilops tauschii were evaluated for aluminum tolerance using three treatments of pH4.50,pH4.50 plus 50μM/L Al~(3+),as well as pH4.50 plus100μM/L Al~(3+) hydroponic nutrient solutions.There were abundant variations in RRLs and Al tolerance index among the Ae.tauschii accessions.The RRLs at pH4.50 were the longest, while those in pH4.50 plus100μM/L Al~(3+) were the shortest.The RRLs at pH4.50 varied from 2.46 to 5.53 cm,with an average of 4.00cm.The RRLs at pH4.50 plus 50μM/L Al~(3+) varied from 0.81 to 1.72cm,with an average of 1.24cm.The RRLs at pH4.50 plus 100μM/L Al~(3+) varied from 0.36 to 1.13cm,with an average of 0.67cm.The aluminum tolerance indexes at pH4.50 plus 50μM/L Al~(3+) varied from 0.18 to 0.49,with an average of 0.33,while those at pH4.50 plus100μM/L Al~(3+) varied from 0.09 to 0.32,with an average of 0.18.When stained with hematoxylin at 50M/LAl~(3+),all of the accesions,except for As65 and As88 stained light as scale 2,were all stained heavy as scale 3,while CS stained much lighter than all of them with scale 1.Combined with hematoxylin staining and aluminum tolerance index,it was suggested that all of the Aegilops tauschii accessions were aluminum sensitive.
     5.Twenty synthetic wheat lines were evaluated for aluminum tolerance using pH4.50 and pH4.50 plus 50μM/L Al~(3+) hydroponic nutrient solutions.The result indicated that RRLs in each of the treatment showed higher diversity.The RRLs in pH4.50 varied from 1.07 to 5.96cm,with an average of 3.12cm,while those in pH4.50 +50μM/L Al~(3+) varied from 0.39 to 3.46cm,with an average of 1.57cm.The aluminum tolerance index of synthetic wheat varied from 0.32 to 0.79,with an average of 0.48.The aluminum tolerance indexes of 2 synthetic wheat lines were larger than 0.70,while the aluminum tolerance indexes of the remaining lines were below 0.70.These results suggested that the synthetic wheat had poor aluminum tolerance than tolerance common wheat cultivar CS.
引文
(1). Arraiano Ls, Worland AJ, Ellerbrook C, Brown JKM. Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat 'synthetic 6x'. Theoretical and Applied Genetics. 2001, 103: 758-764.
    (2). Ahmaidi H, Moore K. Inheritance and chromosomal location of powdery mildew resistance gene in wild wheat Triticum turgidum var. dicoccoides. Plant pathology Journal. 2007, 6(2): 164-168
    (3). Alva AK, Asher CJ, Edwards DG. The role of calcium in alleviating aluminum toxicity. Australian Journal of Agricultural Research. 1986, 37: 375-382
    (4). Aniol A. Chromosomal location of aluminum tolerance genes in rye. Plant Breeding. 2004, 123:132-136
    (5). Aniol A. Gentics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant and Soil. 1990,123:223-227
    (6). Aniol A. Gustafson JP. Chromosomal location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics Cytology. 1984, 26: 701-705
    (7). Aniol AM. Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of the wheat ( Triticum aestivum L.) genome. Theoretical and Applied Genetics. 1995,91:510-516
    (8). Asins MJ, Carbonell EA. Distribution of genetic variability in a durum wheat world collection. Theoretical and Applied Genetics. 1989, 77: 287-294
    (9). Assefa S, Fehrmann H. Resistance to wheat leaf rust in Aegilops tauschii Cosson and inheritance of resistance in hexaploid wheat.Genetic Resources and Crop Evolution. 2000, 47: 135-140
    (10). Avivi L. High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn C. In: Ramanujam S(ed). Proceeding of the 5th International Wheat Genetic Symposium. Voll. New Delhi, India. 1979, pp. 372-380
    (11). Bache BW, Sharp GS. Soluble polymeric hydroxy aluminum ions in acid soil, Journal of Soil Science. 1976,27: 167-174
    (12). Barashkova EA. Role of the D genome in increasing the frost resistance of winter wheat. Referativnyi Zhurnal, 1981, 2: 65-124
    (13). Basu U, Good AG, Aung T, Slaski J, Basu A, Briggs KG, Taylor GJ. A 23-KD root exudates polypetide co-segregates with aluminum resistance in Triticum aestivum. Physiologia Plantarum. 1999, 106:53-61
    (14). Belay G, Fuluta Y. Zymogram pattern of α-amylase isozymes in Etiopian tetraploid wheat landraces: insight into their evolutionary history and evidence of geneflow. Genetic Resource and Crop Evolution. 2001, 48: 507-512
    (15). Blanco A, Bellomo MP, Cenci A, Giovanni DC, D'Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA. A genetic linkage map of durum wheat. Theoretical and Applied Genetics. 1998, 97: 721-728
    (16). Blanco A, Simeone R, Gadaleta A. Detection of QTLs for grain protein content in durum wheat. Theoretical and Applied Genetics. 2006, 112: 1195-1204
    (17). Blaneo IA, Rajaraln s, Kronstad WE, Reynolds MP. Physiological performance of synthetic hexaploid wheat derived populations. Crop seienee. 2000, 40: 1257-1263
    (18). Boland NS, Hedley MJ, White RE. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant and soil. 1991, 134: 53-63
    (19). Bomer A, Schumann E, Fiite A, C5ster H, Leithold R, Roder Ms, Weber WE. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 2002, 105: 921-936
    (20). Borlaug NE, Dowswell CR. The acid lands: One of agriculture's last frontiers. In: Plant-Soil Interactions at Low pH. Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds.). Brazilian Soil Science Society. 1997. pp5-15
    (21). Bouktila D, Mezghani M, Marrakchi M, Makni H. Characterization of wheat random amplified polymorphic DNA markers associated with HI1 Hessian fly resistane gene. Journal of Integrative Plant Biology. 2006, 48: 958-964
    (22). Branlard G, Autran JC, Monneveux P. High molecular weight glutenin subunit in durum wheat (T. durum). Theoretical and Applied Genetics. 1989, 78: 353-358
    (23). Brooks SA, See DR, Brown-Guedira G. SNP-based imporvement of a microsatellite marker assoeiated with Karnal Bunt resistance in wheat. Crop seienee. 2006, 46: 1467-1470
    (24). Cakmak I, Cakmak O, Eker S, Ozdemir A, Watanabe N, Braun HJ. Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Recent Progress in Plant Nutrition 1999, 215: 203-209
    (25). Calderiin D, Orti-Monasterio I. Are synthetic hexaploids a means of incereasing grain element concentrations in wheat. Euphytica, 2003, 134: 169-178
    (26). Canaado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borem A, Lopes MA. Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize(Zea mays L.). Theoretical and Applied Genetics. 1999, 99: 747-754
    (27). Cantrell RG, Joppa LR. Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Science. 1991, 31: 645-649
    (28). Carlos EOC, Augusto TN, Antonio WPFF, Joǎo CF. Genetic control of aluminum tolerance in mutant lines of the wheat cultivar Anahuac. Euphytica. 2000, 114: 47-53
    (29). Cassidy BG, Dvorak J. Molecular characterization of a low molecular weight glutenin cDNA clone from Triticum durum. Theoretical and Applied Genetics. 1991, 81: 653-660
    (30). Caver BF, Ownby JD. Acid soil tolerance in wheat. Advances in Agronomy. 1995, 54: 117-173
    (31). Chaleff RS. Genetics of higher plants: applications of cell culture. Cambridge University Press, Cambridge, 1981, pp.184
    (32). Chee PW, Elias EM, Anderson JA, Kianian SF. Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoidesin an adapted durum wheat background. Crop Science. 2001,41:295-301
    (33). Chen QF,Yen C, Yang JL. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat and inheritance studies on type of disarticulation. Genetic Resourse and Crop Evolution. 1998, 45: 407-410
    (34). Cheour F, Comeau A, Asselin A.Genetic variation for tolerance or resistance to barley yellow dwarf virus in durum wheat. Euphytica. 1989, 40: 213-220
    (35). Cherdouh A, KheliFl D, Carrillo JM, Nieto-Taladriz MT. The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. Plant Breeding. 2005, 124: 338-342
    (36). Ciaffi M, Lafiandra D, Porceddu E, Benedettelli S. Storage-protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theoretical and Applied Genetics. 1993, 86: 474-480
    (37). Cie(?)li(?)ski G, VanRees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM. Low molecular weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil. 1998,203: 109-117
