用户名: 密码: 验证码:
茶树—茶刺蛾—棒须刺蛾寄蝇间化学通讯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶刺蛾(Iragoides fasciata Moore)属鳞翅目刺蛾科,是茶树[Camellia sinensis (L.) O. Kuntze]的主要害虫之一。在一定条件下容易爆发成灾,它不但造成茶叶减产,甚至导致茶树死亡,而且严重妨碍了采茶与田间作业。茶刺蛾的防治目前主要依靠化学防治,鉴于化学农药的负面影响,新的无公害防治策略研究迫在眉睫。
     棒须刺蛾寄蝇(Chaetexorista palpis Chao)属于双翅目寄蝇科,我们在田间和室内观察发现,棒须刺蛾寄蝇是茶刺蛾新发现的寄生天敌,是茶园中影响茶刺蛾种群发生的重要寄生天敌。
     本文对茶树、茶刺蛾和棒须刺蛾寄蝇之间的化学通讯进行了探索,旨在为茶刺蛾的防治提供理论依据。
     茶园观察发现,茶刺蛾危害的茶园的棒须刺蛾寄蝇数量明显多于未危害的茶园。推测茶树被茶刺蛾危害后释放了特定的信号物质,这些物质在棒须刺蛾寄蝇寄主定位中起着关键的作用。为了证实这一猜想,我们研究了茶刺蛾危害对茶树挥发性有机物释放的影响,分别应用同时萃取蒸馏法和顶空动态吸附两种方法收集被茶刺蛾危害和未危害的茶叶的挥发性有机化合物,并用气相色谱质谱仪联用技术分析。前一个试验结果如下:未受害枝叶挥发性有机化合物共有63种组分,主要由酯类、醇类、烃类、酮类、杂环化合物、醛类、有机酸和醚类组成,烃类物质的相对含量占19.05%,而受害枝叶释放出的挥发物中烃类物质的相对含量增加到26.79%,反式-橙花叔醇、雪松醇、邻苯二甲酸二丁酯和邻苯甲酸二异丁酯的相对含量显著增加,此外,产生了32种新的组分,包括10种酯类、5种醇类、5种烯烃类、4种杂环类、3种芳香烃类、3种烷烃类、1种醛和1种酮。后一个试验结果如下:未受茶刺蛾危害的枝叶有挥发性有机物74种组分,其挥发物的组成同前者相似。与未受茶刺蛾危害枝叶的挥发物组分相比较,受害后酯类、醛类和烃类的种类数量和所占相对含量都有显著变化。醇、杂环化合物、醚和有机酸类化合物在种类数量和相对含量上变化不大。受害后,4-异丙基甲苯、蒎烯、1-乙基-2,4-二甲基苯、4-乙基甲苯、3-乙基-甲苯、6-甲基庚烯[5]酮[2]和1,2,4-三甲基苯的相对含量显著增加。新产生54种化合物,其中烯烃14种,芳香烃12种,酯8种,烷烃8种,酮5种,醇3种,醛2种,有机酸和杂环类各1种。值得注意的是受害后萜类化合物的种类数量和相对含量均有显著的变化,暗示这些化合物可能在棒须刺蛾寄蝇的寄主寻找过程中发挥作用。研究结果为筛选引诱天敌昆虫的化学信息素,并应用其防控茶刺蛾的研究奠定一定的基础。
     为了筛选茶刺蛾和棒须刺蛾寄蝇的引诱剂,我们研究了茶刺蛾雌雄蛾对属于4个化合物种类的26种茶树相关的挥发物和2种混合物的电生理反应和棒须刺蛾寄蝇雌雄个体对属于5个化合物种类的27种茶树相关的挥发物的反应。结果表明大多数化合物都能引起茶刺蛾和棒须刺蛾寄蝇触角较大的电生理反应,茶刺蛾和棒须刺蛾寄蝇对不同的化合物和化合物种类之间的反应存在差异,雌雄个体对多数化合物的反应也有差异。一般茶刺蛾雄蛾对大多数化合物的反应要强于雌蛾,而棒须刺蛾寄蝇则刚好相反。茶刺蛾雌雄蛾对倍半萜化合物的反应相对其它种类的化合物要弱些。剂量反应试验表明茶刺蛾对化合物的反应在性别和浓度上都存在差异,也说明了雌雄个体电生理反应存在二型性。在所有化合物中,雌性棒须刺蛾寄蝇对顺-3-己烯-1-醇的反应强烈,而雄性个体对顺-3-己烯乙酸酯的反应最大。绿叶挥发物能引起较大的反应,推测其在茶刺蛾和棒须刺蛾寄蝇的寄主定位中起到重要的作用。
     为了解释茶刺蛾雌雄蛾对茶树挥发物电生理反应的差异性,对其触角和触角感受器进行扫描电镜观察,茶刺蛾雌雄蛾触角表面一共发现了8种类型的感受器:毛形感受器、锥形感受器、刺形感受器、腔锥形感受器、Bohm氏鬃毛、鳞形感受器、叉形感受器和栓锥形感受器。鳞形感受器和叉形感受器只在雌蛾触角中发现,其它6种感受器在雌雄两性触角上的形态上没有明显的区别,但在数量和分布上有所差异。本研究为雌雄触角形态的二型性提供了超微结构水平上的证据。毛型感受器的数量在雌雄个体差异非常明显,这可能是茶刺蛾雌雄个体对茶树相关的挥发物的电生理反应的差异性的原因。
The tea slug moth, Iragoides fasciata Moore (Lepidoptera:Limacodidae), which can break out under certain conditions, is one of the major insect pests of tea (Camellia sinensis L.(Ericales:Theaceae)). It not only causes reduction of tea output, and even result in death of tea plant, but also seriously hampers field operations of tea farmers. Currently, the control of tea slug moth mainly rely on chemical control, In view of the negative impact of chemical pesticides, new control technologies of other insect pest based on researches on chemical ecology have been developed in recent years, and more and more scientists pay attention on it.
     C. palpis Chao (Diptera:Tachinidae), a newly discovered parasitic natural enemy based on our field and laboratory observation is an important parasitic natural enemy of tea slug moth.
     Here, Chemical communications among tea plant, tea slug moth, Chaetexorista palpis Chao were investigated to provide a theoretical basis for the control of tea slug moth.
     Observed in the tea garden, we found that the number of C. palpis in the tea plantations where tea plants were damaged by tea slug moth was significantly more than those undamaged. We speculate that tea plant would release specific signal substances which play a key role in host location (especially long distance) by C. palpis. In order to confirm this conjecture, the effect of the damaging of tea slug moth on the volatile organic compounds (VOCs) of tea plant was studied. VOCs from the undamaged and damaged tea plants were collected by simultaneous distillation extraction and dynamic headspace, then analyzed by gas chromatography/mass spectrometry (GC-MS). The results of the foraier showed that a total of sixty-three components, mainly esters, alcohols, hydrocarbons, ketones, heterocyclic compounds, aldehydes, organic acids and ethers were identified in the undamaged twigs and leaves, and the relative content of hydrocarbons was19.05%, while that from the damaged ones increased to26.79%, and the relative content of cis-nerolidol, cedar alcohol, dibutyl phthalate and phthalic acid was significantly increased. Furthermore, thirty-two new compounds were identified in the damaged ones, including ten esters, five alcohols, five olefins, four heterocyclics, three aromatic hydrocarbons, one alkane, one ketone and one aldehyde. The latter results indicated that a total of seventy-four components were identified in the undamaged twigs and leaves, and the composition of volatile compounds was similar to the former. Compared with the undamaged twigs and leaves, the number and relative content of ethers, aldehydes, and hydrocarbons changed evidently, while those of alcohols, heterocyclic compounds, ethers and organic acid compounds had little change. After damage, the relative content of4-cymene, pinene,1-ethyl-2,4-dimethylphenoxy,4-ethyltoluene, toluene-ethyl-6-methyl-heptene[5]ketone[2] and1,2,4-trimethylbenzene increased significantly, fifty-four new compounds were founded in the damaged ones, including of fourteen alkenes, twelve aromatic hydrocarbons, eight esters, eight alkanes, five ketones, three alcohols, two aldehydes, one heterocyclic and one organic acid. It is worth noting that the number and relative content of terpenoids significantly changed, suggesting that these compounds maybe play an important role on the host finding by C. palpis.The results can lay a foundation for screening infochemicals which can be used as a lure for natural enemies of insects and applied to control I.fasciata Moore
     In order to screen attractants for tea slug moth and C. palpis, Electroantennogram responses to a wide range of plant volatile compounds that have been identified in tea plants were recorded from males and females of the tea slug moth and C. palpis. The responses to26compounds, belonging to several chemical classes, and two mixtures were evaluated for tea slug moth, while27compounds for C. palpis. The results showed that most of the compounds can elicit significant electrophysiological responses in both tea slug moth and C. palpis. There were significant different electroantennogram responses to the different chemicals, different types of compounds,as well as significantly different responses according to gender in these two species. In general, the antennae of males of tea slug moth were more sensitive, and responded more strongly, to most of the compounds, while it was just the reverse in C. palpis, Responses to sesquiterpenoids were lower in both males and females of tea slug moth. Dose-dependent response studies indicated differences in response between genders and concentrations, suggesting the existence of sexual dimorphism in tea slug moth. In C. palpis, females responed more strongly to cis-3-hexene-1-alcohol, while males to cis-3-hexenyl acetate. Compounds belonging to green leaf volatiles class elicited significantly greater responses in both males and females in tea slug moth and C. palpis. we speculated that they might be important clues in host-plant selection by this oligophagous species and its parasitic natural enemy.
