用户名: 密码: 验证码:
机械活化强化淀粉接枝改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是一种来源广泛、价格低廉、可完全降解的天然高分子物质。原淀粉由于力学性能差,低温时分散性能不好,渗透力差等缺点使应用受到限制,淀粉经过物理或化学方法引发,与丙烯腈、丙烯酰胺和丙烯酸等单体进行接枝共聚反应,形成淀粉接枝共聚物,从而可以制得不同性能的产品,它们在高分子絮凝剂、高吸水材料、造纸工业助剂、油田化学材料,可降解地膜以及塑料等多方面的实际应用中具有优异的性能。然而由于原淀粉具有半结晶的颗粒结构,结晶区的存在使得接枝反应只能在淀粉表面进行,导致难以制备高接枝率(G)和高接枝效率(GE)的产物。因此,研究如何通过减少淀粉结晶区的方法来提高淀粉的反应活性已成为一项极其重要的研究课题。
     本文采用自制的搅拌磨对淀粉进行机械活化,然后将机械活化淀粉用于淀粉接枝共聚反应,采用过硫酸铵和亚硫酸氢钠为复合引发剂、丙烯酰胺为单体进行接枝共聚反应,以G和GE为评价指标,考察了机械活化时间、反应时间、淀粉浓度、引发剂浓度、单体浓度、反应温度对其接枝反应的影响;并以接枝量(G_m)为评价指标,研究了不同活化时间机械活化淀粉的接枝共聚反应动力学;采用红外光谱(FTIR)、差示扫描(DSC)、X-射线衍射(XRD)和扫描电镜(SEM)对接枝产物进行了表征。根据实验结果和理论分析,得到如下主要结论:
     (1)在同样实验条件下,玉米原淀粉(糊化)及活化30、60min的淀粉的接枝反应G分别为93.68、108.60和143.71%,GE分别为58.93、62.67和86.27%;木薯原淀粉(糊化)及活化30、60min的淀粉的G分别为84.90、134.01和111.94%,GE分别48.36、82.61和71.36%,由此可见,玉米与木薯淀粉经过机械活化预处理后其反应活性明显提高;但木薯淀粉活化时间过长,G和GE略有下降,这是由于机械活化过度降解所造成。
     (2)在实验条件下,玉米原淀粉及活化30、60min淀粉接枝反应的表观活化能(E_g)分别为34.92、31.26、17.38kJ·mol~(-1),淀粉反应级数分别为0.49、0.44、0.40,单体反应级数分别为1.05、0.99、0.87,引发剂反应级数分别为0.50、0.46、0.39;木薯原淀粉及活化30、60min淀粉接枝反应的E_g分别为36.33、22.86、24.61kJ·mol~(-1),淀粉反应级数分别为0.50、0.44、0.46,单体反应级数分别为1.00、0.94、0.96,引发剂反应级数分别为0.50、0.45、0.47,与原淀粉(糊化)进行比较,机械活化淀粉的反应级数与活化能显著降低。表明机械活化对木薯、玉米淀粉的接枝反应有显著的强化作用,接枝反应对反应温度、单体浓度、引发剂浓度等依赖性降低,反应活性显著增强。
     (3)红外光谱(FTIR)分析表明丙烯酰胺已成功参与了淀粉的接枝共聚反应;差示扫描(DSC)测试表明,随着G的增加,淀粉接枝物的热稳定性显著提高,结晶度降低;X-射线衍射(XRD)和扫描电镜(SEM)研究表明接枝反应不仅发生在无定形区,而且也发生在结晶区,接枝反应对淀粉颗粒结晶结构影响显著。
Starch is a sort of natural polymer materials with wide source and low priceand can be completely degraded. Due to its poor mechanical performance, poordispersion property at low temperature and weak seepage force, native starchcan only find limited applications. After being initiated by physical or chemicalmethods, starch could be grafted with monomers such as acrylonitrile,acrylamide and acrylic acid and form graft copolymers with different properties,which may have potential applications in polymeric flocculants, super absorbentmaterials, paper manufacturing, petroleum chemical materials, degradable films,plastics and etc. However, starch granule usually has a semicrystalline structureand the graft reaction can only occur on the granule surface due to the hindranceof crystalline region, which makes it very difficult to prepare copolymer withhigh grafting ratio (G) and high grafting efficiency (GE). Therefore, how todecrease the ratio of crystalline region in starch granule and improve thereaction activity of starch, has become an important and hot research topic.