    (38). Clark RB, Pier HA, Knudsen D, Maranville JW. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. Journal of Plant Nutrition. 1981, 3: 257-374
    (39). Codianni P, Ronga G, Di Fonzo N, Troccoli A. Performance of selected strains of 'Farro' (Triticum monococcum L., Triticum dicoccum Schübler, Triticum spelta L.) and durum Wheat (Triticum durum Desf. cv. Trinakria) in the difficult flat environment of southern Italy. Journal of Agronomy and Crop Science. 1996, 176(1): 15-21
    (40). Conner AJ and Meredith CP. Large scale selection of aluminum-resistant mutants from plant cell culture: expression and inheritance in seedling. Theoretical and Applied Genetics. 1985, 71:159-165
    (41). Cosic T, Poljak M, Custic M, Rengel Z. Aluminium tolerance of durum wheat germplasm. Euphytica. 1994, 78: 239-243
    (42). Coventry DR, Slattery WJ. Acidification of soil associated with lipins grown in a crop rotation in north-eastern Victoria. Australian Journal of Agricultural Research. 1991, 42: 391-397
    (43). Cox TS, Bockus WW, Gill BS, Sears RG, HarveyTL, Leath S, Brown-Guedira GL. Registrationof KS96WGRC40 hard red winter wheat germplasm resistant to wheat curl mite, stagonospora leaf blotch, and septoria leaf blotch. Crop Science. 1999, 39: 597
    (44). Cox TS, Raupp WJ, Gill BS. Leaf rust- resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Science. 1994, 34: 339-343
    (45). Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE. Resistance to foliar diseases in a collection of Triticum tauschii germplasm. Plant Disease. 1992, 76:1061-1064
    (46). Cox TS, sears RG, Bequette RK, Martin TJ. Germplasm enhancement in winter wheat x Triticum tauschii backcross populations. Crop seienee. 1995, 35: 913-919
    (47). Dall'Agnol M, Bouton JH, Parrott WA. Screening methods to develop Alfalfa germplams tolerant of acid, aluminum toxic soils. Crop Science. 1996, 36: 64-70
    (48). Damania AB, Altunji H, Dhaliwal HS. Evaluation of Aegilops spp. for drought and frost tolerance. Genetic Resources Unit Annual Report 1992, ICARDA, pp. 45-46
    (49). Damania AB, Hakim S, Moualla MY. Evaluation of variation in Triticum dicoccum for wheat improvement in stress environments. Hereditas. 1992, 116: 163-166
    (50). Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R.Control of sodium transport in durum wheat. Plant Physiology. 2005, 137: 807-818,
    (51). de Sousa CAN. Classification of Brazilian wheat cultivars for aluminium toxicity in acid soils. Plant Breeding, 1998, 117:217-221.
    (52). Deborah AS, Mesfin T. Plant improvement for tolerance to aluminum in acid soils-a review, Plant Cell, Tissue and Organ Culture. 2003, 75: 189-207
    (53). Degaonkar AM, Tamhankar SA, Rao VS. Anassessment of cultivated emmer germplasm for gluten proteins polymorphism of gluten proteins in cultivated emmer germplasm. Euphytica. 2005, 145: 49-55
    (54). Delhaize E and Ryan PR. Aluminum toxicity and tolerance in plants. Plant Physiology. 1995, 107:315-321
    (55). Delhaize E, Craig S, Bennet RJ, Jagadish VC, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices. Plant Physiology. 1993a, 103: 685-693
    (56). Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L). II .Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology. 1993b, 103: 695-702
    (57). Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences. 2004, 101: 15249-15254
    (58). Devine TE, Foy CD, Fleming AL, Hanson CH, Campbell TA, McMurtrey JE, Schwartz JW, Development of alfalfa strains with differential tolerance to aluminum toxicity. Plant and Soil, 1976,44:73-79
    (59). Devita P, Riefolo C, Codianni P, Cattivelli L, Fares C. Agronomic and qualitative traits of T. turgidum ssp.dicoccum genotypes cultivated in Italy. Euphytica. 2006, 150:195-205
    (60). Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubziner MM. Flora of cultivated plants. Wheat, vol 1. Kolos, Leningrad. 1979, pp. 1-348
    (61). D'Ovidio R, Tanzarella OA, Porceddu E. Nucleotide sequence of a low-molecular-weight glutenin from Triticum durum. Plant Molecular Biology. 1992, 18: 781-784
    (62). Dyck PL, Kerber RR. Inheritance in hexaploid wheat of adult plant leaf rust resistance derived from Aegilops squarrosa. Candian Journal Genetical Cytology. 1970, 12: 175-180
    (63). Eastwood RF, Lagudah ES, Appel R, Hannah M, Kollmorgen JE. Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Australian Journal of Agricultural Research. 1991, 42: 69-77
    (64). Ellneskog-Staam P, Merker A. Chromosome composition, stability and fertility of alloploids between Triticum turgidum var. carthlicum and Thinopyrum junceiforme. Hereditas. 2002, 136: 59-65
    (65). Ellneskog-Staam P, Merker A. Genome composition, stability and fertility of hexaploid alloploids between Triticum turgidum var. carthlicum and Leymus racernosus. Hereditas. 2001, 134: 79-84
    (66). Eswaran H, Reich P, Beinroth F. Global distribution of soils with acidity. In Plant-Soil Interactions at Low pH. Moniz AC. et al. (eds.). Brazilian Soil Science Society. 1997, pp. 159-164.
    (67). Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSR_S and genomic SSR_S. Euphytica. 2001, 119: 39-43
    (68). Farooq S, Niazi MLK, Iqbal N, Shah TM. Salt tolerance potential of wild resources of the tribe Triticeae. II. Screening of species of genus Aegilops. Plant and Soil. 1989, 119: 255-260
    (69). Feldman M. wheats. In Evolution of crop palnts(Simmonds NW ed.)Lonhmans,london, 1976, pp.120-128
    (70). Flick CE . Isolation of mutants from cell culture. In: Evans DA, sharp WR, Ammirato PV, Yamada Y(eds) Handbook of plant cell culture, voll. Techniques for propagation and breeding Macmillan, New York, 1983, pp.393-441
    (71). Foy CD, Burns GR, Brown JC, Fleming AL. Differential aluminum tolerance of two wheat varieties associated with plant-induced pH changes around their roots. Soil Science Society American. 1965,29: 64-67
    (72). Foy CD, Duke JA, Devine TE. Tolerance of soybean germplasm to an acid tatum subsoil. Journal of Plant Nutrition. 1992, 21: 1301-1325
    (73). Foy CD, Duncan RR., Waskon RM, Miller DR. Tolerance of sorghum genotypes to an acid, aluminum toxic tatum subsoil. Journal of Plant Nutrition. 1993, 16(1): 97-127
    (74). Foy CD, Fleming AL. Aluminum tolerance of two wheat cultivars related to nitrate reductase activities. Journal of Plant Nutrition. 1982, 5: 1313-1333
    (75). Foy CD, Fleming AL. The physiololgy of plant tolerance to excess available alumium and manganese in acid soils. In: Jung GA, Stelly M, Kral DM, Nauseef JH.(eds.), Crop tolerance to suboptimal land conditions. American Society of Agronomy. 1978, pp.301-328
    (76). Foy CD. The physiology of plant adaptation to mental stress, Iowa State Journal of Research. 1983,57:355-391
    (77). Foy CD. Tolerance of barley cultivars to an acid, aluminum toxic subsoil related to mineral element concentrations of their shoots, Journal of Plant Nutrition. 1996a, 19: 1361-1380
    (78). Foy CD. Tolerance of durum wheat lines to an acid, aluminum-toxic sub soil. Journal of Plant Nutrition. 1996b, 19: 1381-1394
    (79). Furlani RR and Clark RB. Screening sorghum for aluminum tolerance in nutrient solution. Agron Journal. 1981, 73: 587-594
    (80). Gallego FJ, Benito C. Genetic control of aluminium tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics. 1997, 95: 393-399
    (81). Gallego FJ, Calles B, Benito C. Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.) Theoretical and Applied Genetics. 1998, 97: 1104-1109
    (82). Galova Z, Michalik I, Knoblochova H, Gregova E. Varaition in HMW glutenin subunits of different species of wheat. Rostlinna VYroba. 2002, 48(1): 15-19
    (83). Galterio G, Codianni P, Giusti AM, Pezzarossa B, Cannella C. Assessment of the agronomic and technological characteristics of Triticum turgidum ssp. dicoccum Schrank and T. spelta L. Nahrung,2003,47(1): 54-59
    (84). Garvin DF, Carver BF. Role of genotypes tolerant of acidity and aluminium toxicity. In: Rengel Z (ed), Handbook of soil acidity, New York USA Marcel Dekker, 2003. pp.387-406.
    (85). Gerechter-Amitai ZK, Stubbs RW. A valuable source of yellow rust resistance in Israeli populations of wild emmer,Triticum dicoccoides Koern. Euphytica. 1970, 19: 12-21
    