     In order to explain the differences of electrophysioiogical responses of the male and female of tea slug moth to some plant volatiles associated with tea, the antenna and antennal sensilla of tea slug moth were investigated by scanning electron microscopy. Eight types of antennal sensilla were found in the antenna: sensilla trichodea(ST), sensilla basiconica(SB), sensilla chaetica (SC), sensilla coeloconica (SCo), bohm bristles (BB), sensilla squamiformiaa (SS), sensilla furcatea(SF), sensilla styloconica(SST). Two types of antennal sensilla,sensilla squamiformiaa and sensilla furcatea were only found in female.There were no obvious sexual differences in sensillum morphology for the other six types of antennal sensilla, but a certain differences in distribution and quantity for these types. This study provided ultrastructural evidence for the sexual morphological dimorphism of the antenna. Obvious differences in the number of sensilla chaetica between male and female may be serve as the explanation for the differences of electrophysiological responses of the male and female of tea slug moth to some plant volatiles associated with tea.
引文
[1]陈信祥,罗新国.茶刺蛾的发生与防治[J].茶叶,1996,(01):27-32.
    [2]叶恭银,胡萃,洪健,等.茶奕刺蛾核型多角体病毒形态和毒力的研究[J].浙江农业学报,1992,(03):133-136.
    [3]李金德,张觉晚.茶刺蛾生活史及防治的初步观察[J].昆虫知识,1965,(06):342-344.
    [4]彭银辉,张觉晚.茶刺蛾核型多角体杆状病毒的初步研究[J].中国茶叶,1982,(03):27.
    [5]杨志荣,刘世贵,伍铁桥,等.茶刺蛾颗粒体病毒的分离与鉴定[J].中国病毒学,1991,(04):374-375+398.
    [6]吕文明,楼云芬.茶刺蛾暴发成灾因子的探讨[J].中国茶叶,1989,(01):18-19.
    [7]王思政,徐国宇.《安徽省刺蛾科害虫调查初报》补遗[J].安徽农业科学,1982,(02):70.
    [8]《中国农作物病虫图谱》编绘组.中国农作物病虫图谱--茶树病虫[M].1985.
    [9]赖传碧.茶刺蛾生活习性的初步观察及药剂防治试验[J].广西农业科学,1987,(05):39-40+28.
    [10]刘三林.茶奕刺蛾生物学特性及防治技术研究[J].湖南林业科技,2001,(01):26-28.
    [11]刘新民,黄天荃,鲍培谛,等.茶刺蛾颗粒体病毒病毒粒子的表面增强拉曼散射(SERS)光谱研究[J].生物物理学报,1993,(01):6-9.
    [12]唐美君,肖强,郭华伟,等.茶刺蛾核型多角体病毒实用剂型的配制[J].茶叶,2007,33(02):82-84.
    [13]陈德兰.樟树新害虫—窃达刺蛾的研究[J].华东昆虫学报,1998,(02):48-50.
    [14]中科院动物所业务处.拉英汉昆虫名称[M].北京:科学出版社,,1983.
    [15]洪北边,楼云芬.茶树害虫在黑光灯下的诱杀消长[J].茶叶,1997,(03):36-38.
    [16]罗细明,李盛华,任全,等.丘陵茶区应用频振式杀虫灯诱杀茶园害虫及控制效果分析[J].湖南农业科学,2006,(05):86-88.
    [17]杨丽荣,肖强,冷杨,等.茶刺蛾核型多角体病毒与其它杆状病毒关系的基因分析[J].茶叶科学,2005,(01):65-70.
    [18]唐美君,肖强,郭华伟,等.茶刺蛾核型多角体病毒制剂示范应用试验[J].中国茶叶,2007,(03):28-29.
    [19]杨志荣,刘世贵,伍铁桥,等.茶刺蛾颗粒体病毒生物学特性和应用研究初报[J].植物保护学报,1994,(04):357-361.
    [20]杨志荣,刘世贵,伍铁桥,等.茶刺蛾[Darna trima(more)]颗粒体病毒鉴定及核酸 与蛋白质特性的初步研究[J].四川大学学报(自然科学版),1991,(02):231-237.
    [21]刘新民,黄天荃,鲍培谛,等.茶刺蛾颗粒体病毒色涵体的拉曼光谱研究[J].光散射学报,1992,(02):139-142.
    [22]刘新民,黄天荃,伍铁桥,等.茶刺蛾颗粒体病毒包涵体的表面增强拉曼散射光谱研究[J].光谱学与光谱分析,1992,(03):29-32.
    [23]张觉晚.敌敌畏与杀螟硫磷对茶树害虫的药效试验初报[J].茶叶科学,1966,(01):41-46.
    [24]陈廷弟.黎平县茶园主要病虫害发生与防治措施[J].植物医生,2007,(02):30-32.
    [25]洪北边.为害茶树刺蛾种类的主要习性与防治[J].茶叶通讯,1991,(04):22-24.
    [26]张觉晚.湖南茶树主要害虫的综合防治[J].茶叶通讯,1983,(02):18-22.
    [27]张特全.茶园农药—拟除虫菊酯类[J].茶叶通讯,1987,(04):48.
    [28]陈常铭,宋慧英,萧铁光.湖南茶树害虫寄蝇类天敌调查[J].湖南农学院学报,1993,(06):585-590.
    [29]Mora C, Tittensor DP, Adl S, et al. How many species are there on earth and in the ocean?[J]. PLoS Biol,2011,9(8):e1001127.
    [30]孙儒泳,李庆芬,牛翠娟.基础生态学[M].高等教育出版社,2002.
    [31]Schoonhoven LM, Loon JJAv, Dicke M. Insect-Plant Biology[M].2nd edn Oxford: Oxford Univ. Press,2005.
    [32]Dicke M, Sabelis MW. Infochemical terminology:based on cost-benefit analysis rather than origin of compounds?[J]. Functional Ecology,1988,2(2):131-139.
    [33]Vet LEM, Dicke M. Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context[J]. Annual Review of Entomology,1992,37(1):141-172.
    [34]Hare JD. How Insect Herbivores Drive the Evolution of Plants [J]. Science,2012, 338(6103):50-51.
    [35]Futuyma DJ, Agrawal AA. Evolutionary history and species interactions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(43):18043-18044.
    [36]Price PW, Bouton CE, Gross P, et al. Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies[J]. Annual Review of Ecology and Systematics,1980,11(1):41-65.
    [37]Charron CS, Cantliffe DJ, Heath RR,'volatile emissions from plants', in Horticultural ReviewsJohn Wiley & Sons, Inc.,1995), pp.43-72.
    [38]Bicchi C, D'Amato A, David F, et al. Direct capture of volatiles emitted by living plants. Part Ⅱ[J]. Flavour and Fragrance Journal,1988,3(4):143-153.
    [39]Maes K. Volatiles emitted by plants[J].2002,
    [40]Metcalf RL, Kogan M. Plant volatiles as insect attractants[J]. Critical Reviews in Plant Sciences,1987,5(3):251-301.
    [41]Knudsen J, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent[J]. The Botanical Review,2006,72(1):1-120.