     In this thesis, maize and cassava starch were mechanically activated by astirring-type ball mill. Then the activated starches were used to fabricate graftcopolymer in the presence of monomer of acrylamide and combined initiators ofammonium persulfate and sodium bisulfate. Using G and GE as evaluatingparameters, the influences of activation time, reaction time, starch concentration,initiator concentration, monomer concentration and reaction temperature on thegraft reaction were investigated. Using grafted mass (G_m) as an evaluatingparameter, the kinetics of graft copolymerization was also studied. The graftcopolymers were characterized by Fourier transform infrared (FTIR)spectroscopy, differential scanning calorimeter (DSC), X-ray diffraction (XRD)and scanning electron microscopy (SEM). It was found that:
     (1) For the maize starch, the G values of the non-activated (aftergelatinization) starch, activated starch with activation time of 0.5h and 1.0h are93.68%, 108.60% and 143.71%, respectively; while the GE values are 58.93%,62.67% and 86.27%, respectively. For the cassava starch, the non-activated(after gelatinization) starch, activated starch with activation time of 0.5h and1.0h have G values of 84.90%, 134.01%, 111.94% and GE values of 48.36%,82.61%, 71.36%, respectively. It can be seen that the mechanical activationpretreatment could obviously enhance the starch graft reactivity. However, whenthe cassava starch is over-activated, the G and GE decrease slightly due to itsexcessive degradation.
     (2) For the graft copolymerization of maize starch, the native starch and activated starch with activation time of 0.5h and 1.0h have apparent activityenergies (E_g) of 34.92, 31.26, 17.38 kJ.mol~(-1), reaction orders of 0.49, 0.44, 0.40,monomer reaction orders of 1.05, 0.99, 0.87 and initiator reaction orders of 0.50,0.46, 0.39, respectively. For the graft copolymerization of cassava starch, thenative starch and activated starch with activation time of 0.5h and 1.0h have E_gof 36.33, 22.86, 24.61 kJ.mol~(-1), reaction orders of 0.50, 0.44, 0.46, monomerreaction orders of 1.00, 0.94, 0.96 and initiator reaction orders of 0.50, 0.45,0.47, respectively. These results clearly indicate that the mechanical activationprocessing could obviously decrease the reaction orders and activity energy, andtherefore enhance the starch graft copolymerization. The mechanical activationprocessing also weakens the dependence of the graft copolymerization on thereaction temperature, initiator concentration and monomer concentration.
     (3)The acrylamide is successfully involved in the starch graftcopolymerization, as is verified by the FTIR analysis. DSC results demonstratethat the thermal stability of the graft copolymers improves with the increase ofG and the crystallinity of the product decreases. XRD and SEM analysis revealsthat the graft reaction occurs not only in the amorphous region, but also in thecrystalline region of the starch. And the graft reaction has notable influence onthe crystal structure of the starch granule.