    (86). Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F. Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterisation by chromatography and electrophoretic mobility. Journal of Cereal Science. 2001, 33: 39-52
    (87). Gill BS, Raupp WJ. Direct genetic transfer from Aegilops squarrosa L. to hexaploid wheat. Crop science. 1987, 27: 445-450.
    (88). Gill BS. Wilson DL, Raupp WJ, Hatchett JH, Cox TS, Amri S, Sears RG. Registration of KS89WGRC4 hard red winter wheat germ plasm with resistance to Hessian fly, greenbug, and soil- borne mosaic virus. Crop Science, 1991, 31: 246
    (89). Gorham J. Salt tolerance in the Triticeae: K/Na discrimination in Aegilops species. Journal of Experimental Botany. 1990, 41: 615-621
    (90). Gorham J. salt tolerance in the Tritieeae: K/Na discrimination in sythetic hexaploid wheats. Journal of Experiemental Botany. 1990, 41: 623-627
    (91). Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG. Use of Triticum tauschii to improve yieldof wheat in low yielding enviroments. Euphytica. 2002, 23: 241-254
    (92). Grama A, Gerechter-Amitai ZK, Blum A. Wild emmer as donor of genesfor resistance to stripe rust and for high protein content. In: Sakamoto S(ed). Proceeding of the 6th International Wheat Genetic Symposium. Kyoto, Japan. 1983, pp.178-192
    (93). Hart GE. Genetic control of alcohol dehydrogenase isozymes in Triticum dicoccum. Biochemical Genetics. 1969,3(6); 617-625
    (94). Haug A. Molecular aspects of aluminum toxicity. Critical Review in Plant Science. 1983, 1:345-373
    (95). He GY, Rooke L, Steele S, F.Bekes, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA. Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Molecular Breeding. 1999, 5: 377-386
    (96). Hede AR, Skovmand B, Ribaut JM, Gonzale-de-leon D, St(?)1en O. Evaluation of aluminum tolerance in a spring rye collection by hydroponic screening. Plant Breeding. 2002, 121: 241-248
    (97). Hiebert CW, ·Thomas JB, Somers DJ. ·Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theoretical and Applied Genetics. 2007, 115(6): 877-884
    (98). Hollenhorst MM, Joppa LR. Chromosomal location of genes for resistance to greenbug in 'Largo' and 'Amigo' wheats. Crop science. 1983,23: 91-93
    (99). Hsam SLK, Kieffer R, Zeller FJ. Significance of Aegilops tauschii glutenin genes on bread making properties of wheat. Cereal Chemistry. 2001, 78: 521-525
    (100). Huang XQ, Coster H, Ganal MW, R(o|¨)der Ms. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat(Triticum aestivum L.). Theoretical and Applied Genetics. 2003, 106: 1379-1389
    (101). Huang XQ, Kempf H, Ganal MW. Roder Ms. Advanced backcross QTL analysis in progenies derived from a cross between a Geman elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theoretical and Applied Genetics. 2004, 109: 933-943
    (102). Innes RL, Korber ER. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome, 1994, 37:813-822
    (103). J(?)rgensen JH, Jensen CJ. Genes for resistance to wheat powdery mildew in derivatives of Triticum timopheevi and T. carthlicum. Euphytica. 1972,21: 121-138
    (104). Jaaska V. Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat.In:DamaniaAB(ed): Biodiversity and wheat improvement. ICARDA, Wiley-Sayce Publication press. 1995, pp.247-257
    (105). Jain S K, Qualset CO, Bhatt G M. Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Sciences. 1975, 15: 700-704
    (106). Jantasuriyarat C, Vales ML, Watson CJW, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat(Triticum aestivum L.). Theoretical and Applied Genetics. 2004, 108: 261-273
    (107). Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica. 2008, 159: 385-390
    (108). Johnson JP, Carver BF, Baligar VC. Expression of aluminum tolerance transferred from Atls66 to hard winter wheat. Crop Science. 1997, 37: 103-108
    (109). Joppa LR, Cantrell RG. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Science. 1990, 30:1059-1064
    (110). Joppa LR, Du C, Hart GE, Hareland GA. Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Science. 1997,37:1586-1589
    (111). Kamprath EJ, Foy CD. Lime-fertilizer-plant interactions in acid soils. In: Englestad O (ed), Fertilizer technology and use. 3rd edition. Soil Science Society of America, Madison, Wisconsin, USA. 1985
    (112). Kema GH, Lange W, silfout CH. Differential suppression of strip rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. PhytoPathology. 1995, 85: 425-429
    (113). Kerber ER, Dyck LP. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal Genetic Cytology. 1969, 11: 639-647
    (114). Kerber ER, Rowland G. New cytogenetic evidence on the origin of free-threshing character in hexaploid wheat. Canadian Journal of Genetics and Cytology. 1972; 14: 730-731
    (115). Kerven GL, Asher CJ, Edwards DG, Ostatek-Boczynski Z Sterile solution culture techniques for aluminum studies involing organic acids. Journal of Plant Nutrition. 1991, 14: 975-985
    (116). Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J. Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Science. 2000, 40:518-524
    (117). Khan K, Frohberg R, Olson T, Huckle L. Inheritance of gluten protein components of high protein hard red spring wheat lines derived from Triticum turgidum var. dicoccoides. Cereal Chemistry. 1989, 66: 397-401
    (118). Khatiwada SP, Senadhira D, Carpena AL, Zeigler SR, Fernandez PG. Variability and genetics of tolerance for aluminum toxicity in nce(Oryza sativa L.). Theoretical and Applied Genetics. 1996,93:738-744
    (119). Kihara H, Yamashita H, Tanaka M. Morhologic, physiological, genetical, and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, Iran. Results of the Kyoto University scientific expedition to the Korakoram and Hidukush in 1955, vol. 1. In: Yamashita K (ed) Cultivated plants and their relatives. Kyoto University, Kyoto, Japan, 1965, pp. 4-41
    (120). Kihara H. Discovery of the DD-analyser, one of the aneestors of Triticum vulgare. Agriculture and Horticulture. (Tokyo). 1944, 19: 889-890
    (121). Kim B Y, Baier A C, Somers D J, Gustafson JP. Aluminum tolerance in triticale, wheat, and rye. Euphytica. 2001, 120: 329-337
    (122). Kovacs MIP, Howes NK, Clarke JM, Leisle D. Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6B) substitution. Journal of Cereal Science. 1998, 27(1): 47-51
    (123). Kushnir U, Halloran GM. Transfer of high kernel weight and high protein from wild tetraploid wheat ( Triticum turgidum dicoccoides) to bread wheat ( T. aestivum) using homologous and homoeologous recombination. Euphytica. 1984, 33: 249-255
    (124). Lage J, skovmand B, Andersen SB. Expression and suppression of resistance to Greenbug(Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum ×Aegilops tauschii crosses. Journal of Economic Entomology. 2003b, 96: 202-206
    (125). Lage J, skovmand B, Andersen sB. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (HomoPtera: Aphididae). Journal of Economic Entomology. 2004a, 97: 1065-1070
    (126). Lage J, Skovmand B, Andersen SB. Resistance categories of synthetic hexaploid wheats resistance to the Russian wheataphid (Diuraphis noxia). Euphytica. 2004b, 136: 291-296
    (127). Lage J, Skovmand B, Pe(?)a RJ, Andersen sB. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genetic Resouce and Crop Evolution. 2006, 53: 955-962
    (128). Lage J, Warburton ML, Crossa J, skovmand B, Andersen sB. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphtytica. 2003a, 134: 305-317
    (129). Lagudah ES , Hilalloran CM. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat: I. variation in HMW subunits of glutenin and gliadins. Theoretical and Applied Genetics. 1988, 75: 592-598
    (130). Lan XJ, Liu DC, Wang ZR. Inheritance in synthetic hexaploid wheat'RsP' of sprouting tolerance derived from Aegilops tauschii Cosson. Euphytica. 1997, 95: 321-323
    (131). Lan XJ, Zheng YL, Wei YM, Liu DC, Yan ZH, Zhou YH. Tolerant mechanism and chromosom location of gene controlling sprouting tolerance in Aegilops tauschii cosson. Agricultural Sciences in China. 2002, 1(3): 265-268
    (132). Lange W, Jochemsen G. Use of the genepools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T.aestivum) through chromosome doubled hybrids. II.Morphology and meiosis of theamphiploids. Euphytica. 1992b, 59:213-220
    (133). Lange W, Joehetnsen G. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T.aestivum) through chromosome doubled hybrids. I.Two strategies for the production of the amphiploids. Eupytica. 1992a, 59:197-212
    (134). Levy AA, Galili G, Feldman M. Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity. 1988, 61:63-72
    (135). Li W, Zhang DF, Wei YM, Yan ZH, Zheng YL. Genetic diversity of Triticum turgidum L. based on microsatellite markers. Russian Journal of Genetics, 2006, 42: 311-316
    (136). Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica. 1997, 94: 23-30
    (137). Li ZF, Zheng TC, He ZH, Li GQ, Xu SC, Li XP, Yang GY, singh RP, Xia XC.Molecular tagging of strip rust resistance gene YrZH84 in Chinese wheat line Zhou8425B. Theoretical and Applied Genetics. 2006, 112: 1098-1103
    (138). Limin AE, Fowler DB. Inheritance of cold hardiness in Triticum aestivum x synthetic hexaploid wheat crosses. Plant Breeding. 1993, 110: 103-108
    (139). Little R. plant soils interactions at low pH. In: problem solving-The Genetic Apporach. Commnicatins in Soil Science and Analysis. 1981, 19: 1239-1357
    