    [42]Dudareva N, Pichersky E, Gershenzon J. Biochemistry of Plant Volatiles[J]. Plant Physiology,2004,135(4):1893-1902.
    [43]Dudareva N, Negre F, Nagegowda DA, et al. Plant volatiles:recent advances and future perspectives[J]. Critical Reviews in Plant Sciences,2006,25(5):417-440.
    [44]杜家纬.植物—昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27(3):193-200.
    [45]Dudareva N, Pichersky E. Biochemical and molecular genetic aspects of floral scents[J]. Plant Physiology,2000,122(3):627-634.
    [46]Dixon RA. Natural products and plant disease resistance[J]. Nature,2001,411(6839): 843-847.
    [47]邓晓军,陈晓亚,杜家纬.植物挥发性物质及其代谢工程[J].植物生理与分子生物学学报,2004,30(1):11-18.
    [48]赵印泉,周斯建,彭培好,等.不同类型梅花品种及近缘种山桃挥发性成分分析[J].安徽农业科学,2011,(26):16164-16165.
    [49]张莹,王雁,李振坚,等.不同石斛兰香气成分的GC-MS分析[J].广西植物,2011,(03):422-426.
    [50]乜兰春,孙建设,陈华君,等.苹果不同品种果实香气物质研究[J].中国农业科学,2006,(03):641-646.
    [51]Elzen GW, Williams HJ, Bell AA, et al. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography[J]. Journal of Agricultural and Food Chemistry,1985,33(6):1079-1082.
    [52]Oh S, Lim B, Hong S, et al. Aroma volatile changes of netted muskmelon (Cucumis melo; L.) fruit during developmental stages[J]. Horticulture, Environment, and Biotechnology,2011,52(6):590-595.
    [53]Baldwin EA, Nisperos-Carriedo MO, Moshonas MG. Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening[J]. Journal of the American Society for Horticultural Science,1991,116(2): 265-269.
    [54]Fellman JK, Miller TW, Mattinson DS, et al. Factors that influence biosynthesis of volatile flavor compounds in apple fruits[J]. HortScience,2000,35(6):1026-1033.
    [55]Visai C, Vanoli M. Volatile compound production during growth and ripening of peaches and nectarines[J]. Scientia Horticulturae,1997,70(1):15-24.
    [56]Sutherland ORW, Wearing CH, Hutchins RFN. Production of alpha-farnesene, an attractant and oviposition stimulant for codling moth, by developing fruit of 10 varieties of apple[J]. Journal of Chemical Ecology,1977,3(6):625-631.
    [57]Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs[J]. Trends in Plant Science,2010,15(3):176-184.
    [58]Tingey DT, Manning M, Grothaus LC, et al. Influence of light and temperature on monoterpene emission rates from slash pine[J]. Plant Physiology,1980,65(5):797.
    [59]Kesselmeier J, Staudt M. Biogenic volatile organic compounds (voc):an overview on emission, physiology and ecology[J]. Journal of Atmospheric Chemistry,1999,33(1): 23-88
    [60]Schuh G, Heiden AC, Hoffmann T, et al. Emissions of volatile organic compounds from sunflower and beech:dependence on temperature and light intensity [J]. Journal of Atmospheric Chemistry,1997,27(3):291-318.
    [61]Pinto DM, Blande JD, Souza SR, et al. Plant volatile organic compounds (VOCs) in ozone (o-3) polluted atmospheres:the ecological effects[J]. Journal of Chemical Ecology,2010,36(1):22-34.
    [62]Heiden AC, Hoffmann T, Kahl J, et al. Emission of volatile organic compounds from ozone-exposed plants[J]. Ecological Applications,1999,9(4):1160-1167.
    [63]Penuelas J, Llusia J, Gimeno B. Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region[J]. Environmental Pollution, 1999,105(1):17-23.
    [64]张艳峰,谢映平,薛皎亮,等.茉莉酸甲酯和日本龟蜡蚧诱导柿树挥发物对红点唇瓢虫的吸引(英文)[J].林业科学,2009,(01):90-96.
    [65]杨帆.水杨酸、茉莉酸甲酯诱导黄瓜对西花蓟马(缨翅目:蓟马科)的抗性[D].华中农业大学,2009.
    [66]王立春,任琴,许志春,等.茉莉酸甲酯对马尾松松针萜烯类挥发物及马尾松毛虫生长发育的影响[J].北京林业大学学报,2008,(01):79-84.
    [67]Ebel RC, Mattheis JP, Buchanan DA. Drought stress of apple trees alters leaf emissions of volatile compounds[J]. Physiologia Plantarum,1995,93(4):709-712.
    [68]Hansen U, Seufert G. Terpenoid emission from citrus sinensis (L.) OSBECK under drought stress[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,1999,24(6):681-687.
    [69]Bracho-Nunez A, Knothe NM, Costa WR, et al. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short-and long-term inundation of trees from Amazonian floodplains[J]. SpringerPlus,2012,1(1):9.
    [70]Nottingham SF, Hardie J, Dawson GW, et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles[J]. Journal of Chemical Ecology,1991,17(6):1231-1242.
    [71]Thiery D, Visser JH. Misleading the colorado potato beetle with an odor blend[J]. Journal of Chemical Ecology,1987,13(5):1139-1146.
    [72]Ioriatti C, Anfora G, Tasin M, et al. Chemical ecology and management of Lobesia botrana (Lepidoptera:Tortricidae)[J]. Journal of Economic Entomology,2011,104(4): 1125-1137.
    [73]李坤.烟夜蛾和棉铃虫对两种烟草的产卵选择性研究及引诱剂初步筛选[D].河南农业大学,2006.
    [74]Turlings TC, Loughrin JH, McCall PJ, et al. How caterpillar-damaged plants protect themselves by attracting parasitic wasps[J]. Proceedings of the National Academy of Sciences,1995,92(10):4169-4174.
    [75]De Moraes CM, Lewis WJ, Pare PW, et al. Herbivore-infested plants selectively attract parasitoids[J]. Nature,1998,393(6685):570-573.
    [76]Rose U, Manukian A, Heath RR, et al. Volatile Semiochemicals Released from Undamaged Cotton Leaves (A Systemic Response of Living Plants to Caterpillar Damage)[J]. Plant Physiology,1996,111(2):487-495.
    [77]Pare PW, Tumlinson JH. Plant volatiles as a defense against Insect Herbivores [J]. Plant Physiology,1999,121(2):325-332.
    [78]郭祥令,何余容,潘飞,等.植物挥发物在寄生蜂寄主定位中的作用[J].中国生物防治学报,2011,27(3):388-393.
    [79]Loughrin J, Manukian A, Heath R, et al. Volatiles emitted by different cotton varieties damaged by feeding beet army worm larvae[J]. Journal of Chemical Ecology,1995, 21(8):1217-1227.
    [80]Sharkey TD. Emission of low molecular mass hydrocarbons from plants[J]. Trends in Plant Science,1996,1(3):78-82.
    [81]Tollsten L, Miiller PM. Volatile organic compounds emitted from beech leaves[J]. Phytochemistry,1996,43(4):759-762.
    [82]Markovic I, Norris DM, Phillips JK, et al. Volatiles involved in the nonhost rejection of Fraxinus pennsylvanica by Lymantria dispar larvae[J]. Journal of Agricultural and Food Chemistry,1996,44(3):929-935.
    [83]Mattiacci L, Dicke M, Posthumus MA. Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae:Role of mechanical damage and herbivore elicitor[J]. Journal of Chemical Ecology,1994,20(9): 2229-2247.
    [84]Takabayashi J, Dicke M, Posthumus MA. Volatile herbivore-induced terpenoids in plant-mite interactions:Variation caused by biotic and abiotic factors [J]. Journal of Chemical Ecology,1994,20(6):1329-1354.
    [85]许宁,陈宗懋.引诱茶尺蠖天敌寄生蜂的茶树挥发物的分离与鉴定[J].昆虫学报,1999,42(2):126-131.
    [86]Mithofer A, Wanner G, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission[J]. Plant Physiology,2005, 137(3):1160-1168.
    [87]Leitner M, Boland W, Mithofer A. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula[J]. New Phytologist, 2005,167(2):597-606.
    [88]Arimura G, Volpe V, Kunert M, et al.,'Terpenoid biosynthesis and signaling in legume plants in response to herbivorous damage', in Advances in Plant Ethylene Research,2007), pp.353-358.