引文
[1] 张燕萍.变性淀粉制造应用[M].北京:化学工业出版社,2001:26,34-35,49-50
    [2] Daniel J G, Brigitte B, Paul M B. Microscopy of starch: evidence of a new level of granule organization [J]. Carbohydrate Polymers, 1997, 32(3-4): 177-191
    [3] Christopher G O. Towards an understanding of starch granule structure and hydrolysis [J]. Trends in Food Science & Technology, 1997, 8:375-382
    [4] 张本山,张友全,杨连生.玉米、木薯及马铃薯淀粉颗粒微晶结构及性质的研究[J].食品科学.2001,22(2):11-14
    [5] 张本山,张友全,曾新安,等.预糊化玉米淀粉亚微晶结构及性质研究[J].郑州工程学院学报,2001,21(4):23-26
    [6] Sarko A, Wu H C H. The crystal structures of A-, B- and C-polymorphs of amylose and starch [J]. Starch/Starke, 1978, 30:73-78
    [7] 刘亚伟.玉米淀粉生产及转化技术[M].北京:化学工业出版社,2003:150-151
    [8] Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment [J]. Cereal Chemistry, 1994, 71(2): 618-622
    [9] Singh J, Singh N. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches [J]. Food Hydrocolloids, 2003, 17(1): 63-72
    [10] Roberts S A, Cameron R E. The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinization [J]. Carbohydrate Polymers, 2002, 50(2): 133-143
    [11] Tako M, Hizukuri S. Gelatinization mechanism of potato starch [J]. Carbohydrate Polymers, 2002, 48(4): 397-401
    [12] 彭小敏,廖丹葵,柳雨春,等.高锰酸钾引发木薯淀粉与丙烯酰胺接枝共聚反应的研究[J].安徽工业大学学报,2005,22(1):30-38
    [13] 董延茂.淀粉接枝聚合物的研究与应用[D].苏州大学,2001
    [14] 张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999:59-71
    [15] 葛玉斌,吴永华,孙文田,等.多孔球状淀粉接枝共聚物的合成及其性质研究[J].高等学校化学学报,1997,18(6):978-980
    [16] 甘光奉,甘莉.天然改性有机高分子絮凝剂研究进展[J].石油与天然气化工.1996,25(1):55-58
    [17] Cao Y M, Qing X S, Sun J, et al. Graft copolymerization of acrylamide onto carboxymethyl starch[J]. European Polymer Journal, 2002, 38:1921-1924
    [18] 柳明珠.耐盐性高吸水树脂的制备及性能[J].高分子材料科学与工程,1993,9(5):26-28
    [19] 周家华.淀粉苯乙烯接枝高分子表面活性剂的性质研究[J].广州化工,2000,28(4):33-35
    [20] 庞金兴,黄可知,张超灿,等.改性聚醋酸乙烯酯乳液速粘胶的研制[J].武汉工业大学学报,2000,22(2):28-29
    [21] 龙明杰,张宏伟,曾繁森.高聚物土壤结构改良剂的研究[J].土壤学报,2001,38(4):584-589
    [22] Richard F T, John K, Xin Q. Starch—composition, fine structure and architecture [J]. Journal of Cereal Science, 2004, 39(2): 151-165
    [23] Christopher G O. Towards an understanding of starch granule structure and hydrolysis [J]. Trends in Food Science & Technology, 1997, 8: 375-382
    [24] 何小维,黄强,罗发兴,等.超声处理后的玉米淀粉与环氧丙烷的反应机理[J].华南理工大学学报(自然科学版),2005,33(8):91-94
    [25] Cao Y M, Qing X S, Sun J, Zhou F M, Lin S A. Graft copolymerization of acrylamide onto carboxymethyl starch [J]. European Polymer Journal, 2002, 38 (9): 1921-1924