    (140). Liu DC, Lan XJ, Yang ZJ, Zheng YL, Wei YM, Zhou YH. A unique Aegilops tauschii genotype needless to immature embryo culture in corss with wheat. Acta Botanica Sinica. 2002, 44(6): 708-7 13
    
    (141). Liu DC, Lan XJ, Wang ZR, Zheng YL, Zhou YH, Yang JL, Yen C. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolerance. Genetic Resources and Crop Evolution. 1998, 45(6): 495-498
    (142). Liu SB, Zhou RH, Dong YC, Li P, Jia JZ. Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics. 2006, 112:1360-1373
    (143). Liu XM, Brown-Guedira GL, Hatchett JH, Owuoche JO, Chen MS. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theoretical and Applied Genetics. 2005, 111: 1308-1315
    (144). Liu Z, Sun Q, Ni Z, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica. 2002, 123:21-29
    (145). Loughman, R., Lagudah, E.s., Trottet, M., Wilson, R.E., Mathews, A. septoria nodorum blotch resistance in Aegilops tauschii and its expression in synthetic amphiploids. Australian Journal of Agricultural Research 2001, 52: 1393-1402
    
    (146). Lu CM,Yang WY, Zhang WJ, Lu BR. Identification of SNPs and development of allelec specific PCR markers for high molecular weight gluten in subunit D~tx1.5 from Aegilops tauschii through sequence characterization. Journal of Cereal science. 2005,41: 13-18
    (147). Lubbers EL, Gill KS, Cox TS, Gill BS. Variation of molecular among geographically diverse accessions of Triticum tauschii. Genome. 1991, 34: 354-361
    