    [89]Pare PW, Tumlinson JH. Induced synthesis of plant volatiles[J]. Nature,1997, 385(6611):30-31.
    [90]李欣.信息化合物在小菜蛾和半闭弯尾姬蜂寄主选择中的作用[D].浙江大学,2002.
    [91]Schreier P. Chromatographics studies of biogenesis of plant volatiles[M].Dr. Alfred Heuthig,1984.
    [92]Whitman DW, Eller FJ. Parasitic wasps orient to green leaf volatiles[J]. Chemoecology,1990,1(2):69-76.
    [93]Hatanaka A. The biogeneration of green odour by green leaves[J]. Phytochemistry, 1993,34(5):1201-1218.
    [94]Pare P, Alborn H, Tumlinson J. Concerted biosynthesis of an insect elicitor of plant volatiles[J]. Proceedings of the National Academy of Sciences,1998,95(23):13971.
    [95]Langenheim JH. Higher plant terpenoids:A phytocentric overview of their ecological roles[J]. Journal of Chemical Ecology,1994,20(6):1223-1280.
    [96]Pare PW, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants[J]. Plant Physiology,1997,114(4):1161-1167.
    [97]Dicke M, Takabayashi J, Posthumus MA, et al. Plant—Phytoseiid Interactions Mediated by Herbivore-Induced Plant Volatiles:Variation in Production of Cues and in Responses of Predatory Mites[J]. Experimental and Applied Acarology,1998,22(6): 311-333.
    [98]Turlings TCJ, Lengwiler UB, Bernasconi ML, et al. Timing of induced volatile emissions in maize seedlings[J]. Planta,1998,207(1):146-152.
    [99]Halitschke R, Kessler A, Kahl J, et al. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata[J]. Oecologia,2000,124(3):408-417.
    [100]陈宗懋,许宁,韩宝瑜,等.茶树—害虫—天敌间的化学信息联系[J].茶叶科学,2003,23(B06):38-45.
    [101]Takabayashi J, Takahashi S, Dicke M, et al. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants[J]. Journal of Chemical Ecology,1995,21(3):273-287.
    [102]Geervliet JBF, Posthumus MA, Vet LEM, et al. Comparative Analysis of Headspace Volatiles from Different Caterpillar-Infested or Uninfested Food Plants of Pieris Species[J]. Journal of Chemical Ecology,1997,23(12):2935-2954.
    [103]Turlings TCJ, Bernasconi M, Bertossa R, et al. The induction of volatile emissions in maize by three herbivore species with different feeding habits:possible consequences for their natural enemies[J]. Biological Control,1998,11(2):122-129.
    [104]Dicke M, van Loon JJA. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context[J]. Entomologia Experimentalis Et Applicata,2000,97(3): 237-249.
    [105]Dicke M, Dijkman H. Induced defence in detached uninfested plant leaves:effects on behaviour of herbivores and their predators [J]. Oecologia,1992,91(4):554-560.
    [106]Dicke M, Baarlen P, Wessels R, et al. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore:Extraction of endogenous elicitor[J]. Journal of Chemical Ecology,1993,19(3):581-599.
    [107]Dicke M. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism[J]. Journal of Plant Physiology,1994,143(4-5): 465-472.
    [108]Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps[J]. Science,1990,250(4985):1251-1253.
    [109]Turlings TC, Tumlinson JH. Systemic release of chemical signals by herbivore-injured corn[J]. Proceedings of the National Academy of Sciences,1992,89(17):8399-8402.
    [110]Rose USR, Lewis WJ, Tumlinson JH. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps[J]. Journal of Chemical Ecology,1998,24(2):303-319.
    [111]Rose U, Tumlinson J. Systemic induction of volatile release in cotton:How specific is the signal to herbivory?[J]. Planta,2005,222(2):327-335.
    [112]Dicke M, Sabelis M. Do plants cry for help?[J]. Acta botanica neerlandica,1990,39: 112.
    [113]Baldwin IT, Kessler A, Halitschke R. Volatile signaling in plant-plant-herbivore interactions:what is real?[J]. Current Opinion in Plant Biology,2002,5(4):351-354.
    [114]Baldwin IT, Halitschke R, Paschold A, et al. Volatile signaling in plant-plant interactions:"Talking trees" in the genomics era[J]. Science,2006,311(5762): 812-815.
    [115]Baldwin IT. Plant volatiles[J]. Current Biology,2010,20(9):R392-R397.
    [116]Acin P, Rosell G, Guerrero A, et al. Sex pheromone of the spanish population of the beet armyworm spodoptera exigua[J]. Journal of Chemical Ecology,2010,36(7): 778-786.
    [117]Dicke M, Grostal P. Chemical detection of natural enemies by arthropods:an ecological perspective[J]. Annual Review of Ecology and Systematics,2001:1-23.
    [118]Karban R. Neighbors affect resistance to herbivory--a new mechanism[J]. New Phytol, 2010,186(3):564-6.
    [119]Bruin J, Sabelis MW. Meta-analysis of laboratory experiments on plant-plant information transfer[J]. Biochemical Systematics and Ecology,2001,29(10): 1089-1102.
    [120]Bruin J, Dicke M, Sabelis MW. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics[J]. Cellular and Molecular Life Sciences (CMLS),1992,48(5):525-529.
    [121]Bruin J, Sabelis M, Takabayashi J, et al. Uninfested plants profit from their infested neighbours[C].1991:103-108.
    [122]Bruin J, Sabelis MW, Dicke M. Do plants tap SOS signals from their infested neighbours?[J]. Trends in ecology & evolution,1995,10(4):167-170.
    [123]Shonle I, Bergelson J. Interplant Communication Revisited[J]. Ecology,1995,76(8): 2660-2663.
    [124]Loughrin JH, Manukian A, Heath RR, et al. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant[J]. Proceedings of the National Academy of Sciences,1994,91(25):11836.
    [125]Loughrin JH, Potter DA, Hamilton-Kemp TR, et al. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves[J]. Phytochemistry,1997,45(5): 919-923.
    [126]胡永建,任琴,金幼菊,等.马尾松(Pinus massoniana),湿地松(Pinus elliottii)挥发性化学物质的昼夜节律释放[J].生态学报,2007,27(2)
    [127]Visser JH, Nielsen JK. Specificity in the olfactory orientation of the colorado beetle, leptinotarsa decemlineata[J]. Entomologia Experimentalis Et Applicata,1977,21(1): 14-22.
    [128]丁红建,郭予元,吴才宏.棉铃虫蛾对寄主植物挥发油的嗅觉[J].昆虫学报,1997,
    [129]赵成华,阎云花.马尾松针叶中的挥发物质对马尾松毛虫产卵行为的影响[J].林业科学,2003,39(6):91-93.
    [130]赵成华,伍德明.马尾松针叶中挥发性成分的鉴定及其对马尾松毛虫的触角电位反应[J].林业科学,1995,31(002):125-131.
    [131]鲁玉杰,张孝羲.信息化合物对昆虫行为的影响[J].昆虫知识,2001,38(4):262-266.
    [132]Leal WS, Uchida K. Application of GC-EAD to the Determination of Mosquito Repellents Derived from a Plant, Cymbopogon citratus[J]. Journal of Asia-Pacific Entomology,1998,1(2):217-221.
    [133]Pallini A, Janssen A, Sabelis MW. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors[J]. Oecologia,1997,110(2):179-185.
    [134]De Moraes CM, Mescher MC, Tumlinson JH. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature,2001,410(6828):577-580.
    [135]Dicke M. Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranychus urticae[J].Physiological Entomology,1986,11(3):251-262.
    [136]Turlings TCJ, Tumlinson JH. Do parasitoids use herbivore-induced plant-chemical defenses to locate hosts[J]. Florida Entomologist,1991,74(1):42-50.
    [137]Harari AR, Benyakir D, Rosen D. Mechanism of aggregation behavior in maladera-matrida argaman (coleoptera, scarabaeidae)[J]. Journal of Chemical Ecology,1994,20(2):361-371.
    [138]Dicke M, Sabelis MW, Takabayashi J, et al. Plant strategies of manipulating predatorprey interactions through allelochemicals:Prospects for application in pest control[J]. Journal of Chemical Ecology,1990,16(11):3091-3118.
    [139]Turlings T. Chemically Mediated Searching Behaviour of Parasitoids[D]. Swiss Federal Institute of Technology Zurich,1998.