    [26] Achremowicz B, Gumul D, Piasek A B, Tomasik P, Haberko K. Air oxidation of potato starch over Cu (Ⅱ) catalyst [J]. Carbohydrate Polymers, 2000, 42(1): 45-50
    [27] 杨铭铎,曲敏,李元瑞.氧化玉米淀粉磷酸酯的研究(Ⅱ)——基本性质的探讨[J].中国粮油学报,2001,16(5):50-54
    [28] 吕生华,马建中.降解淀粉/DMDAAC-AM接枝共聚物复鞣剂的合成及应用[J].精细化工,2003,20(9):561-563
    [29] Mostafa K M. Graft polymerization of methacrylic acid on starch and hydrolyzed starches [J]. Polymer Degradation and Stability, 1995, 50(2): 189-194
    [30] Shogren R L. Rapid preparation of starch estersby high temperature/pressure reaction [J]. Carbohydrate Polymers, 2003, 52 (3): 319-326
    [31] 刘粼.酶-化学复合法制备醋酸酯淀粉[J].食品科学,1999,(1):37-39
    [32] 吉宏武,丁霄霖,檀亦兵.百合淀粉糊化特性的研究[J].食品工业科技,2002,23(11):9-13
    [33] 刘钟栋,郭云昌,安红杰,等.谷物淀粉糊化过程中形态变化的显微研究[J].电子显微镜学报,2003,22(2):131-135
    [34] 张干伟,童群义.淀粉来源及预处理方式对淀粉接枝共聚的影响[J].无锡轻工业学院学报,2004,23(6):23-26
    [35] 潘汉松,王贞,黎国康,等.淀粉糊化对淀粉-丙烯酰胺接枝共聚的影响[J].精细化工,1993,10(4):56-60
    [36] 张世军.淀粉糊化对芋艿淀粉接枝聚丙烯酰胺共聚反应的影响[J].枣庄师专学报,1995.2:86-88
    [37] 梅小峰,朱谱新,吴大诚.淀粉糊化对接枝共聚反应的影响[J].棉纺织技术,2005, 33(5):261-264
    [38] 汤坚,丁霄霖.玉米淀粉的挤压研究(Ⅱa)[J].无锡轻工业学院学报,1992,11(2):92-103
    [39] 汤坚,丁霄霖.玉米淀粉的挤压研究(Ⅱb)[J].无锡轻工业学院学报,1994,13(1):1-9
    [40] Carr M E, Rim S, Yoon K J, etal. Graft polymerization of cationic methacrylate, Acrylamide, and acrylonitrile monomers onto starch by reactive extrusion[J]. Cereal Chemistry, 1992, 69(1): 70-75
    [41] Chinnaswamy R, Hanna M A. Extrusion graft starch Onto vinylic polymers[J]. Starch, 1991, 43: 396-402
    [42] 颜栋美,姚爱东.电离辐射在食品中的应用[J].食品科学,1996,(6):19-20
    [43] 陆冬梅,杨连生.水分对微波变性木薯淀粉颗粒物态性质的影响[J].化学工程师,2005,116(5):4-6
    [44] 罗雁彬,郑小霞,陈泽芳,等.丙烯酸与淀粉微波固相接枝共聚反应研究[J].化学研究与应用,1999,11(6):687-690
    [45] Suda Kiatkamjomwong, Wararuk Chomsaksakul, Manit Sonsuk, Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J]. Radiation Physics and Chemistry, 2000, 59: 413-427
    [46] Suda Kiatkamjomwong, Kanlaya Mongkolsawat, Manit Sonsuk, synthesis andproperty characterization of cassava starch grafted poly acrylamide-co-(maleic-acid) superabsorbent viaγ -irradiation[J]. polymer, 2002, 43: 3925-3924
    [47] 包华影,贾海胜,曲国翠,等.~(60)Co~γ射线预辐照制备淀粉-丙烯酰胺接枝物[J].辐射研究与辐射工艺学报,2000,18(4):263-267
    [48] 陈金周,黄灵阁,郑丙利,等.γ辐射玉米淀粉-MMA固相接枝的研究[J].高分子材料科学与工程,2005,21(5):286-288