    (148). Luo HM, Watanabe T, Shinano T, Tadano T. Comparison of aluminum tolerance and phosphate absorption between rape(Brassica napus L.) and tomato (Lycopersium esculentum Mill.) in relation to organic acid exudation. Soil Science and Plant Nutrition. 1999,45: 897-907
    
    (149). Luo MC, Dvorak J. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese spring wheat. Euphytica. 1996, 91:31-35
    
    (150). Lutz J, Hsam SLK, Limpert E, Zeller FJ. Chromosomal location for powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Journal of Heriditas. 1995; 74:152-156
    (151). Lutz JS, Hsam LK, Limpert E, Zeller FJ. Powdery mildew resistance Aegilops tauschii cosson and synethetic hexaploid wheats. Genentic Resources and Crop Evolution. 1994,41: 151-158
    (152). Ma H, Singh RP, Mujeeb-Kazi. Resistance to stripe rust in durum wheats, A genome diploids and their amphiploids. Euphytica. 1997, 94: 279-286
    (153). Ma H, singh RP, Mujeeb-Kazi A. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica. 1995a, 82: 117-124
    (154). Ma H, singh RP, Mujeeb-Kazi A, suppression expression of resistance to stripe in synthetic hexaploid wheat(Triticum turgidum×T. tauschii). Euphytica. 1995b, 83: 87-93
    
    (155). Ma HX, Bai GH, Carver BF, Zhou LL. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas66. Theoretical and Applied Genetics. 2005, 112:51-57
    
    (156). Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Tekeda K. Molecular mapping of a gene responsible Al-activated secretion of citrate in barley. Journal of Expremental Botany. 2004, 55: 1335-1341
    (157). Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology. 2000, 122: 687-694
    (158). Ma JF, Zheng JS, Li XF, Takeda K, Matsumoto H. A rapid hydroponic screening for aluminum tolerance in barley. Plant and Soil. 1997, 191: 133-137
    
    (159). Maes B, Trethowan RM, Reynolds MP, van Ginkel M, Skovmand B. The influence of glume pubescence on spikelet temperature of wheat under freezing conditions. Australian Journal of Plant Physiology 2001. 28, 141-148.
    (160). Mahler RL, Halvorson AR, Koehler FE. Long-term acidification of farmland in northern Idaho and east Washington. Communications in Soil Science Plant Analysis. 1985, 16: 83-95
    (161). Malik R, Smith CM, Harvey TL, Brown-Guedira BL. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Science. 2003,43: 644-650
    (162). Marais GF, Potgieter GF, Roux Hs. An assessment of the variation for stem rust resistance in the progeny of a cross involving the Triticum species aestivum, turgidum and tauschii. south African Journal of Plant and soil.1994, 11: 15-19
    (163). Marino C, Nelson J, LuYH, sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE. RFLP based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat(Triticum aestivum, L.em.Thell.). Genome. 1996, 39: 359-366
    (164). Martin TJ, Harvey TL, Hatchett JH. Registration of greenbug and Hessian fly resistant wheat grermplasm. Crop Science. 1982, 22: 1089
    (165). Masci S, Lew EJ, Lafinandra D, Proceddu E, Kasarda D. Characterization of low molecular weight glutenin subunit in durum wheat by reversed phase high performance liquid chromatography and N-terminal sequncing. Cereal Chemistry. 1995, 72(1): 100-104
    (166). Masouleh AK. Toward a molecular evaluation of grain quality using glutenin subunits in Triticum carthlicum. African Journal of Biotechnology. 2005, 4(4): 346-349
    (167). Masum Akond ASMG., Watanabe N, Furuta Y. Comparative genetic diversity of Triticum aestivum-Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genetic Resources and Crop Evolution. 2008, 55: 133-141
    (168). Matos M, Camacho MV, Perez V, Pernaute B, Pinto-Car-nide O Benito C. A new aluminum tolerance gene located on rye chromosome arm 7RS. Theoretical and Applied Genetics. 2005, 111:360-369
    (169). Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile ¥1 hybrid with Aegilops tauschii Coss. Theoretical and Applied Genetics. 2004, 109:1710-1717
    (170). May CE, lagudah ES. Inheritance in hexaploid wheat of septoria tritici bloth resisitance characteristics derived from Triticum tauschii. Australlian Journal of Agricultural Reserch. 1992,43:433-442
    (171). McFadden Es, sears ER. The artificial synthesis of Triticum spelta. Reccent Genetic society American. 1944, 13: 26-27
    (172). Mclntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R.. Catalogue of gene symbols for wheat (MacGene 2003) [CD-ROM]. In Pogna NE et al. (ed.) Proc. 10~(th) Internation. Wheat Genetic. Sympoisum, Vol(4), Pasetum, Italy. Istituto Sperimentale per la Cerealicoltura, Rome, Italy. 2003, pp. 1-6
    (173). McKendry AL, Henke GE. Evaluation of wheat wild relatives for resistance to septoria tritici blotch. Crop science.1994, 34: 1080-1084.
    
    (174). Meredith CP. Response of cultured tomato cells to aluminum. Plant Science. 1978, 12: 17-24
    (175). Metakovsky EV, Kudryavtsev AM, Iakobashvili ZA, Novoselskaya AY. Analysis of phylogenetic relations of durum, carthlicum and common wheats by means of comparison of alleles of gliadin-coding loci. Theoretical and Applied Genetics. 1989, 77: 881-887
    (176). Miftahudin G, Scoles GJ, Gustafson JP. AFLP markers tightly linked to the aluminum tolerance gene Alt3 in rye(Secale cereale L.). Theoretical and Applied Genetics. 2002, 104: 626-631
    (177). Miftahudin G, Scoles GJ, Gustafson JP. Development of PCR-based co-dominant markers flanking the Alt3 gene in rye. Genome. 2004, 47: 231 -238
    (178). Minella E, Sorrells ME. Inheritance and chromosome location of Alp, a gene controlling aluminum tolerance in 'Dayton' barley. Plant Breeding. 1997, 116: 465-469
    (179). Miranda LM, Murphy JP, Leath S, Marshall DS. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 2006, 114: 1497-1504
    (180). Miranda LM, Murphy JP, Marshall D, Cawger C, Leaht S. Chromosomal location of Pm35, a novel Aegilops tanschii derived powdery milder resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 2007, 114(8): 1451-1456
    (181). Miyasaka SC, Kochian LV, Shaff JE, Foy CD. Mechanisms of aluminum tolerance in wheat. An investigation of genotypic differences in rhizosphere pH, K~+and H~+ transport and root-cell membrance potentials. Plant Physiology. 1989, 91: 1188-1196
    (182). Moragues M, Zarco-Hernandez J, Moralejo MA, Royo C. Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean basin. Genetic Resources and Crop Evolution. 2006,53:993-1002
    (183). Moseman JG, Nevo E, Gerechter-Amitai ZK, El-Morshidy MA, Zohary D. Resistance of Triticum dicoccoides Collected in Israel to Infection with Puccinia recondita tritic. Crop Science. 1985,25:262-265
    (184). Mujeeb-Kazi A, Delgado R, Juarez L, Cano s. scab resistance (Type II: spread) in synthetic hexaploid germplasm. Annual Wheat Newsletter. 2001a, 47: 118-120
    (185). Mujeeb-Kazi A, Cano s, Rosas V, Cortes A, Delgado R. Registration of five synthetic hexaploid wheat and seven bread wheat lines resistant to wheat spot blotch. Crop science. 2001b, 4: 1653-1654
    (186). Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh.(Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T.turgidum L.S.lat.×T tauschii; 2n=6x=42,AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution. 1996,43: 129-134
    (187). Multani D, Dhaliwal Hs, singh P, Gill Ks. synthetic amphiploids of wheat as a source of resistance to Karnal Bunt(Neovossia Indica). Plant Breeding. 1988, 101: 122-125
    (188). Narasimhamoorthy B, Gill Bs, Fritz AK, Nelson JC, Brown-Guedira GL. Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theoretical and Applied Genetics. 2006, 112:787-796
    (189). Nelson JC, sorrels ME, Van Deynze AE, . Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Geneties. 1995a, 141: 721-731
    (190). Nelson JC, Van Deynze AE, Antrique E, sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P. Molecular mapping of wheat homoeologous group 2. Genome. 1995b. 38:516-524
    (191). Nelson JC, Van Deynze AE, Autrique E, Lu YH, Negre s, Bernard M, Leroy P. Molecular mapping of wheat homoeologous group 3. Genome. 1995c, 38: 525-533
    (192). Nero E, Carver BE, Beiles A. Photosynthetic performance in wild emmer wheat, Triticum dicoccoides: ecological and genetic predictability. Theoretical and Applied Genetics. 1991,81:445-460
    (193). Nevo E, Beiles A. Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theoretical and Applied Genetics. 1989, 77: 421-425
    (194). Nevo E, Beiles A. Patternsof resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and allozyme genotypesfor powdery mildew and leaf rust. Journal of Genetica. 1985, 67: 209-222
    (195). Nevo E, Gerechter-Amitai ZK, Beiles A, Golenberg EM. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Plant System Evolution. 1986, 153: 13-30
    (196). Nevo E, Gerechter-Amitai ZK, Beiles A. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica. 1991, 53: 121-130
    (197). Nevo E, Krugman T, Beiles A. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breeding. 1993,110:338-341
    (198). Nevo E, Moseman JG., Beile A, Zohary D. Patterns of resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica. 1985,67: 209-222
    (199). Nevo E, Noy-Meir I, Belies A, Krugam T, Agami M. Natural selection of allozyme polyorphisms: mocro-geographical spatial and temporal ecological differentiations in wild emmer wheat. Isreal Journal of Botany. 1995, 91: 415-420
    (200). Nevo E, Payne PI. Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel I. Geographical patterns and ecological predictability. Theoretical and Applied Genetics. 1987, 74: 827-836
    (201). Nicholson P, Rezanoor HN, Worland AJ. Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in Chinese spring wheat. Plant Breeding. 1993, 110: 177-184
    (202). Oak MD, Tamhankar SA, Rao VS, Bhosale SB. Polymorphism of gluten proteins in Indian dicoccum wheat (Triticum turgidum ssp. dicoccum) revealed by SDS and Acid-PAGE. Journal of Genetics and Breeding. 2002, 56(3): 245-250
    (203). Olida PC and Henrique GP. Differential aluminum tolerance of Purtuguese rye populations and North European rye cultivars. Agronomie 2000, 20: 93-99
    (204). Oliver RE, Stack RW, Miller JD, Cai X. Reaction of wild emmer wheat accessions to Fusarium Head Blight. Crop Science, 2007,47: 893-899
    (205). Osawa H, Matsumoto H. Possible involement of protein phosphorylation in aluminum responsive malate efflux from wheat root apex. Plant Physiology. 2001, 126: 411-420
    (206). Ozturk L, Eker S, Torun B, Cakmak I. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus deficient calcareous soil. Plant andSoil. 2005, 269: 69-80
    (207). Papernik LA, Kochian LV, Possible involement of Al-induced electrical signals in Al tolerance in wheat. Plant Physiology. 1997, 115: 657-667
    (208). Paplink LA, Bethea AS, Singleton TE, Magalhaes Jv, garvin Df, Kochian LV. Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese spring wheat. Planta. 2001, 212: 829-334
    (209). Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology Genetics. 1987, 103: 1293-1301
    (210). Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y. Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell and Environment. 2005, 28: 176-191
    (211). Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roder MS, Kilian A, Korol AB, Fahima T. High-density genetic map of durum wheat wild emmer wheat based on SSR and DArT markers. Theoretical and Applied Genetics. 2008, 117:103-115
    (212). Pena RJ, Zareo-Hernandez J, Mujeeb-Kazi A, Glutenin subunit compositions and bread making quality characteristics of synthetic hexaploid wheats derived from Triticum.turgidu x Triticum tauschii(coss.)schmal crosses. Journal of Cereal science. 1995, 21: 15-23
    