    [140]Daza-Bustamante P, Fuentes-Contreras E, Rodriguez LC, et al. Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity [J]. Entomologia Experimentalis Et Applicata,2002,104(2-3): 321-328.
    [141]Takabayashi J, Dicke M. Plant—carnivore mutualism through herbivore-induced carnivore attractants[J]. Trends in Plant Science,1996,1(4):109-113.
    [142]Peng J, van Loon JJA, Zheng S, et al. Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants [J]. Plant Biology,2011,13(2):276-284.
    [143]Raina AK, Kingan TG, Mattoo AK. Chemical signals from host plant and sexual-behavior in a moth[J]. Science,1992,255(5044):592-594.
    [144]Landolt PJ, Phillips TW. Host plant influences on sex pheromone behavior of phytophagous insects[J]. Annual Review of Entomology,1997,42:371-391.
    [145]Stashenko EE, Martinez JR. GC-MS Analysis of volatile plant secondary metabolites[J].2012,
    [146]SAPKALE G, PATIL S, SURWASE U, et al. Supercritical fluid extraction[J]. International Journal of Chemical Sciences 2010,8(2):729-743
    [147]娄永根,程家安.植物-植食性昆虫-天敌三营养层次的相互作用及其研究方法[J].应用生态学报,1997,8(3):325-331.
    [148]Likens S, Nickerson G. Detection of certain hop oil constituents in brewing products[C].1964:13-19.
    [149]Chaintreau A. Simultaneous distillation-extraction:from birth to maturity-review[J]. Flavour and Fragrance Journal,2001,16(2):136-148.
    [150]Godefroot M, Sandra P, Verzele M. New method for quantitative essential oil analysis[J]. Journal of Chromatography A,1981,203:325-335.
    [151]Blanch GP, Tabera J, Herraiz M, et al. Preconcentration of volatile components of foods:optimization of the steam distillation-solvent extraction at normal pressure [J]. Journal of Chromatography A,1993,628(2):261-268.
    [152]Seidel V, Lindner W. Universal sample enrichment technique for organochlorine pesticides in environmental and biological samples using a redesigned simultaneous steam distillation-solvent extraction apparatus[J]. Analytical Chemistry,1993,65(24): 3677-3683.
    [153]郑浩,杨长举,华红霞,等.与昆虫有关的植物挥发性次生物质的研究方法[J].昆虫知识,2002,39(1):9-13.
    [154]Knudsen JT, Tollsten L, Bergstrom LG. Floral scents—a checklist of volatile compounds isolated by head-space techniques [J]. Phytochemistry,1993,33(2): 253-280.
    [155]Vuckovic D, Zhang X, Cudjoe E, et al. Solid-phase microextraction in bioanalysis: New devices and directions[J]. Journal of Chromatography A,2010,1217(25): 4041-4060.
    [156]Risticevic S, Niri VH, Vuckovic D, et al. Recent developments in solid-phase microextraction[J]. Analytical and Bioanalytical Chemistry,2009,393(3):781-795.
    [157]Ouyang G, Pawliszyn J. SPME in environmental analysis[J]. Analytical and Bioanalytical Chemistry,2006,386(4):1059-1073.
    [158]Kataoka H, Saito K. Recent advances in SPME techniques in biomedical analysis [J]. Journal of Pharmaceutical and Biomedical Analysis,2011,54(5):926-950.
    [159]Balasubramanian S, Panigrahi S. Solid-phase microextraction (SPME) techniques for quality characterization of food products:A Review[J]. Food and Bioprocess Technology,2011,4(1):1-26.
    [160]杜家伟.昆虫信息素及其应用,北京:中国林业出版社,1988.
    [161]丁红建,郭予元,吴才宏.用于昆虫嗅觉行为研究的四臂嗅觉仪的设计,制作和应用[J].昆虫知识,1996,33(4):241-243.
    [162]周弘春,杜家纬.风洞技术在昆虫化学通讯研究中的应用[J].昆虫知识,2001,38(4):267-272.
    [163]Kuenen LPS, McElfresh JS, Millar JG. Identification of Critical Secondary Components of the Sex Pheromone of the Navel Orangeworm (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology,2010,103(2):314-330.
    [164]Tasin M, Backman AC, Anfora G, et al. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants[J]. Chemical Senses,2010, 35(1):57-64.
    [165]Addesso KM, McAuslane HJ, Alborn HT. Attraction of pepper weevil to volatiles from damaged pepper plants [J]. Entomologia Experimentalis Et Applicata,2011, 138(1):1-11.
    [166]Kainoh Y,'Wind Tunnel:a Tool to Test the Flight Response of Insects to Semiochemicals', in Wind Tunnels and Experimental Fluid Dynamics Research, ed. by Lerner JC and Boldes UInTech,2011), pp.89-98.
    [167]Baker T, Linn Jr C,'Wind tunnels in pheromone research', in Techniques in Pheromone Research, ed. by Hummel HE and Miller TA (New York:Springer-Verlag, 1984), pp.75-110.
    [168]赵新成,阎云花,王睿,等.昆虫神经生物学研究技术:触角电位图记录[J].昆虫知识,2004,41(3):270-274.
    [169]方宇凌,张钟宁.触角电位(EAG)实验中一些问题的探讨[C].2002:155-156-157.
    [170]田厚军,陈艺欣,黄玉清.昆虫触角电位技术的研究进展[J].福建农业学报,2011, 5
    [171]马瑞燕,杜家纬.昆虫的触角感器[J].昆虫知识,2000,37(3):179-183.
    [172]孔祥波,王睿,高伟,等.气相色谱与触角电位检测器联用技术及其应用[J].昆虫知识,2001,38(4):304-309.
    [173]Moorhouse JE, Yeadon R, Beevor PS, et al. Method for Use in Studies of Insect Chemical Communication[J]. Nature,1969,223(5211):1174-1175.
    [174]LEAL WS, KADOSAWA T. (E)-2-Hexenyl hexanoate, the alarm pheromone of the bean bug Riptortus clavatus (Heteroptera:Alydidae)[J]. Bioscience, biotechnology, and biochemistry,1992,56(6):1004-1005.
    [175]Barend V. Burger AEN, Warren G. B. Petersen,. Analysis of pheromones:Enrichment on thick film capillary traps and GC detection with a living detector (EAD)[J]. Journal of High Resolution Chromatography,1991,14(11):718-723.
    [176]Cork A, Beevor P. Gough A, et al. Gas chromatography linked to electroantennography:a versatile technique for identifying insect semio chemicals. Chromatography and Isolation of Insect and Pheromones [M].Plenum Press. London, 1990.
    [177]Struble D, Arn H. Combined gas chromatography and electroantennogram recording of insect olfactory responses [J]. Techniques in Pheromone Research. Springer-Verlag, New York,1984:161-178.
    [178]Beites CL, Kawauchi S, Crocker CE, et al. Identification and molecular regulation of neural stem cells in the olfactory epithelium[J]. Experimental Cell Research,2005, 306(2):309-316.
    [179]许宁.挥发性物质在茶树-茶尺蠖-绒茧蜂三重营养关系中的化学通讯作用[D].杭州:浙江农业大学,1996.
    [180]韩宝瑜.茶树—茶蚜—捕食、寄生性天敌间定位、取食的物理、化学通讯机制[D].中国农业科学院研究生院,茶叶研究所,1999.
    [181]赵冬香.茶树-假眼小绿叶蝉-蜘蛛间化学,物理通讯机制的研究[D][D].杭州:浙江大学,2001.
    [182]Bradshaw A. Some of the evolutionary consequences of being a plant[J]. Evolutionary biology,1972,5:25-47.
    [183]Arimura G-i, Kost C, Boland W. Herbivore-induced, indirect plant defences[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2005, 1734(2):91-111.
    [184]Abrell L, Guerenstein PG, Mechaber WL, et al. Effect of elevated atmospheric CO(2) on oviposition behavior in Manduca sexta moths[J]. Global Change Biology,2005, 11(8):1272-1282,
    [185]Dicke M, Sabelis MW. how plants obtain predatory mites as bodyguards[J]. Netherlands Journal of Zoology,1988,38(2-4):148-165.
    [186]Dicke M, Vanbeek TA, Posthumus MA, et al. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions-involvement of host plant in its production[J]. Journal of Chemical Ecology,1990,16(2):381-396.
    [187]Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(13):5467-5472.