    [49] H. Jacobs, A. Delcour. Hydrothermal modifycations of granular starch with retention of the granular structure[J]. Agricultrual Food Chemistry, 1998, 46(8): 2895-2905
    [50] Y. Isona, T. Kumagai etal. ultrasonic degradation of waxy rice starch [J]. Bioscience Biotechnology Biochemistry. 1994, 58(10): 1799-1802
    [51] 林建萍,黄强,楼建明.超声波在淀粉变性上的应用[J].上海纺织科技,2002,30(4):22-23
    [52] 张永和.超声波降解作用对淀粉性质的影响[J].食品工业(台湾),2001,33(6):19-31
    [53] 刘亚伟,张杰.酸解-水热处理对甘薯抗性形成的影响[J].食品科学,2003,24(6):41-45
    [54] Sisi. F. F. E, Abdel-Hafiz. S. A., Saleb A. R. etal, Behaviour of starch bearing nitrogen-containing moieties towards acid degradation [J]. PolymerDegradation and Stability, 1998, 62: 201-21
    [55] 吕生华,马建中,吕庆强,等.降解淀粉与乙烯基单体接枝聚合物的合成及应用[J],精细化工,2001,18(5):281-283
    [56] 祝志峰,周永元,张文赓.酸解、酯化预处理对接枝淀粉浆料上浆性能的影响[J].棉纺织技术,1995,23(12):721-723
    [57] 周中凯.氧化淀粉[J].农牧产品开发,1999(4):32-33
    [58] 赵军宁,杨宗邃,马建中,等.淀粉氧化降解条件与淀粉/丙烯酸类单体接枝共聚反应的关系[J].中国皮革,2004,33(21):13-16
    [59] 赵军宁,杨宗邃,鲍艳,等.氧化降解淀粉-乙烯基类单体接枝共聚反应的研究[J].中国皮革,2005,34(5):16-19
    [60] 龙剑英.淀粉接枝共聚物的合成及性能研究[D].北京:中国林业科学研究院,2003
    [61] 王航,黄立新,高群玉,等.多孔淀粉的研究进展[J].精细化工,2002,19(增):102-105
    [62] 曾洁,高海燕,李新华.酶解.氧化复合变性淀粉的研究[J].粮油加工与食品机械,2003,(6):47-49
    [63] 张本山,梁勇,杨连生,等.华南理工大学,酶法淀粉降解物及其制备方法[P].CN1390855,2003-01-15
    [64] 赵中伟,赵天从,李洪桂.固体机械力化学[J].湖南有色金属,1995,11(2):44-48
    [65] Boldyrev V V. Mechanical activation of solid and its application to technology [J]. Journal de Chimie Physique, 1986, 83(11-12): 821-829.
    [66] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation [J]. Materials Science and Engineering, 1997, 226-228: 95-98
    [67] 杨南如.机械力化学过程及效应(Ⅱ)机械力化学过程及应用[J].建筑材料学报,2000,3(2):93-97
    [68] Tromans D, Meech J A. Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation [J]. Minerals Engineering, 2001, 14(11): 1359-1377
    [69] Achimovicova M, Balaz P. Influence of mechanical activation on selectivity of acid leaching of arsenopyrite [J]. Hydrometallurgy, 2005, 77(1-2): 3-7
    [70] Balaz P, Ebert I. Oxidative leaching of mechanically activated sphalerite [J]. Hydrometallurgy, 1991, 27(2): 141-150
    [71] 黄祖强,黎铉海,潘柳萍.机械活化对锌焙砂浸出的影响[J].矿产综合利用,2002,(3):25-29
    [72] 李洪桂,杨家红,赵中伟,等.黄铜矿的机械活化浸出[J].中南工业大学学报,1998,29(1):28-31
    [73] 刘今,龙志奇,巩前明,等.力化学对铝土矿溶出的作用[J].中南工业大学学报,1999,30(3):266-269
    [74] Berbenni V, Milanese C, Bruni G, et al. Mechanochemically assisted solid-state synthesis of lithium gallates (LiGa_5O_8 and LiGaO_2) [J]. Materials Chemistry and Physics, 2005, 91(1): 180-184