    (213). Peng J, Korol AB, Fahima T, ROder MS, Ronin YI, Li YC, Nevo E. Molecular Genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Research. 2000c, 10: 1509-1531
    (214). Peng JH, Fahima T, Roder MS, Huang QY, Dahan A,Li YC, Grama A, Nevo E. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica. 2000a, 109: 199-210
    (215). Peng JH, Fahima T, Roder MS, Li YC, Grama A, Nevo E. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F_2 generation in wild emmer wheat. New Phytology. 2000b.146: 141-154
    (216). Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A,Ronin YI, Korol AB, Nevo E. Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theoretical and Applied Genetics. 1999. 98: 862-872.
    (217). Peng ZS,Liu DC,Yen C, Yang JL. Crossability of tetroploid wheat landraces native to Sichuan, Shaanxi, Ganxu and Xingjiang province, China with rye. Genetic Resource and Crop Evolution. 1998, 45: 57-62
    (218). Pestsova E, B(o|¨)rner A, Roder MS. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theoretical and Applied Genetics. 2006, 112:634-647
    (219). Pflüger LA, Alvarez JB, Martin LM. Polymorphism of the glutenins and gliadins in emmer wheat from Spain. 2000. pp.525-527 http://ressources.ciheam.org/om/pdf/a40/00600088.pdf
    
    (220). Pfluger LA, D'Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theoretical and Applied Genetics. 2001,103: 1293-1301.
    (221). Pfluger LA, Martin LM, Alvarez JB. Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theoretical and Applied Genetics. 2001, 102: 767-772
    (222). Piergiovanni AR, Laghrtti G, Perrino P. Characteristics of meal from hulled wheats(Triticum dicoccon Schrank and T.spelta L.): an evaluation of selected accessions. Cereal Chemistry. 1996, 73(6): 732-735
    (223). Pinto-Camide O, Guedes-Pinto H. Differential aluminum tolerance of Portuguese rye populations and North European rye cultivars. Agronomie. 2000,20: 93-99
    (224). Poiarkova H, Baum A. Landraces of wheat from the northern Negev in Israel. Euphytica. 1983,32:257-271
    (225). Polle E, Konzak CF, Kittrick JA. Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots. Crop Science. 1978, 18: 823-827
    (226). Raciti CN, Doust MA, Lombardo GM, Boggini G, Pecetti L. Characterization of durum wheat mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality. European Journal of Agronomy. 2003, 19: 373-382
    (227). Raman H, Moroni JS, Raman R, Read B, Garvin DF, Kochian LV, Sorrells ME. Development and allele diversity of microsatellite markers linked to the aluminum tolerance gene ALP in barley. Australian Journal of Agricultural Research, 2003, 54: 1315-1321
    (228). Raman H, Moroni JS, Sato K, Read B, Scott BJ. Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.) Theoretical and Applied Genetics, 2002, 105:458-464
    (229). Raman H, Raman R, Wood R, Martin P. Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). Moleculer Breeding. 2006,18: 171-183
    (230). Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome. 2005,48:781-791
    (231). Rascio A, Platani C, Fonzo ND, Wittmer G. Bound water in durum wheat under drought stress. Plant Physiology. 1992, 98: 908-912
    (232). Raupp WJ, Amri A, Hatchett JH, Gill BS, Wilson DL, Cox TS. Chromosomal location of Hessian fly resistance genes H22, H23 and H24 derived from Triticum tauschii in the D genome of wheat. Hereditas, 1993, 84: 142-145
    (233). Reader SM, Miller TE. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica. 1991, 53: 57-60
    (234). Rehman A, Evans N, Gianibelli MC, Rose RJ. Allelic variations in high and low molecular weight glutenins at the locus of Aegilops tauschii as a potential source Glu-D1t for improving bread wheat quality. Australian Journal of Agricultural Research, 2008, 59: 399-405
    
    (235). Reide CR, Anderson JA. Linkage of RFLP Markers to an aluminum tolerance gene in wheat.Crop Science. 1996, 36: 905-909
    (236). Renu Malik C. Hael Smith MIC, Brown-Guedira Gina L, Harvey TL, Gill BS. Assessment of Aegilops tauschii for resistance to biotypes of wheat Curl Mite (Acari: Eriophyidae). Journal of Economic Entomology. 2003, 96(4): 1329-1333
    (237). Reynolds MP, skovmand B, Trethowan R, Pfeiffer W. Evaluating a Conceptual Model for Drought Tolerance. In: Ribaut JM(Ed.), Using Molecular Markers to Improve Drought tolerance. CIMMYT, Mexico DF. 1999
    (238). Riede CR, Franel LJ, Anderson JA, Jordahl JG, Meinhardt SW. Additional sources of resistance to tan spot of wheat. Crop science. 1996,36: 771-777
    (239). Rincon M and Gonzales RA. Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiology. 1992, 99:1021-1028
    (240). Robinson J, Skovmand B. Evaluation of emmer wheat and other Triticeae for resistance to Russian wheat aphid. Genetic Resources and Crop Evolution 1992, 39: 159-163
    (241). Roder Ms, Korzum V, Wendehake K, Plaschkea J, Tixier MH, Leroy P, Ganala MW. A microsatellite map of wheat.Geneties. 1998, 149:2007-2023
    (242). Rod(?)iguez-Quijano M., Lucas R, Carrillo JM. Waxy proteins and amylose content in tetraploid wheats Triticum dicoccum Schulb, Triticum durum L. and Triticum polonicum L. Euphytica. 2003, 134:97-101
    (243). Rong JK, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica. 2000, 115: 121-126
    (244). Sasaki T, Ryan PR, Delhaize E, Hebb D M, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiology. 2006, 47(10):1343-1354
    (245). Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal. 2004, 37: 645-663
    (246). Schachtman DP, Lagudah Es, Munns R. The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theoretical and Applied Genetics. 1992, 84: 714-719.
    (247). Shewry PR, Gilbert SM, Savage AWJ, Tatham AS, Wan YF, Belton PS, Wellner N, D'Ovidio R, Bekes F, Halford NG. Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theoretical and Applied Genetics. 2003, 106: 744-750
    (248). Singh RP, Nelson JC, Sorrells ME. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science. 2000, 40: 1148-1155
    (249). Sivaguru M and Paliwal K. Differential aluminum tolerance in some tropical rice cultivars: 1.Growth performance. Journal of Plant Nutrition. 1993, 16: 1705-1716
    (250). Soleimani VD, Baum BR, Johnson DA. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theoretical and Applied Genetics. 2002, 104: 350-357
    (251). Somers DJ, Fedak G,Clarke J, Cao W. Mapping of FHB resistance QTL in tetraploid wheat. Genoem. 2006, 49: 1586-1593
    (252). Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lagudah E. NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theoretical and Applied Genetics. 2000, 101:1139-1144
    (253). Stack RW, Elias EM, Mitchell Fetch J, Miller JD, Joppa LR. Fusarium Head Blight reaction of Langdon Durum-Triticum dicoccoides chromosome substitution lines. Crop Science. 2002, 42:637-642
    (254). Stodart BJ, Raman H, Coombes N, Mackay M. Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genetic Resource and Crop Evolution. 2007, 54: 759-766
    (255). Sun GL, Fahima T, Korol AB, Turpeinenl T, Grama A, Ronin YI, Nevo E. Identification of molecular markers linked to the Yrl5 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theoretical and Applied Genetics. 1997, 95: 622-628
    (256). Takagi H, Namai H, Murakami K. Exploration of aluminum tolerance genes in wheat. In Sakamoto S(ed). Procedings if the 6l International Wheat Genetics Symposium, Kyoto University, Kyoto, Japan, 1983, pp.141-146
    (257). Tanaka H, Nakata N,Osawa M,Tsujimoto H,YasumuroY. Positive effect of the high molecular weight glutenin allele, Glu-D1d, on the bread-making quality of common wheat. Plant Breeding. 2003, 122: 279-280
    (258). Tang C, Nuruzzaman M, Rengel Z. Screening wheat genotypes for tolerance of acid acidity. Australia Journal of Agricultural Research. 2003, 54: 445-452.
    (259). Tang C, Rengel Z, Abrecht D, Tenant D. Aluminum-tolerant wheat uses more water and yield higher than aluminum-sensitive one on a sandy soil with subsurface acidity. Field Crops Research. 2002, 78:93-103
    (260). Tang Y, Sorrells ME, Kochian LV, Garvin DF. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Science. 2000, 40: 778-782
    (261). Teklu Y, Hammer, K, Roder M. Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): Analysis of genetic diversity and differentiation. Genetic Resources and Crop Evolution, 2007, 54(3): 543-554
    (262). Terzi V, Morcia C, Stanca AM, Kucera L, Fares C, Codianni P, Fonzo ND, Faccioli P. Assessment of genetic diversity in emmer (Triticum dicoccon Schrank)× durum wheat (Triticum durum Desf.) derived lines and their parents using mapped and unmapped molecular markers. Genetic Resource and Crop Evolution. 2007, 54: 1613-1621
    (263). Thomas JB, Conner RL. 1986. Resistance to colonization by the wheat curlmite in Aegilops squarrosa and its inheritance aftertransfer to common wheat.Crop Science. 1986, 26: 527-530
    