    [188]Heil M, Baluska F, Ninkovic V. Within-plant signalling by volatiles triggers systemic defences[J]. Plant Communication from an Ecological Perspective,2010:99-112.
    [189]Kost C, Heil M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants[J]. Journal of Ecology,2006,94(3):619-628.
    [190]Heil M, Ton J. Long-distance signalling in plant defence[J]. Trends in Plant Science, 2008,13(6):264-272.
    [191]Woods JL, James DG, Lee JC, et al. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards[J]. Experimental and Applied Acarology,2011,55(4):401-416.
    [192]娄永根,程家安.虫害诱导的植物挥发物:基本特性,生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106.
    [193]刘芳,娄永根,程家安.虫害诱导的植物挥发物:植物与植食性昆虫及其天敌相互作用的进化产物[J].昆虫知识,2003,40(6):481-486.
    [194]杨新根,谢映平,薛皎亮,等.柿树被日本龟蜡蚧危害后挥发物的变化及其对红点唇瓢虫的引诱作用[J].应用与环境生物学报,2006,(02):215-219.
    [195]Hunter MD. A breath of fresh air:beyond laboratory studies of plant volatile-natural enemy interactions [J]. Agricultural and Forest Entomology,2002,4(2):81-86.
    [196]Schroder R, Forstreuter M, Hilker M. A plant notices insect egg deposition and changes its rate of photosynthesis[J]. Plant Physiology,2005,138(1):470.
    [197]Meiners T, Hilker M. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola(Coleoptera:Chrysomelidae)[J]. Oecologia,1997,112(1):87-93.
    [198]Dicke M, van Poecke RMP, de Boer JG. Inducible indirect defence of plants:from mechanisms to ecological functions[J]. Basic and Applied Ecology,2003,4(1):27-42.
    [199]Turlings TCJ, Wackers F. Recruitment of predators and parasitoids by herbivore-injured plants[J]. Advances in Insect Chemical Ecology,2004:21-75.
    [200]van Poecke RMP, Dicke M. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1[J]. Plant Cell and Environment,2003,26(9):1541-1548.
    [201]Landolt PJ. Effects of host plant leaf damage on cabbage-looper moth attraction and oviposition[J]. Entomologia Experimentalis Et Applicata,1993,67(1):79-85.
    [202]Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science,2001,291(5511):2141-2144.
    [203]Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature,2000,406(6795):512-515.
    [204]Engelberth J, Alborn HT, Schmelz EA, et al. Airborne signals prime plants against insect herbivore attack[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(6):1781-1785.
    [205]James DG, Price TS. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops[J]. Journal of Chemical Ecology,2004,30(8): 1613-1628.
    [206]Williams L, Rodriguez-Saona C, Castle SC, et al. EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid[J]. Journal of Chemical Ecology,2008,34(9):1190-1201.
    [207]Khan ZR, James DG, Midega CAO, et al. Chemical ecology and conservation biological control[J]. Biological Control,2008,45(2):210-224.
    [208]穆丹.茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效[D].中国农业科学院研究生院,茶叶研究所,2011.
    [209]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(006):819-823.
    [210]Pierre PS, Jansen JJ, Hordijk CA, et al. Differences in volatile profiles of turnip plants subjected to single and dual herbivory above-and belowground[J]. Journal of Chemical Ecology,2011,37(4):368-377.
    [211]Hilker M, Meiners T. Plants and insect eggs:How do they affect each other?[J]. Phytochemistry,2011,72(13):1612-1623.
    [212]Gadino AN, Walton VM, Lee JC. Olfactory response of Typhlodromuspyri (Acari: Phytoseiidae) to synthetic methyl salicylate in laboratory bioassays[J]. Journal of Applied Entomology,2012,136(6):476-480.
    [213]Wang G, Cui L-L, Dong J, et al. Combining intercropping with semiochemical releases:optimization of alternative control of Sitobion avenae in wheat crops in China[J]. Entomologia Experimentalis Et Applicata,2011,140(3):189-195.
    [214]Simpson M, Gurr GM, Simmons AT, et al. Field evaluation of the 'attract and reward' biological control approach in vineyards[J]. Annals of Applied Biology,2011,159(1): 69-78.
    [215]Rodriguez-Saona C, Kaplan I, Braasch J, et al. Field responses of predaceous arthropods to methyl salicylate:A meta-analysis and case study in cranberries [J]. Biological Control,2011,59(2):294-303.
    [216]Miao J, Han B-y. Effects of treating tea plants with exogenous methyl salicylate (MeSA) on the main pests and their natural enemies in tea garden[J]. Shengtaixue Zazhi,2011,30(3):564-568.
    [217]Mallinger RE, Hogg DB, Gratton C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera:Aphididae) in soybean agroecosystems[J]. Journal of Economic Entomology,2011,104(1):115-124.
    [218]Simpson M, Gurr GM, Simmons AT, et al. Insect attraction to synthetic herbivore-induced plant volatile-treated field crops[J]. Agricultural and Forest Entomology,2011,13(1):45-57.
    [219]Furtado Michereff MF, Laumann RA, Borges M, et al. Volatiles Mediating a Plant-Herbivore-Natural Enemy Interaction in Resistant and Susceptible Soybean Cultivars[J]. Journal of Chemical Ecology,2011,37(3):273-285.
    [220]Gershenzon J, Dudareva N. The function of terpene natural products in the natural world[J]. Nat Chem Biol,2007,3(7):408-414.
    [221]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,(02):93-103.
    [222]Schultz TH, Flath RA, Mon TR, et al. Isolation of volatile components from a model system[J]. Journal of Agricultural and Food Chemistry,1977,25(3):446-449.
    [223]张正竹,陈玎玎.茶叶香精油的同时蒸馏萃取(SDE)法提取效率分析[J].中国茶叶加工,2003,(01):31-33.
    [224]李拥军,施兆鹏.柱吸附法和SDE法提取茶叶香气的研究[J].湖南农业大学学报,2001,27(4)
    [225]朱旗,施兆鹏,任春梅.绿茶香气不同提取方法的研究[J].茶叶科学,2001,21(1):38-43.
    [226]陈悦娇,王冬梅,邓炜强,等.SDRP和SDE法提取乌龙茶香气成分的比较研究[J].中山大学学报(自然科学版),2005,(S1):275-278.
    [227]Zhang Z, Li G. A review of advances and new developments in the analysis of biological volatile organic compounds[J]. Microchemical Journal,2010,95(2): 127-139.
    [228]Bernays EA, Chapman RF. Host-plant selection by phytophagous insects[M].1st edn New York:Chapman and Hall,1994.
    [229]Bruce TJA, Wadhams LJ, Woodcock CM. Insect host location:a volatile situation[J]. Trends in Plant Science,2005,10(6):269-274.
    [230]Denno RF, McClure MS. Variable plants and herbivores in natural and managed systems[M]. New York.:Academic Press,1983
    [231]Dicke M. Chemical ecology of host-plant selection by herbivorous arthropods:a multitrophic perspective[J]. Biochemical Systematics and Ecology,2000,28(7): 601-617.
    [232]Finch S, Collier RH,'Host Plant Selection by Insects', in Encyclopedia of Entomology, ed. by Capinera JL,2008), pp.1863-1873.
    [233]Hay ME. Marine chemical ecology:what's known and what's next?[J]. Journal of Experimental Marine Biology and Ecology,1996,200(1-2):103-134.
    [234]Howard R. Host-Plant Selection by Phytophagous Insects[J]. Environmental Entomology,1995,24:1754-1756.
    [235]Lastra JAS, Barrios LEG, Rojas JC, et al. Host selection behavior of Leptophobia aripa (Lepidoptera:Pieridae)[J]. Florida Entomologist,2006,89(2):127-134.
    [236]Murlis J, Elkinton JS, Carde RT. Odor Plumes and How Insects Use Them[J]. Annual Review of Entomology,1992,37(1):505-532.
    [237]Powell G, Tosh CR, Hardie J. Host plant selection by aphids:Behavioral, evolutionary, and applied perspectives[J]. Annual Review of Entomology,2006,51:309-330.
    [238]Rosenthal GA, Berenbaum MR. Herbivores:their Interaction with Secondary Plant Metabolites[M].2nd edn Academic Press, New York:Academic Press,1992.
    [239]Visser JH. Host Odor Perception in Phytophagous Insects[J]. Annual Review of Entomology,1986,31(1):121-144.