    [75] Kumar S, Bandopadhyay A, Alex T C, et al. Influence of mechanical activation on the synthesis and hydraulic activity of calcium dialuminate [J]. Ceramics International, 2006, 32(5): 555-560
    [76] 李希明,陈家镛.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448
    [77] Takacs L. Solid state reactions induced by ball milling [J]. Hyperfine Interactions, 1998, 111: 245-250
    [78] 刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报,2002,14(4):32-35
    [79] 毋伟,邵磊,卢寿慈.机械力化学在高分子合成中的应用[J].化工新型材料,2000,28(2):10-13
    [80] 丁金龙,孙远明.机械力化学及其在生物材料中应用展望[J].食品与机械,2003,(4):4-6
    [81] 黄祖强,胡华宇,童张法,等.玉米淀粉的机械活化效果分析[J].化学工程,2006,34(10):51-54
    [82] 黄祖强,童张法,黎铉海,等.机械活化对木薯淀粉的溶解度及流变学特性的影响[J].高等化学工程学报,2006,20(3):449-454
    [83] 黄祖强,胡华宇,童张法,等.机械活化对木薯淀粉糊透明度的影响[J].过程工程学报,2006,6(3):51-54
    [84] Huang Z Q, Lu J P, Li X H, etal. Effect of mechanical activation onphysico-chemical properties and structure of cassava starch[J]. Carbohydrate Polymer Science, 2007, 68: 128-135
    [85] 黄祖强,胡华宇,童张法,等.玉米淀粉的机械活化及其流变特性研究[J].食品与机械,2006,22(1):50-52
    [86] 黄祖强,胡华宇,童张法,等.机械活化法制备冷水可溶性玉米淀粉的工艺研究[J].食品与发酵工业,2005,31(12):1-3
    [87] 黄祖强,童张法,黎铉海,等.冷水可溶性机械活化淀粉制备工艺的研究[J].兰州理工大学学报,2006,32(1):76-78
    [88] 葛学武,徐相凌,张志成,等.淀粉接枝丙烯酰胺制备絮凝剂的研究方法[J].高分子材料科学与工程,1999,15(4):130-132
    [89] 曹炳明,宋容钊.淀粉与丙烯酸接枝共聚的研究[J].化学世界,1992,33(1):19-22
    [90] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation. Materials Science and Engineering, 1997, A226-228:95-98
    [91] Kleiv R A, Thornhill M. Mechanical activation of olivine [J]. Minerals Engineering, 2006, 19(4): 340-347
    [92] Boldyrev V V, Pavlov S V, Goldberg E L. Interrelation between fine grinding and mechanical activation[J]. International Journal of Mineral Processing, 1996, 44(45): 181-185
    [93] 李文兵,王光华.速溶型聚丙烯酰胺的表征[J].武汉化工学院学报,2004,26(1):19-21
    [94] 李蕾,王光华,李文兵,等.淀粉接枝聚丙烯酰胺的结构究[J].应用化工,2006,35(3):213-216
    [95] 郑丙利.γ-辐射与化学引发淀粉-MMA的固相接枝[D].郑州:郑州大学,2004
    [96] 朱常英,由英才,赵幅凯,等.淀粉-醋酸乙酯-甲基丙烯酸甲酯接枝共聚物的合成及生物降解研究[J].高分子学报,1999,12(6):720-724
    [97] Athawale V D, Rathi S C. Syntheses and characterizationof starch poly (methacrylic acid) graft copolymers [J]. Apply Polymer Science, 1997, 66: 1399-1403.
    [98] 李和平.自交联型淀粉接枝共聚物的合成与动力学研究[D].大连:大连理工大学,2003
    [99] 喻发全,刘艳萍,黄世英,等.紫外光引发淀粉接枝丙烯腈反应动力学研究[J].高分子材料科学与工程,1999,15(5):62-65
    [100] 张东平.淀粉接枝丙烯酸类高吸水性树脂的合成及生物降解研究[D].上海:上海大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700