    (264). Thompson JP, Brennan Ps, Clewett TG, sheedy JG, seymour NP. Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Australasian Plant Pathology. 1999,28:45-52
    
    (265). Thompson JP, Haak MIR. esistance to root-lesion nematode (Pratylenchus thornei) in Aegilops tauschii Cosson, the D-genome donor to wheat. Australian Journal of Agricultural Research. 1997,48:553-559
    
    (266). Trckova M, Raimanová I, Stheno Z. Differences among Triticum dicoccum, T. monococcum and T. spelta in rate of nitrate uptake. Czech Journal of Genetic and Plant Breeding(Special Issue). Procceeding of 5th International Triticeae Symposium, Prague, June 6-10, 2005, 41: 322-324
    (267). Tsunewaki K, Yamada S, Mori N. Genetical studies on a Tibetan semi-wild wheat, Triticum aestivum ssp. tibetanum. Japan Journal of Genetics. 1990, 65: 353-365
    
    (268). Tyler JM, Hatchett JH. Temperature influence on expression of resistance to Hessian fly (Diptera: Cecidomyiidae) in wheat derived from Triticum tauschii. Journal of Economic Entomology. 1983, 76: 323-326.
    (269). Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J. High temperature adult plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics. 2005, 112: 97-105
    (270). Vallega V, Waines JG. High molecular weight glutenin subunit variation in Triticum turgidum var. dicoccum. Theoretical and Applied Genetics. 1987, 74: 706-710
    (271). Van Deynze AE, Dubeovsky J, Gill Ks, Nelson JC, sorrells ME, Dvorak J, Gill Bs, Lagudah Es, Mccouch sR, Appels R. Molecular genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome. 1995, 38:45-59
    (272). van Ginkel M, Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding varieties for changing production conditions. Field Crops Research. 2007, 104: 86-94
    (273). Van Ginkel M, Ogborinaya F, Using synthetie wheats to bread wheat cultivars better adapted to changing production conditions(invited paer).Turner NC, Aeuna T, Johnson RC'Ground breaking stuff." Proeeedings of the 13th Australian Agronomy Conference, 10-14 September, 2006, Perth, Westen Australia. Australian society of Agronomy. The Regional Instituete Ltd Publisher, Mareh 2006, IsBN 1920842314
    (274). van Slagern MW. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen, Wageningen Agricultural University Papers, Wageningen, The Netherlands, 1994,pp 94-97
    (275). Van Wambeke A. Formation, distribution and consequences of acid soils in agricultural development. In: Wright, M.J. and S.A. Ferrari (eds.). Proceedings of Workshop on Plant Adaptation to Mineral Stress in Problem Soils. Specification Publication Cornell University. Agriculture Experiment Station, Ithaca, NewYork. 1976. pp. 15-24.
    (276). van Silfhout CH, Gerechter-Amitai ZK. Adult plant resistance to yellow rust in wild emmer wheat. European Journal of Plant Pathology. 1988, 94: 267-272
    (277). van Silfhout CH, Grama A, Gerechter-Amitai ZK, Kleitman F. Resistance to yellow rust in Triticum dicoccoides. I. Crossess with susceptible Triticum durum. European Journal of Plant Pathology. 1989a, 95: 73-78
    (278). van Silfhout CH, Grama A, Gerechter-Amitai ZK, Kleitman F. Resistance to yellow rust in Triticum dicoccoides. II. Crosses with resistant Triticum dicoccoides sel. G-25. European Journal of Plant Pathology. 1989b, 95: 79-83
    (279). Villagarcia MR, Carter TE., Rufty TW, Niewoehner AS, Jennette MW,ArreIlano C. Genotypeic rankings for aluminum tolerance of soybean roots grown in hydroponics and sand culture. Crop Science. 2001, 41: 1499-1507
    (280). Villareal RL, Fuenies-Davila G, Mujeeb-Kazi A, Rajaram s. Inheritance of resistance to Tilletia indica(Mitra) in synthetic hexaploid wheat x Triticum aestivum crosses. Plant Breeding. 1995, 114:547-548
    (281). Villareal RL, Davila GF, Mujeeb-kazai A. Synthetic hexaploid x Triticum aestivum advanced derivations resistance to kannal bunt(0Tilletia indica Mita). Cereal Research commnicatins. 1995,23:127-1320
    (282). Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram s, Del Toro E. Resistance to Karnal Bunt(Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum x T. tauschii. Plant Breeding. 1994a, 112: 63-69
    (283). Villareal RL, Mujeeb-Kazi A, Del Toro E, Rajaram s. Agronomic variability in selected Triticum turgidum x T. tauschii synthetic hexaploid wheats. Journal of Agron Crop science. 1994b, 173:307-317
    (284). Villareal RL, Mujeeb-kazi A, Rajaram S. Inheritance of the threshablity in synthetic hexzploid (Triticum turgidum x T. tauschii) by T. aestivum crosses. Plant Breeding. 1996; 115: 407-409
    (285). Villareal RL, sayre K, Banuelos O, Mujeeb-Kazi A. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop science. 2001,41:274.
    (286). Voigt PW, Mosjidis JA. Acid soil resistance of Forage Legumes as assessed by a soil on agar method. Crop Science. 2002, 42: 1631-1639
    (287). Voigt PW, Morris DR., Godwin HW. A soil-on-agar method to evaluate acid-soil resistance in white clover. Crop Science. 1997, 37: 1493-1496
    (288). Von Uexkull HR, Mutert E. Global extent, development and economic impact of acid soils. Plant and Soil. 1995. 171: 1-15.
    (289). Wang HJ, Huang XQ, R(o|¨)der MS, B(o|¨)rner A. Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica. 2002, 123: 287-293
    (290). Wang HY, Wei YM, Yan ZH, Zheng YL. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. Jouranl of Applied Genetic. 2007, 48(1): 35-42
    (291). Wang J, Raman H, Read B, Zhou M, Mendham N, Venkatanagappa S. Validation of an Alt locus for aluminum tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen (Hordeum Vulgare L). Australian Journal of Agricultural Research, 2006, 57: 113-118
    (292). Warburton ML, Crossa J, Franeo J, Kazil M, Trethowan R, Rajaram s, Pfeiffer W, Zhang P, Dreisigacker s, van inkel M. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat gemplasm. Euphytica. 2006, 149: 289-301
    (293). Watanabe N, Akond-Masum ASMG, Nachit M. Genetic mapping of the gene affecting polyphenoloxid in tetraploid durum wheat. Journal of Applied Genetics. 2006, 47(3): 201-205
    (294). Watanabe N, Bannikova SV, Goncharov NP Inheritance and chromosomal location of the genes for long glume phenotype found in Portuguese landraces of hexaploid wheat, 'Arrancada'. Journal of Genetics and Breeding. 2004, 58: 273-278
    (295). Watanabe N, Imamura I. The inheritance and chromosomal location of a gene for long glume phenotype in Triticum petropavlovskyi Udacz. et Migusch. Journal of Genetics and Breeding. 2002,57:221-227
    (296). Watanabe N, Sekiya T, Sugiyama K, Yamagishi Y, Imamura I. Telosomic mapping of the homoeologous genes for the long glume phenotype in tetraploid wheat. Euphytica. 2002, 128:129-134
    (297). Watanabe N, Takesada N, Fujii Y, Martinek P. Comparative mapping of genes for Brittle Rachis in Triticum and Aegilops. Czech Journal of Genetics and Plant Breeding. 2005, 41(2): 39-44
    (298). Watanabe N, Yotani Y, Furuta Y. The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica. 1996, 90: 235-239
    (299). Wei YM, Zheng YL, Liu DC, Zhou YH, Lan XJ. Gliadin and HMW-glutenin variations in Triticum turgidum L. ssp. turgidum and T. aestivum L. landraces native to Sichuan, China. Wheat Information Service. 2000, 90: 13-20
    (300). Weng Y, Lazar MD. Amplified fragment length polymorphism and simple sequence repeat based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breeding. 2002, 121: 218-223
    (301). Weng Y, Li W, Devkota RN, Rudd JC. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theoretical and Applied Genetics. 2005, 110:462-469
    (302). Whelan EDP, Thomas JB. Chromosomal location in common wheat of a gene(Cmcl) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome. 1989,32:1033-1036
    (303). Wieser H, Hsamsai LK, Zeller FJ. Relationship between the qualitative and quantitative compositions of gluten protein types and technological properties of synthetic hexaploid wheat derived from Triticum durum and Aegilops tauschii. Cereal Chemistry. 2003, 80: 247-251
    (304). William MDHM, Pe(?)a RJ, Mujeeb-Kazi A. seed protein and isozyme variations in Triticum tauschii(Aegilops squarrosa). Theoretical and Applied Genetics. 1993, 87: 257-263
    (305). Wood S, Seastian K, Scherr S. Soil resource condition. In: Pilot analysis of global ecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, DC, 2000, pp.45-54
    (306). Wtanabe N, Sugiyama K, Ymagishi Y, Sakata Y. Comparative telosomic mapping of homoeologous genes for brittle rachis intetraploid and hexaploid wheats. Hereditas. 2002, 137:180-185
    (307). Xu SS, Friesen TL, Mujeeb-Kazi A. seedling resistance to Tans pot and stagonospora Nodorum Blotch in synthetic hexaploid wheat. Crop science. 2004a, 44:2238-2245
    (308). Xu SS, Khan K, Klindworth DL, Faris JD, Nygard G. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theoretical and Applied Genetics. 2004b, 108: 1221-1228
    (309). Xu X, Monneveux P, Damania AB, Zaharieva M. Evaluation for salt tolerance in genetic resources of Triticum and Aegilops. Plant Genetic Resources Newsletter. 1993, 96: 11-16