    [240]Guerin PM, Visser JH. Electroantennogram responses of the carrot fly, Psila rosae, to volatile plant components [J]. Physiological Entomology,1980,5:111-119.
    [241]Fagoonee I, Toory V. Preliminary investigations of host selection mechanisms by the leafminer Liriomyza trifolii[M]. Vol.4 oxford, royaume-uni:Pergamon Press,1983.
    [242]Light DM, Jang EB, Dickens JC. Electroantennogram responses of the mediterranean fruit fly,Ceratitis capitata, to a spectrum of plant volatiles[J]. Journal of Chemical Ecology,1988,14(1):159-180.
    [243]Cosse AA, Todd JL, Millar JG, et al. Electroantennographic and coupled gas chromatographic-electroantennographic responses of the mediterranean fruit fly,Ceratitis capitata, to male-produced volatiles and mango odor[J]. Journal of Chemical Ecology,1995,21(11):1823-1836.
    [244]Karg G, Suckling M,'Applied aspects of insect olfaction', in Insect olfaction, ed. by Hansson BS (Berlin Heidelberg New York:Verlag Springer,1999), pp.352-377.
    [245]Bengtsson J, Wolde-Hawariat Y, Khbaish H, et al. Field attractants for pachnoda interrupta selected by means of GC-EAD and single sensillum screening[J]. Journal of Chemical Ecology,2009,35(9):1063-1076.
    [246]Thiery D, Marion-Poll F. Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles[J]. Journal of Insect Physiology,1998,44(5-6):483-490.
    [247]Angioy AM, Desogus A, Barbarossa IT, et al. Extreme Sensitivity in an Olfactory System[J]. Chemical Senses,2003,28(4):279-284.
    [248]Hern A, Dorn S. Induction of volatile emissions from ripening apple fruits infested with Cydia pomonella and the attraction of adult females[J]. Entomologia Experimentalis et Applicata,2002,102(2):145-151.
    [249]Pinero JC, Dorn S. Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth[J]. Entomologia Experimentalis et Applicata,2007,125(2):185-194.
    [250]de Groot P, Grant GG, Poland TM, et al. Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage[J]. Journal of Chemical Ecology,2008,34(9):1170-1179.
    [251]Ramachandran R, Khan ZR, Caballero P, et al. Olfactory sensitivity of two sympatric species of rice leaf folders (Lepidoptera:Pyralidae) to plant volatiles[J]. Journal of Chemical Ecology,1990,16(9):2647-2666.
    [252]Dickens JC. Olfaction in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae):Electroantennogram studies[J]. Journal of Chemical Ecology,1984, 10(12):1759-1785.
    [253]Dickens JC. Green leaf volatiles enhance aggregation pheromone of boll-weevil, anthonomus-grandis[J]. Entomologia Experimentalis Et Applicata,1989,52(3): 191-203.
    [254]Dickens JC, Smith JW, Light DM. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm,Heliothis virescens (Lep.:Noctuidae)[J]. Chemoecology,1993,4(3):175-177.
    [255]Light DM, Flath RA, Buttery RG, et al. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera)[J]. Chemoecology,1993,4(3):145-152.
    [256]Yang ZH, Bengtsson M, Witzgall P. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella[J]. Journal of Chemical Ecology,2004, 30(3):619-629.
    [257]Wang z-h, Zhao H, Li j-f, et al. Synergism of plant volatiles to insect pheromones and related mechanisms[J]. Yingyong Shengtai Xuebao,2008,19(11):2533-2537.
    [258]Ginzel MD, Hanks LM. Role of host plant volatiles in mate location for three species of longhorned beetles[J]. Journal of Chemical Ecology,2005,31(1):213-217.
    [259]Groot AT, Visser JH. Influence of host plants on sexual communication in the herbivorous bug Lygocoris pabulinus[J]. Chemoecology,2001,11(4):161-166.
    [260]Ochieng SA, Park KC, Baker TC. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea[J]. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 2002,188(4):325-333.
    [261]Tooker JF, Koenig WA, Hanks LM. Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(24):15486-15491.
    [262]Deng JY, Wei HY, Huang YP, et al. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants[J]. Journal of Chemical Ecology,2004,30(10):2037-2045.
    [263]Schmidt-Buesser D, von Arx M, Guerin PM. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone[J]. Journal of Comparative Physiology A Neuroethology Sensory Neural and Behavioral Physiology,2009,195(9):853-864.
    [264]Ruther J, Reinecke A, Hilker M. Plant volatiles in the sexual communication of Melolontha hippocastani:response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone[J]. Ecological Entomology,2002, 27(1):76-83.
    [265]Rawat R, Gulati A. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze) [J]. European Food Research and Technology,2008,226(6):1241-1249.
    [266]Wan X-c. Tea Biochemistry[M].3rd edn Beijing, China:China Agriculture Press, 2007.
    [267]Ning X, Zongmao C, Xiaoqing Y. isolation and identification of tea plant volatiles attractive to tea geometrid parasitoids[J]. Acta Entomologica Sinica,1999, (02)
    [268]Williams L, Rodriguez-Saona C, Castle S, et al. EAG-Active Herbivore-Induced Plant Volatiles Modify Behavioral Responses and Host Attack by An Egg Parasitoid[J]. Journal of Chemical Ecology,2008,34(9):1190-1201.
    [269]Visser JH, Straten S, Maarse H. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the colorado beetle, Leptinotarsa decemlineata[J]. Journal of Chemical Ecology,1979,5(1):13-25.
    [270]Alexander RD, Bargia G. Group Selection, Altruism, and the Levels of Organization of Life[J]. Annual Review of Ecology and Systematics,1978,9(1):449-474.
    [271]Thiery D, Visser JH. Masking of host plant odour in the olfactory orientation of the Colorado potato beetle[J]. Entomologia Experimentalis et Applicata,1986,41(2): 165-172.
    [272]Pers JNC. Comparison of electroantennogram response spectra to plant volatiles in seven species of Yponomeuta and in the tortricid Adoxophyes orana[J]. Entomologia Experimentalis et Applicata,1981,30(2):181-192.
    [273]Raguso RA, Light DM, Pickersky E. Electroantennogram responses of Hyles lineata (Sphingidae:Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers [J]. Journal of Chemical Ecology,1996,22(10): 1735-1766.
    [274]Zhang A, Linn C, Wright S, et al. Identification of a New B lend of Apple Volatiles Attractive to the Apple Maggot, Rhagoletis pomonella [J]. Journal of Chemical Ecology,1999,25(6):1221-1232.
    [275]Das P, Raina R, Prasad A, et al. Electroantennogram responses of the potato tuber moth, Phthorimaea operculella (Lepidoptera; Gelichiidae) to plant volatiles [J]. Journal of Biosciences,2007,32(2):339-349.
    [276]Raguso RA, Light DM. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and'green-leaf volatiles'[J]. Entomologia Experimentalis et Applicata,1998,86(3):287-293.
    [277]黄安平,包小村.茶刺蛾及其防治研究进展[J].湖南农业科学,2009,(09):84-86+88.
    [278]Morehead SA, Feener DH. Visual and chemical cues used in host location and acceptance by a dipteran parasitoid[J]. Journal of Insect Behavior,2000,13(4): 613-625.
    [279]John O. Stireman Ⅲ. Host location and selection cues in a generalist tachinid parasitoid[J]. Entomologia Experimentalis et Applicata,2002,103(1):23-34.
    [280]Turlings TCJ, Tumlinson JH, Eller FJ, et al. Larval-damaged plants:source of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its hosts[J]. Entomologia Experimentalis Et Applicata,1991,58(1):75-82.
    [281]Mbata GN, Thomas A, Fadamiro HF. Parasitism by Pteromalns cerealellae (Hymenoptera:Pteromalidae) on the Cowpea weevil, Callosbruchus maculatus (Coleoptera:Bruchidae):Host density, temperature effects, and host finding ability[J]. Biological Control,2005,33(3):286-292.
    [282]Germinara G, De Cristofaro A, Rotundo G. Antennal olfactory responses to individual cereal volatiles in Theocolax elegans (Westwood)(Hymenoptera:Pteromalidae) [J]. Journal of Stored Products Research,2009,45(3):195-200.
    [283]Onagbola EO, Fadamiro HY. Electroantennogram and behavioral responses of Pteromalus cerealellae to odor stimuli associated with its host, Callosobruchus maculatus[J]. Journal of Stored Products Research,2011,47(2):123-129.