    (310). Yan Y, Hsam SLK, Yu J, Jiang Y, Zeller FJ. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrlamide gel (A-PAGE) and capillary electrophoresis. Euphytica. 2003, 130: 377-385
    (311). Yan ZH, Dai SF, Liu DC, Wei YM, Zheng YL. Isolation and characterization of a novel HMW-GS Glu-Dx allele fromTibet bread wheat landrace. Cereal Research Communications. 2008, 36(4): 523-531
    (312). Yang WY, Yu Y, Zhang Y, Hu XR, Wang Y, Zhou YC, Lu BR. Inheritance and expression of stripe rust resistance in common wheat (Triticum aestium) transferred from Aegilops tauschii and its utilization. Hereditas. 2003, 139: 49-55
    (313). Yang WY,Yen C,Yang JL. Cytogenetic study on the origin of some special Chinese landraces of commmom wheat. Wheat information Service. 1992,75:14-20
    (314). Yen C, Luo MC, Yang JL. The origin of the Tibetan weedrace of hexaploid wheat, Chinese spring, chengduguangtou and other landraces of white wheat complex from china. In :miller TE and Koebner RMD (Eds) Proc .7th Intern. Wheat Genet.Symp., Institute of plant Sciences Research. Cambridge ,England, volume 1, 1988, pp. 175-179
    (315). Yen C, Yang JL, Cui NR, Zhong JP, Dong YS, Sun YZ, Zhong GY. The Aegilops tauschii Cosson from Yi-Li, Xinjang, China. Acta Agron Sinica. 1984, 10: 1-7
    (316). ZdenSk S. Emmer wheat rudico can extend the spectra of cultivated plants Czech Journal of Genetic and Plant Breeding. 2007, 43(3): 113-115
    (317). Zhang L, Sun G, Yan Z, Chen Q, Yuan Z, Lan X, Zheng Y, Liu D. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. Journal of Genetics and Genomics. 2007, 34(10): 939-946
    (318). Zhang LQ, Yan ZH, Dai SF, Chen QJ, Yuan ZW, Zheng YL, Liu DC. The crossabiliry of Triticum turgidum with Aegilops tauschii. Cereal Research Communications. 2008, 36(3): 417-427
    (319). Zhang PZ, Dreisigaeker s, Melchinger AE, Reif JC, Mujeeb Kazi A, Van Gmkel M, Hoisington D, Warburton ML. Quantifying novel sequence variation and selective advantage in synthetic wheats and their backcross-derived lines using ssR markers. Molecular Breeeding. 2005, 15: 1-10
    (320). Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheatI. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology. 1998, 117: 745-751
    (321). Zhou LL, Bai GH, Carver B, Zhang DD. Identification of new sources of aluminum resistance in wheat. Plant and Soil. 2007, 297: 105-118
    (322). Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theoretical and Applied Genetics. 2005, 111: 831-837
    (323). Zhu LC, Smith CM, Fritz A, Boyko EV, Flinn MB. Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theoretical and Applied Genetics. 2004, 109: 289-293
    (324).Zhu Z,Zhou R,Kong X,Dong Y,Jia J.Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat.Genome.2005,48:585-590
    (325).Zhu ZD,Kong XY,Zhou RH,Jia JZ.Identification and microsatellite markers of a resistance gene to Powdery mildew in common wheat introgressed from Triticum durum.Acta Botanica Sinica.2004,46:867-872
    (326).《人民日报》20050414第6版
    (327).2006年中国环境状况公报http://www.zhb.gov.cn/plan/zkgb/O6hizkgb/200706/t20070619_105423.htm e?中华人民共和国环境保护部
    (328).2007年中国环境状况公报http://www.zhb.gov.cn/plan/zkgb/中华人民共和国环境保护部
    (329).陈锋,夏先春,王德森.CIMMYT人工合成小麦与普通小麦杂交后代籽粒硬度puroindoline基因等位变异检测.中国农业科学.2006,39(3):440-447.
    (330).陈勤,孙雨珍,董玉琛.新疆小麦种间杂种的细胞遗传学研究.作物学报.1985,11(1):23-28
    (331).陈尚安,董玉琛,许树军,周荣华,李秀全,王剑雄.波斯小麦×节节麦双二倍体Am3抗白粉病基因定位分析.中国农业科学.1990,23(4):17-21
    (332).储诚艮,冯祎高,陈佩度.将野生二粒小麦的大粒和籽粒高蛋白质含量性状向普通小麦转移.南京农业大学学报.2001,24(2):16-19
    (333).崔运兴,马缘生.中国特有小麦的酯酶同工酶.植物学报.1990,32(1):39-44
    (334).代寿芬,颜泽洪,魏育明,郑有良.西藏普通小麦高分子量谷蛋白亚基多态性分析.西北农业学报.2004,13(2):90-93,100
    (335).邓小锋,周永红,杨瑞武,丁春邦,张利,张海琴,刘光欣.新疆吐鲁番矮秆波兰小麦穗长基因的染色体定位.四川农业大学学报.2005,23(1):12-14,23
    (336).冬梅.西藏农作物育种研究工作的50年.西藏农业科技,2001,23(3):83-88
    (337).董攀,李伟,郑有良波兰小麦主要农艺性状分析.麦类作物学报.2007,27(2):216-222
    (338).董玉琛,郑殿升.中国小麦遗传资源.北京.中国农业出版社.2000,PP.1-57
    (339).窦全文,陈佩度.甘青地区四倍体小麦染色体C-带多态性.西北植物学报.2003,23(2):336-338.
    (340).范瑞英,冬梅,魏迎春,关卫星,焦国成.西藏小麦品质育种现状及品质改良措施的探讨.西藏农业科技,2000,22(3)36-39
    (341).胡蕾,应小芳,刘鹏,徐根娣,朱申龙.铝毒对大豆农艺性状的影响.浙江农业科学,2004,3:148-150
    (342).黄亨履,翁跃进,张贤珍,陆平.西藏半野生小麦遗传多样性研究进展以及原位保存的建议植物遗传资源科学.2002,3(2):28-33
    (343).黄亨履.西藏山南地区的小麦资源.作物品种资源,1983(4):9-15
    (344).金善宝.中国小麦品种及其系谱.中国农业出版社.1983,pp.3-5,127-157
    (345).孔令让,董玉深,贾继增.小麦-山羊草双二倍体抗白粉病基因定位及其遗传转移.植物保护学报.1999,26(2):116-120
    (346).兰秀锦,颜济.中国四倍体小麦地方品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用.四川农业大学学报.1992,10:581-585
    (347).兰秀锦,郑有良,刘登才,魏育明,周永红.四川四倍体小麦地方品种酯酶同工酶.四川农业大学学报.2003,21(2):88-90
    (348).兰秀锦,魏育明,郑有良,等.中国半野生小麦的酯酶同工酶分析.四川农业大学学报,2001,19(2):122-125
    (349).李巧云,安学丽,肖英华,张倩,张艳贞,夏先春,何中虎,晏月明.野生二粒小麦(Triticum dicoccoides)低分子量谷蛋白亚基基因的克隆与序列分析.中国农业科学.2007,40(3):457-463
    (350).李庆逵1988,中国红壤,科学出版社,PP1
    (351).李树红,李伟,魏育明,郑有良.圆锥小麦地方品种面筋和面团流变学特性研究.麦类作物学报.2008,28(4):613-617
    (352).李伟,陈国跃,魏育明,郑有良.圆锥小麦地方品种的农艺性状分析.麦类作物学报.2008,28(4):649-654
    (353).梁荣奇,张义荣,李保云,刘守斌,唐朝晖,刘广田.在陕南圆锥小麦Wx蛋白亚基多态性研究中首次发现天然糯类型.农业生物技术学报.2001,9(2):112,118
    (354).廖晓虹,杨武云.四川圆锥小麦地方品种兰麦的品质特性分析.种子.1999,18(5),23-24
    (355).林日暖,张勇.拉萨冬小麦生育后期籽粒形成与温度的关系.应用气象学报.1999,10(3)321-326:
    (356).刘登才,彭正松,颜济,杨俊良,郑有良.四部体小麦“简阳矮兰麦”与黑麦可杂交性及其在六倍体水平上的遗传特性.遗传.1998,20(6):26-29
    (357).刘虹,张志清,颜泽洪,魏育明,郑有良.波兰小麦(Triticum polonicum L.)高分子麦谷蛋白亚基多样性分析.四川农业大学学报.2005a,23(3):258-263
    (358).刘虹,张志清,颜泽洪,魏育明,郑有良.波兰小麦醇溶蛋白遗传变异分析.麦类作物学报.2005b,25(4):29-34
    (359).刘正德,蒋滨.四川小麦生产品种抗条锈性变异及对策.西南农业学报.1999,12(1):87-91
    (360).刘仲齐,饶世达,蒲宗君,,余东梅,杨武云.1950年以来四川盆地小麦品种产量性状的遗传改良.中国农学会等21世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集.北京:中国农业科技出版社.2001,pp.491-495
    (361).陆平.西藏半野生小麦染色体组型分析和断穗基因定位.西藏农业科技.2000,22(2):23-27
    (362).倪中福,孙其信,刘志勇,黄铁城.小麦杂种优势群研究Ⅱ,普通小麦、西藏半野生小麦和斯卑尔脱小麦RAPD分子标记遗传差异研究.农业生物技术学报.1997,5(2):103-111
    (363).彭隽敏,孔青,徐乃瑜.云南小麦、西藏半野生小麦和普通小麦叶绿体DNA限制性内切酶图谱的研究.遗传.1995,17(6):4-6
    (364).彭艳,张金锐,刘勇,何光源.西藏半野生小麦高分子量麦谷蛋白亚基组成分析.西北植物学报,2006,26(4):0827-0831
    (365).彭正松,邓晓皋,彭钧,王祖秀,苟正跃.圆锥小麦高亲和种质的C带分析.四川师范学院学报(自然科学版).1998,19(3):239-243
    (366).强小林,曹广才,许毓英,冬梅,吴东兵,寇嗥,侯立白.西藏小麦品质影响因素的初步分析.西藏科技,2001,8:11-17,30
    (367).任仁.中国酸雨的过去、现在和将来.北京工业大学学报.1997,23(3):128-132
    (368).邵启全,李长森,巴桑次仁.西藏半野生小麦.遗传学报,1980,7(2):149-156
    (369).舒晓霞,李伟,董攀,魏育明,郑有良圆锥小麦(Triticum mrgidum L.)贮藏蛋白的遗传多样性研究.麦类作物学报.2008,28(1):66-73
    (370).四川省环境保护局 四川省环境状况公报2005http://www.schj.gov.cn/(S(4xx4sib2c4p5p24502eqxem0))/NewShow.aspx?id=11558
    (371).唐永金.四川小麦品种的历史、现状和未来.国外农学-麦类作物.1996,(6):5-7
    (372).万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾.植物保护.2003,29(2):5-8
    (373).王翰林.我国近1/3国土受酸雨危害.科技日报.2003年11月03日
    (374).王晓蓉,李伟,郑有良.栽培二粒小麦(Triticum dicoccum Schrank)主要农艺性状分析.四川农业大学学报.2007,25(3):239-243,248
    (375).王彦民,王竹林,奚亚军,刘曙东.波兰小麦对普通小麦醇溶蛋白的改良作用.麦类作物学报.2008,28(3):419-424
    (376).王银银,张保军,强小林,杨文平.不同类型小麦籽粒蛋白质及其组分的地域性表现.西藏科技,2001,8:18-22
    (377).王志清,龙海,郑有良,颜泽洪,魏育明,兰秀锦.西藏半野生小麦LMW-GS基因的克隆及序列.遗传学报.2005,32(1):86-93
    (378).魏育明,郑有良,周永红,刘登才,兰秀锦,颜泽洪,张志清.中国特有小麦Gli-1,Gli-2,和Glu-1位点的遗传多样性.植物学报,2001,43(8):834-839
    (379).吴征镒.西藏植物志.1987.北京:科学出版社
    (380).伍玲,朱华忠.四川省10年来小麦育种的产量变化.中国农学通报.2008,24(1):212-219
    (381).熊毅,李庆魁.中国土壤.北京:科学出版社,1987,39
    (382).许树军,董玉琛,陈尚安,周荣华,李秀全,李立会.小麦与山羊草双二倍体抗病性的研究与利用.作物学报.1990,16(2):106-111
    (383).许树军,董玉琛.波斯小麦×节节麦杂种F1直接形成双二倍体的细胞遗传学研究.作物学报.1989,15(3):251-260
    (384).颜济.五十年四川小麦育种研究的回顾与前瞻.四川农业大学学报.1999,17(1):108-113
    (385).颜泽洪,代寿芬,刘登才,魏育明,郑有良.西藏普通小麦地方品种特有高分子量谷蛋白亚基组合"Tibetan Dx5~*+Tibetan Dy10”中Tibetan Dy10亚基基因测序与分析.中国农业科学.2007,40(11):2403-2408
    (386).杨瑞武,周永红,郑有良,胡操.波兰小麦醇溶蛋白遗传差异及其与新疆稻麦的关系.麦类作物学报.2000b,20(4):1-5
    (387).杨瑞武,周永红,郑有良.几种特异小麦的醇溶蛋白电泳分析..四川农业大学学报2000a,18:15-17
    (388).杨武云,颜济,杨俊良.硬粒小麦.节节麦人工合成种Decoyl/Aegilops tauschii 510抗条锈性状(条中30,条中31)的遗传分析.西南农学报.1999,38:39-41
    (389).应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展.生态环境,2003,12(2):237-239
    (390).余遥,赵玉庭,熊道钜.四川小麦生产概况.余遥.四川小麦.成都:四川科技出版社.1998,PP.1-15
    (391).余遥.四川小麦学.成都:四川科学技术出版社.1998,pp.397-399
    (392).袁虹霞,李洪连,王守正.小麦近缘属种纹枯病的抗性鉴定.华北农学报.1998,13:26-29
    (393).曾兴权,吉万全,强小林,次珍,唐亚伟.西藏小麦品种资源HMW-GS组成研究.麦类作物学报.2005,25(2):98-101
    (394).扎桑.世界小麦高产区域气候生态条件.西藏科技,1997,1:45-49
    (395).张德玉,钟少斌,姚景侠小麦抗白粉病基因定位及其分子的研究进展.国外农学-麦类作物.1994,3:44-47
    (396).张冬芬,郑有良,魏育明,颜泽洪,张志清.圆锥小麦高分子量谷蛋白亚基组成分析.麦类作物学报,2003,23(3):29-32
    (397).张海泉,贾继增,杨虹,张宝石.来自粗山羊草抗条锈病基因的SSR标记.遗传,2008a,30(4):491-494
    (398).张海泉,贾继增,张宝石,周荣华.染色体定位粗山羊草抗小麦白粉病基因PmAeY1.中国科技导报.2006,8(4):19-22
    (399).张海泉,郎杰,马淑琴,张宝石.粗山羊草抗条锈病新基因YrY206遗传分析和微卫星标记.生物工程学报.2008b,24(8):1475-1479
    (400).张顒,杨武云,胡晓蓉,余毅,邹裕春,李青茂.源于硬粒小麦节节麦人工合成种的高产抗病小麦新品种川麦42主要农艺性状分析.西南农业学报.2004,17(2):141-145
    (401).张宗锦,刘世全,张世熔,邓良基,蒲玉琳,范宇.西藏酸性土壤的分布和酸度特征.四川农业大学学报.2003,21(4):322-327
    (402).赵福庚,何龙飞,罗庆云.植物逆境生理生态学.化学工业出版社.2004,PP-154
    (403).郑殿升.我国小麦的种及其变种.作物品种资源.1989,7:1-3
    (404).周阳.中国冬小麦产量潜力及重要农艺性状的遗传改良:[博士学位论文].杨陵:西北农林科技大学,2005:62-77.
    (405).朱振东,周荣华,董玉琛,贾继增.几个四倍体小麦.山羊草双二倍体及其部分亲本的抗小麦白粉病基因分析.植物遗传资源学报.2003,4(2):137-143
    (406).庄萍萍,郭志富,颜泽洪,魏育明,郑有良.波斯小麦高分子量谷蛋白亚基组成分析.西南农业学报.2006a,19(1):5-9
    (407).庄萍萍,李伟,魏育明,颜泽洪,郑有良.波斯小麦农艺性状相关性及主成分分析.麦类作物学报.2006b,26(4):11-14
    (408).庄萍萍,马昭才,张志清,魏育明,郑有良.波斯小麦醇溶蛋白遗传多样性分析.广西植物.2007,27(2):231-235
    (409).庄巧生,杜振华.中国小麦育种研究进展.中国农业出版社.1996,pp.1-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700