    [284]Lewis W, Nordlund DA, Gueldner R, et al. Kairomones and their use for management of entomophagous insects[J]. Journal of Chemical Ecology,1982,8(10):1323-1331.
    [285]Noldus L, Lenteren JC. Kairomones for the egg parasiteTrichogramma evanescens Westwood[J]. Journal of Chemical Ecology,1985,11(6):781-791.
    [286]Lecomte C, Thibout E. Pre-and post-imaginal experience in a specialist parasitoid Diadromuspulchellus (Hym.:Ichneumonidae)[J]. BioControl,1993,38(2):175-184.
    [287]Cortesero AM. Monge JP, Huignard J. Response of the parasitoid eupelmus-vuilleti to the odors of the phytophagous host and its host-plant in an olfactometer[J]. Entomologia Experimentalis Et Applicata,1993,69(2):109-116.
    [288]Steinberg S, Dicke M, Vet LEM. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata[5]. Journal of Chemical Ecology,1993,19(1):47-59.
    [289]Agelopoulos NG, Keller MA. Plant-natural enemy association in the tritrophic system,Cotesza rubecula-Pieris rapae-brassiceae (cruciferae):I. Sources of infochemicals[J]. Journal of Chemical Ecology,1994,20(7):1725-1734.
    [290]Mbata G, Shu S, Phillips T, et al. Semiochemical cues used by Pteromalus cerealellae (Hymenoptera:Pteromalidae) to locate its host, Callosobruchus maculatus (Coleoptera:Bruchidae)[J]. Annals of the Entomological Society of America,2004, 97(2):353-360.
    [291]Vet LEM, Wackers FL, Dicke M. how to hunt for hiding hosts-the reliability-detectability problem in foraging parasitoids[J]. Netherlands Journal of Zoology,1991,41(2-3):202-213.
    [292]Sullivan BT, Pettersson EM, Seltmann KC, et al. Attraction of the bark beetle parasitoid Roptrocerus xylophagorum (Hymenoptera:Pteromalidae) to host-associated olfactory cues[J]. Environmental Entomology,2000,29(6): 1138-1151.
    [293]徐延熙,孙绪艮,何忠,等.松毛虫狭颊寄蝇对被害马尾松针叶挥发物的触角电位反应[J].昆虫知识,2006,(03):319-322.
    [294]董文霞,张峰,方宇凌,等.烟蚜茧蜂对蚜虫信息素及烟草挥发物的触角电位反应[J].生态学杂志,2008,(04):591-595.
    [295]Huang A-P, Bao X-C, Liu B-Y, et al. Electroantennogram responses of the tea slug moth, Iragoides fasciata to some plant volatiles associated with tea, Camellia sinensis[J]. Journal of Insect Science,2012,12:75-75.
    [296]Sasso R, Iodice L, Woodcock CM, et al. Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera:Braconidae) to tomato plant volatiles[J]. Chemoecology,2009,19(4):195-201.
    [297]Weissbecker B, Van Loon JJA, Dicke M. Electroantennogram Responses of a Predator, Perillus bioculatus, and its Prey, Leptinotarsa decemlineata, to Plant Volatiles[J]. Journal of Chemical Ecology,1999,25(10):2313-2325.
    [298]Resh VH, Carde RT. Encyclopedia of insects[M].Academic Press,2009.
    [299]Lewis CT, Marshall AT. The ultrastructure of the sensory plaque organs of the antennae the chinese lantern fly, Pyrops Candelaria L., (Homoptera, Fulgoridae)[J]. Tissue and Cell,1970,2(3):375-385.
    [300]尹文英,郦一平.棉红铃虫触角感觉器的扫描电镜观察[J].昆虫学报,1980,23(2):123-128.
    [301]Schneider D, Lacher V, Kaissling KE. Die reaktionsweise und das reaktionsspektrum von riechzellen bei antheraea-pernyi (lepidoptera, saturniidae)[J]. Zeitschrift Fur Vergleichende Physiologie,1964,48(6):632-662.
    [302]Bleeker MAK, Smid HM, Van Aelst AC, et al. Antennal sensilla of two parasitoid wasps:A comparative scanning electron microscopy study [J]. Microscopy Research and Technique,2004,63(5):266-273.
    [303]Sun X, Wang M-Q, Zhang G. Ultrastructural observations on antennal sensilla of cnaphalocrocis medinalis (Lepidoptera:Pyralidae)[J]. Microscopy Research and Technique,2011,74(2):113-121.
    [304]Jayaprakash R. Morphology and distribution of antennal sensilla in Opisina arenosella walker (Lepidoptera:Xyloryctinae)[J]. Journal of Entomological Research (New Delhi),2010,34(4):357-364.
    [305]Frank DL, Leskey TC, Bergh JC. Morphological characterization of antennal sensilla of the Dogwood Borer (Lepidoptera:Sesiidae)[J]. Annals of the Entomological Society of America,2010,103(6):993-1002.
    [306]Faucheux MJ. Antennal sensilla in the female of Dyseriocrania subpurpurella (HAWORTH,1828) (Lepidoptera:Eriocraniidae). Replacement of aporous sensilla chaetica by uniporous sensilla chaetica[J]. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie,2010,80:51-58.
    [307]Yang H, Yan S-C, Liu D. Ultrastructural observations on antennal sensilla of Coleophora obducta (Meyrick) (Lepidoptera:Coleophoridae)[J]. Micron,2009,40(2): 231-238.
    [308]Shields VDC. Fine Structure of the Galeal Styloconic Sensilla of Larval Lymantria dispar (Lepidoptera:Lymantriidae)[J]. Annals of the Entomological Society of America,2009,102(6):1116-1125.
    [309]Wang X, Xu J, Liu F-Y, et al. Ultrastructure of antennal sensilla of Maruca testulalis (Lepidoptera:Pyralidae) adult and its sensory responses to sex pheromone and plant volatiles[J]. Acta Entomologica Sinica,2008,51(12):1225-1234.
    [310]Castrejon Gomez VR, Valdez Carrasco J. Morphological characteristics of antennal sensilla in Talponia batesi (Lepidoptera:Tortricidae)[J]. Annals of the Entomological Society of America,2008,101(1):181-188.
    [311]江南,李庆,周建华,等.麻疯树柄细蛾触角及其感器的扫描电镜观察[J].昆虫知识,2010,(02):355-359.
    [312]王霞,徐静,刘凤英,等.豆野螟触角感器的电镜超微结构及嗅觉功能[J].昆虫学报,2008,(12):1225-1234.
    [313]邵淑霞,姜波,蒲卫琼,等.井上蛀果斑螟触角感器的扫描电镜观察[J].昆虫知识,2008,(06):932-936.
    [314]尹姣,曹雅忠,罗礼智,等.草地螟触角化学感受器的电镜观察[J].昆虫知识,2004,(01):56-59.
    [315]付盈盈,汤方,赵文亮,等.分月扇舟蛾触角感觉器的扫描电镜观察[J].应用昆虫学报,2012,(02):515-519.
    [316]王焱,穆兰芳,曾凡荣,等.樟巢螟成虫触角感器的扫描电镜观察[J].应用昆虫学报,2011,(03):675-679.
    [317]支海美,刘星月,杨定.苹果蠹蛾头部感器的电镜扫描结构[J].应用昆虫学报,2012,(01):43-48.
    [318]Laue M. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars[J]. Arthropod Structure & Development,2000,29(1):57-73.
    [319]鲁冲,朱芬,陈利珍,等.中黑盲蝽触角感器扫描电镜观察[J].昆虫知识,2009,(06):879-882.
    [320]Dweck HKM, Gadallah NS. Description of the antennal sensilla of Habrobracon Hebetor[J]. Biocontrol,2008,53(6):841-856.
    [321]宫田睿,李新岗,杨立军,等.桃小食心虫触角感受器扫描电镜观察[J].西北农林科技大学学报(自然科学版),2012,(06):120-124.
    [322]高素红,吉志新,王长青,等.中华微蛾(Sinopticula sinica Yang)触角感器的扫描电镜观察[J].安徽农业科学,2010,(07):3499-3502.
    [323]向玉勇,杨茂发,李子忠.小地老虎雄蛾触角感受器的扫描电镜观察[J].四川动物,2009,(03):390-393.
    [324]王桂荣,郭予元,吴孔明.棉铃虫触角感器的超微结构观察[J].中国农业科学,2002,(12):1479-1482+1584-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700